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Abstract—Accurate estimates of language model parameters
are critical for building quality text generation systems, such
as automatic speech recognition. However, text training data
for a domain of interest is often unavailable. Instead, we use
semi-supervised model adaptation; parameters are estimated
using both unlabeled in-domain data (raw speech audio) and
labeled out of domain data (text.) In this work, we present a
new semi-supervised language model adaptation procedure for
Maximum Entropy models with n-gram features. We augment
the conventional maximum likelihood training criterion on out-of-
domain text data with an additional term to minimize conditional
entropy on in-domain audio. Additionally, we demonstrate how
to compute conditional entropy efficiently on speech lattices using
first- and second-order expectation semirings. We demonstrate
improvements in terms of word error rate over other adaptation
techniques when adapting a maximum entropy language model
from broadcast news to MIT lectures.

I. INTRODUCTION

In many text generation systems, such as Automatic Speech

Recognition (ASR) and Machine Translation, a language

model is crucial for selecting reasonable outputs. For example,

in ASR systems, the goal is to find a word string W with

maximum a posteriori probability given the acoustics X:

Ŵ = argmax
W

P (W |A) = argmax
W

P (A|W )P (W )

The language model estimates an a priori probability P (W )
that the speaker will utter W . Accurately modeling these prob-

abilities can have a significant impact on task performance.

One approach to estimating the LM’s parameters relies

on Maximum Entropy (MaxEnt) learning. In recent years,

MaxEnt learning has become a popular approach for estimat-

ing language model parameters from a large corpus of text

[1], [2]. MaxEnt models allow for the inclusion of arbitrary

features, providing a unified framework for combining a range

of different dependencies [3]. Additionally, MaxEnt learning

provides a well formed model to which new machine learn-

ing techniques can be naturally applied. In contrast, n-gram

language models must satisfy back-off constraints and ensure

that the model parameters (conditional probabilities) sum to

one. MaxEnt models often yield better performance compared

to standard n-gram models [3], [2].

No matter the training algorithm, language models must

accurately model the language for the application domain of

interest. Like other statistical models, the modeling assumption

is that the training data (text) and the test data (speech audio)

come from the same distribution. Presumably, the training data

is an accurate representation of the test data. However, often

times this is not the case. For many speech domains, we have

plentiful training text from another domain (labeled data) but

little or no in-domain language model training text. Instead,

we have raw speech audio (unlabeled data) from the domain

of interest. In this case, we seek to adapt a language model

trained on the out-of-domain data to our target domain using

what little in-domain resources are available. If we have a

small amount of in-domain training text, we term this setting

supervised adaptation. If there is only in-domain speech audio

and no text, we require semi-supervised adaptation.

In this work, we focus on language models with n-gram

features trained using MaxEnt and consider the more chal-

lenging and prevalent case of semi-supervised adaptation. We

augment the standard training objective to include conditional

entropy regularization on the in-domain speech audio. By

minimizing the conditional entropy on unlabeled in-domain

data, we encourage the model to prefer parameters that mini-

mize class overlap in the target domain [4]. While conditional

entropy regularization has been previously applied to different

classification tasks [4], [5], [6], [7], we demonstrate how

to compute this regularization efficiently on speech lattices

using first- and second-order expectation semirings [8]. We

compare our new training objective with a fully supervised

adaptation method [9] as well as a semi-supervised method

based on self-training [10]. We demonstrate improvements in

the semi-supervised case and show that we are approaching

the supervised setting.

We proceed as follows. In Section II we provide an overview

of n-gram MaxEnt language models and their training proce-

dures. Section III introduces our new objective function based

on conditional entropy regularization for language model

adaptation followed by a semiring algorithm for calculating

the conditional entropy on unlabeled speech lattices. After an

overview of related adaptation techniques, we present results

on adapting from broadcast news to MIT lectures.

II. n-GRAM MAXENT LANGUAGE MODELING

Under the MaxEnt framework, the probability of word w
given the history h has a log-linear form,

220978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011



PΛ(w|h) = 1

ZΛ(h)
exp

(∑
i

λi · fi(w, h)
)
. (1)

ZΛ(h) is the normalization factor for the given history h,

ZΛ(h) =
∑
w′∈V

exp

(∑
i

λi · fi(w′, h)

)
. (2)

fi(w, h) is the i-th feature function based on word w and

history h. Each λi represents the weight of the corresponding

feature and the set of feature weights Λ forms the parameters

of the model, estimated during LM training. In the case of

n-gram MaxEnt models, each n-gram corresponds to a single

features. For instance, a bigram feature would take the form:

fi(w, h) =

{
1 if w = a and h ends in b
0 otherwise

for some a and b. Typically, for an n-gram MaxEnt model

the feature set and parameters are defined to include all the

n-grams (n = 1, 2, · · ·N ) seen in a training data.

A. Training Procedure
Supervised parameter estimation algorithms for n-gram

MaxEnt LMs fit the training sentences using a Maximum

Likelihood (ML) criterion. Let the training data W =
{w1,w2, · · ·wl} be comprised of l sentences, and let nj de-

note the number of words in sentence wj . The log-likelihood

of the training corpus W using the MaxEnt language model

parameters Λ can be written as,

L(W; Λ) = logP (W) =
l∑

j=1

nj∑
i=1

logPΛ(wi|hi). (3)

Maximizing L(W; Λ) yields trained model parameters

Λ̂ = argmax
Λ

L(W; Λ) = argmax
Λ

l∑
j=1

nj∑
i=1

logPΛ(wi|hi). (4)

There are several approaches to maximizing this objective,

such as Generalized Iterative Scaling (GIS) [11], or gradient

based methods, such as L-BFGS [12]. In this work, we use

gradient based optimization, specifically, Quasi-Newton L-

BFGS. It is easy to show that the gradient of the log-likelihood

with respect to the model parameters Λ can be calculated as,

∇Λ logP (W) =
∑
w,h

c(w, h) ·ΔΛ(w, h), (5)

where ΔΛ(w, h) = f(w, h)−
∑
w′

PΛ(w
′|h)f(w′, h) (6)

and f(w, h) is a vector which has value one for the activated

n-gram features corresponding to (w, h) and zero elsewhere.

Hence, the gradient is the difference Δ between the observed

and expected n-gram features (over the MaxEnt distribution)

summed over every event (w, h) weighted by its observed

count c(w, h) in the training data. In addition, an L2 regu-

larization term ||Λ||22 with weight γ is added to the objective

function (Eq. 4) to prevent overfitting and provide smoothing

[13]. γ is usually chosen empirically using a development set.

B. Hierarchical Training Technique

A significant disadvantage of MaxEnt LM training is the

need to compute the normalizer (partition function) ZΛ(h) of

(2), which must sum over all possible words w to achieve a

valid probability. In the naive implementation of a MaxEnt

LM, the complexity for computing normalization factors (and

feature expectations) for a single iteration is O(|H| × |V |),
where |H| is the number of history tokens seen in W and

|V | is the vocabulary size, typically on the order of tens of

thousands. We instead use the hierarchical training procedure

introduced in [3] for nested and non overlapping features, e.g.,

n-gram features. The hierarchical training procedure reduces

the complexity for calculating normalization factors and n-

gram feature expectations to O(
∑N

n=1 #n-grams), the same

complexity as training the corresponding back-off n-gram LM

(where we must compute the frequency for all seen n-grams.)

III. LANGUAGE MODEL ADAPTATION

While n-gram language models are effective at learning a

probability distribution that can explain a given corpus, they

fail to assign realistic probabilities to new data that differ from

training examples. In this case, new grammatical