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Abstract—We address the memory problem of maximum
entropy language models(MELM) with very large feature sets.
Randomized techniques are employed to remove all large, exact
data structures in MELM implementations. To avoid the dic-
tionary structure that maps each feature to its corresponding
weight, the feature hashing trick [1] [2] can be used. We also
replace the explicit storage of features with a Bloom filter.
We show with extensive experiments that false positive errors
of Bloom filters and random hash collisions do not degrade
model performance. Both perplexity and WER improvements
are demonstrated by building MELM that would otherwise be
prohibitively large to estimate or store.

I. INTRODUCTION

Language models(LM) are crucial components in automatic

speech recognition(ASR) systems. They assign probabilities to

sequences of words, usually by modeling the set of conditional

distributions {P (w|h)}, as shown in (1), where hi is the word

history preceding the ith word wi.

P (w1, w2, ..., wl) =
l∏

i=1

P (wi|hi). (1)

The n-gram LM is the conventional approach to parameterize

P (w|h), where it is assumed that the word w only depends

on its previous n − 1 words. Therefore, the number of

parameters in the model depends on the number of distinct

word sequences of length up to n. As the corpus size increases,

it is usually hard to estimate high order n-gram LMs because

of the exponential increase of the number of n-grams in the

training corpus.

The maximum entropy LM(MELM) [3] is an alternative

way to parameterize P (w|h). It provides a principled frame-

work to incorporate different knowledges sources in the form

of feature constraints. Specifically, for word w following h,

we have

P (w|h) = exp
∑

i θifi(h,w)∑
w′∈V exp

∑
i θifi(h,w

′)
, (2)

where fi is the ith feature function defined over the word-

history pair, θi is the feature weight associated with fi. As a

starting point for building stronger LM, n-gram information is

usually included into the model by defining n-gram features

corresponding to each distinct n-grams in the training corpus,

thus the memory challenge for large scale MELM is clearly

no less severe than the standard n-gram LM. Furthermore,

besides nice theoretical properties in terms of smoothness,

the true strength of MELM lies in its flexible framework to

include constraints other than n-grams. Unfortunately, despite

the empirical success of adding more knowledge into MELM

[4], including these features together with n-gram constraints

poses considerable challenges in terms of storage. For a lot of

applications where remote or disk readings are prohibitively

expensive, it is very difficult to deploy MELM with large

feature sets because they cannot be stored in memory on a

single machine.

For the standard n-gram LM, a lot of work has focused on

reducing its size. A few examples are the entropy based prun-

ing in [5], clustering in [6], Golomb coding in [7]. People have

also used various data structures such as suffix array in [8],

tries in [9], to represent n-gram LMs compactly. Among these

techniques, the randomized schemes [10] [11] are probably

the most succinct ones. Differing from all other approaches,

the randomized models do not attempt to store n-grams ex-

plicitly, Bloom filter [12] -type structures are employed which

only store fingerprints of the n-grams. However, the drastic

space savings come with a cost – as a randomized structure

for representing sets, Bloom filters may occasionally return

nonexistent items with some small quantifiable probabilities,

known as false positives. On the other hand, false negatives

never occur. The effect of such one sided errors has proven to

be sufficiently small and does not prevent us from deriving a

quality LM.

The spectacular memory performance of randomized LM

inspires us to explore randomized techniques to encode

MELM, which is the focus of this paper. In order to reduce the

memory requirement of training and using MELM, we propose

to make use of the recently introduced feature hashing tech-

niques [1] [2]. Central to the hashing idea is allowing feature

collisions. By allowing multiple features to be mapped to the

same weight value, we no longer have to store in memory

the expensive dictionary structure to map from fi to θi. It has
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been shown that given a reasonably good hash function, such

random collisions have limited impact on the resulting model

because the learning algorithms can usually deal with such

noise in the feature representation. Besides removing exact

feature mapping, as we will discuss in later sections, we also

have to avoid explicit storage of the features, for which exact

techniques are expensive as well. To solve this problem, we

employ Bloom filters. Therefore, our approach can be briefly

described as storing features with Bloom filters and mapping

them randomly to the weight vector. By avoiding all of the

large exact data structures in our MELM, we introduce two

sources of randomness: (i) Due to false positives in Bloom

filters, some features that are not defined by the model may

be invoked and contribute to the probability distribution. (ii)

Of all features that are invoked, either correctly or falsely,

some may be randomly tied to have the same weight value.

Note that perfect hashing techniques might be an alternative

to encode key-value pairs (fi, θi) without using a dictionary,

it has been successfully used for representing n-gram LM [11]

[13]. However, the procedure to compute perfect hash function

is not straightforward. As we will show in this paper, for

MELM, such exact key-value correspondence is not necessary.

It is also worth pointing out that our approach is quite

different from L1 regularization or other kinds of feature

selection techniques. We do not attempt to discard any fea-

tures, our goal is to provide a randomized representation for

arbitrary feature sets such that explicit storage and explicit

mapping are not necessary. E.g., it is possible in our method

that two very distinct and relevant features may accidentally

be forced to share a feature weight. No attempt is made to

avoid such accidents, and their consequences are measured

only empirically.

II. FEATURE HASHING

Feature hashing [1] [2] is a method to scale up linear

learning algorithms.

In linear models such as logistic regression and support

vector machines, a real-valued weight has to be learned for

each feature defined by the model. The features are constructed

from training instances and often take the form of strings that

describe certain properties of the instances. In the case of

MELM, features are defined on history-word pairs (h,w). For

example, in the training instance (hello, world), we can have

the unigram feature world and the bigram feature hello world.

In order to store and retrieve the weights associated with

these features, a dictionary structure is usually necessary to

map every string-valued feature to an integer position in a

weight vector. Such dictionary structures must, however, also

store the strings themselves for collision resolution—the task

of dealing with multiple strings mapping to the same position.

This storage requires large amounts of memory. As the feature

space becomes more complex (e.g. high-order n-grams and

skip n-grams), the number of possible features grows, as does

the number of observed features in large training sets, thus the

dictionary structure may take up considerable space.

The hashing idea does away with the storage of the input

strings, and replaces the dictionary with a hash function that

stochastically minimizes the likelihood of a collision between

feature strings without ruling it out completely. Since the hash

function is not perfect, all features that have the same hashcode

will map to the same location in the weight vector, and be

forced to share the same weight parameter.

The size of the weight vector is a parameter that can

be adjusted to control the collision rate. As described in

[1], the elimination of dictionary storage brings tremendous

memory savings, permitting space allocation for a large weight

vector. This in turn permits incorporating more features and/or

reducing the likelihood of collisions to acceptable levels.

III. STORING FEATURES WITH BLOOM FILTER

With the hashing technique, it is not necessary to store the

features. In MELM, as we described, features are defined on

the sequence of words formed by the history-word pair. Con-

sider the sequences of length n, the number of such distinct

sequences is |V |n, where |V | is the size of the vocabulary. For

a basic n-gram MELM, if we assume every word sequence

of length up to n activates a different feature, we have to

contend with |V |n+ |V |n−1+ ...+ |V | possible features, even

though the majority of them are never seen in the training data.

Unfortunately, this set of candidate features is often too large

to avoid hash collisions. For realistic weight vector sizes, such

a large number of possible features significantly exacerbates

the hash collision problem.

To further illustrate this point, we conducted a set of

experiments on the Penn Treebank corpus. Details of the

corpus are provided later when we present more results.

Figure 1 shows the perplexity from using different weight

vector sizes under feature hashing without storing the feature

definitions, where the randomized model is denoted RMELM.

The standard model contains 4.1M features derived from the

corpus, requiring about 32MB of memory for storing the

feature weights. The model contains n-gram features up to

5-grams and also a few other types of features. Consider only

5-gram features, if we allow a distinct feature to fire for every

possible 5-word sequence, the number of features implicitly

added into the model is as large as 1020. If we allocate only

4.1M bins to the weight vector, on average more than 1013

features will be forced to share the same weight. Some of the

collisions will be between the 4.1M features derived from the

corpus, but most will involve features not seen in the training

corpus (but which may be triggered on the test set).

As we can see in Figure 1, the loss in LM performance due

to hash collisions is obvious: even with a weight vector size of

10 times the number of seen features, we achieve a perplexity

of 135 for the RMELM compared to 131 for the MELM.

However, the RMELM begins to approach the perplexity

of the MELM as we allocate more memory, especially after

interpolation with the Kneser-Ney 5-gram LM, as shown by

the (blue) RMELM+KN5 and (green) MELM+KN5 curves.

Unfortunately, it is often the case that we cannot allocate

significantly more bins for the weight vector than the number
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Fig. 1. Perplexity as a function of weight vector size

of seen features. For very large feature sets, such direct hashing

may therefore not be advisable. For example, the size of the

feature set exceeds 150M in one of our experiments on a 70M-

word corpus, and storing a weight vector of size 150M in

double precision would require 1.2GB of memory. If 10 times

its size is needed to approach the performance of the exact

MELM implementation, we would have to allocate a weight

vector that takes up 12GB, which may be infeasible.

An alternative is to only include features that have been seen

in the training corpus. Since the number of features observed

during training is manageable, this can alleviate the collision

problem. But to test the existence of a feature fi(·), we need to

store a table of such valid features! It would seem that storing

this table would negate the cost saving from feature hashing.

But Bloom filters can help alleviate this difficulty. Note that

unlike [10], where the Bloom filter is used to associate key-

value pairs, we only need a set structure that tests whether a

given feature fi(·) is defined in the model. Despite the risk

of some false positives, the space advantage of Bloom filters

over other data structures is very well known. It works by

maintaining a bit vector where each added item sets k bits

to 1 according to the results of k hash functions; i.e. it is

not necessary to explicitly store the feature definitions. For a

detailed description of Bloom filters used for LM, see [10].

IV. BINARIZATION AND SUBSAMPLING

MELM are known to be computationally expensive to train.

The complexity of each iteration of training is at O(V T ),
where V is the size of the vocabulary and T is the size

of the training corpus. For large datasets, standard MELM

training is often impractical. In [14], an efficient subsampling

approach is proposed to accelerate MELM training. The idea is

replace the original V -class problem with V binary problems,

where the subsampling can be done for negative examples

only. Specifically, instead of building a multi-class classifier

as in (2), for each word w in the vocabulary, we build the

binary classifier given by

Pb(w|h) = exp
∑

i θifi(h,w)

1 + exp
∑

i θifi(h,w)
. (3)

To obtain a valid multi-class distribution, the binary proba-

bilities are explicitly normalized. Since the majority of the

complexity for each binary classifier comes from processing

negative examples, we can achieve substantial speedup by only

subsampling the negatives. The authors show with extensive

experiments that such subsampling strategy is more robust than

subsampling for the original multi-class problem.

Given the sizes of our experiments, it is not possible to

carry out the standard training efficiently, so the binarization

technique is used to train different MELM throughout our

experiments.

V. EXPERIMENTAL RESULTS

• For the hash function used in feature hashing, we use

Java’s HashCode() function modulo the intended size

of the weight vector.

• For the Bloom filter, we use the public domain implemen-

tation from http://code.google.com/p/java-Bloomfilter/.

• Online stochastic gradient descent is used for training

each of the binary classifiers, no explicit regularization is

performed [15].

A. Penn Treebank Experiments

This set of experiments is intended for a detailed com-

parison between the randomized feature representation and

the exact feature representation. The Penn Treebank corpus

contains approximately 1M word tokens–section 00-20 are

used for training(972K tokens), section 21-22 are the val-

idation set(77K), section 23-24(86K) are the test set. The

vocabulary size of the experiment is 10K. To expedite training,

we binarize the problem as described above, and subsample

only 10% of the negative examples.

Besides n-gram features up to 5-grams, we also include

skip-1 bigram, trigram and four gram features [16] . Class-

based features are also added which ask about the class

membership of the previous word. SRILM is used to obtain

the word classes. In total, we have a set of 4.1M features.

The exact storage takes about 600MB, where more than

550MB is used to maintain a hashmap from features to the

indices in the weight vector. In the randomized implementa-

tion, the Bloom filters only require 40-60MB of memory.

Figure 2 shows the perplexity results of randomized

MELM(RMELM) compared with the exact hashmap imple-

mentation. For comparison, we also build a KN smoothed 5-

gram LM, which gives a perplexity of 147.9. The results after

interpolation with it are shown in Figure 3. The false positive

rate here is the theoretical number which can be used as a

parameter to initialize the Bloom filter. As we can see, besides

the strong space advantage, the RMELM are also able to retain

most of the gain by MELM especially after interpolation. Due

to the space saving brought by removing the dictionary, we are

usually able to allocate a larger weight vector to reduce the
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Fig. 2. RMELM with different false positive(FP) rates

Fig. 3. RMELM with different false positive rates (Interpolated)

hash collisions and improve the results. What’s also interesting

is that instead of increasing the vector size, the hashing trick

can in fact allow us to compress it, the perplexity differences

after interpolation are not significant as we shrink the weight

vector space.

This set of experiments provides us with some insight in

selecting parameters. For the rest of the experiments, we will

always have Bloom filters with theoretical false positive rate

at 0.01, and the weight vector sizes are always set to be equal

to the number of features in the model.

B. Fisher Topic Modeling

In [4], topic information is incorporated into the MELM

in the form of topic dependent unigram constraints. Pre-

sumably due to the memory requirement and computational

burden, topic dependent features are restricted to the unigram

frequency of a selected set of words. With our proposed

technique, we can easily define a lot more topic dependent

features, and learn them jointly with topic independent features

in a single hashed vector space.

We have an English Fisher corpus of approximately 10M

words. The training set contains 7.2M words. The dev and

test sets contain 1.2M words each. Each utterance is assigned

to one of the 40 topics. The details of the corpus and topic

assignment can be found in [17]. As vocabulary, we take the

top 20K most frequent words in the training corpus, thus we

need to train 20K binary classifiers, keeping only 2% of the

negative examples.

When processing each (h,w) pair, besides the regular fea-

tures, we also add for each feature its topic dependent version.

For example, for the bigram pair (hello, world), besides the

unigram feature world and the bigram feature hello world,

we also construct features topicID-word, topicID-hello world.

The number of features extracted this way is about 22M, the

hashmap storage takes about 4.4GB, while the Bloom filter

only requires 150MB. As we described, all features are hashed

to a 22M dimensional weight vector, despite collisions, we

are still able to benefit from the topic features added into the

model.

TABLE I
PERPLEXITY OF TOPIC RMELM

Model Dev Eval
KN4 67.5 69.3

Topic KN4 90.4 93.3
KN4 + Topic KN4 63.8 65.6

MELM 61.4 63.4
RMELM 62.1 63.9

Table I shows the perplexity results of our RMELM with

topic dependent n-gram features. As a comparison, we build

for each topic a KN smoothed 4-gram LM(Topic KN4), this

LM is then interpolated with the KN 4-gram LM trained on

all topics(KN4). The resulting model serves as a specialized

LM used only for utterances of the same topic. As we can

see, our randomized scheme performs almost the same as the

exact implementation, compared with the interpolated KN LM,

the perplexities are slightly lower. With only n-gram features,

such topic MELM is not expected to greatly outperform the

interpolated n-gram LM, however, it provides a promising and

efficient framework to carry out more complex topic dependent

modeling.

C. ASR Experiments: Wall Street Journal

We have a set of 100-best list from the DARPA WSJ93 and

WSJ92 20K open vocabulary task. The acoustic model used

to generate the n-best list can be found in [18]. We use 93et

and 93dt sets for evaluation, and 92et for optimization. The

LM training text contains 70M words from the NYT section

of English Gigaword.

Our baseline LM is a KN smoothed 5-gram LM. For the

RMELM, we use the same feature set as described for the

Penn Treebank experiments, namely n-grams, skip-1 n-grams

within the 5-word window, and the class of the previous word.

In total, we have more than 150M features, which can not fit

into memory easily. Hashmap implementation would require

approximately 30GB, with the Bloom filter, only 460MB is
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needed. The weight vector takes 1.2GB. Due to the size of

the corpus, aggressive subsampling is performed, only 0.5%
of the negative examples are retained for each one of the 20K

binary classifiers.

TABLE II
WSJ RESCORING WER

Model Dev Eval
KN5 12.0 17.7

RMELM + KN5 11.5 17.1

Table II shows the word error rate(WER) results of rescoring

the 100-best list. Compared with the standard KN 5-gram, we

are able to benefit from more fine-grained features within the

5-word window, despite the fully randomized representation.

The 0.6% improvement on the test set is statistically signifi-

cant.

D. ASR Experiments: English Broadcast News

We also performed ASR experiments on the English Broad-

cast News(BN) task. The acoustic model is trained on 430h of

audio and provided by IBM as part of the 2007 IBM GALE

speech transcription system [19]. For LM, we take the 50M

words of EARS BN03 Closed Captions corpus as our training

data. Note that it is one of the 6 sources used for LM in IBM’s

system, it is also the corpus that gets the largest interpolation

weight (close to 0.5). We tune various parameters on dev04f
and evaluate WER on rt04.

We build a KN 4-gram LM on the 50M words as our

baseline. Its pruned version is used in first-pass decoding to

generate lattices. For RMELM, we again use the same kinds of

features as the Penn Treebank experiments except that instead

of 5-grams, all features are extracted from the 4-gram window.

The total number of features here is 106M. Again, heavy

subsampling is performed here, only 0.5% of the negative

examples are kept.

TABLE III
BN RESCORING WER

Model dev04f rt04
KN4 17.1 15.9

RMELM + KN4 16.1 15.0

The WER after rescoring the lattices are shown in Table III.

When interpolated with the KN 4-gram, the RMELM is able to

achieve 0.9% absolute WER improvement over our baseline.

Although randomized in nature, the useful information seems

to be retained quite well and still able to complement the stan-

dard n-gram LM nicely. Moreover, despite having more than

100M features, the memory requirement is quite moderate,

only 278MB is used for storing the features, compared to more

than 20GB using a hashmap. The weight vector takes about

800MB. We certainly have a lot of room to explore richer

feature representations and expect further improvement.

VI. CONCLUSION

We describe a randomized solution to maximum entropy

language modeling. Feature hashing is used to avoid the exact

mapping problem which usually requires large data structures.

We also replace explicit storage of the feature set with a Bloom

filter. Thus, we enable the building of maximum entropy

language models with much larger feature sets than was

previously possible, and provide empirical evidence that doing

so leads to significant improvements in predictive accuracy.
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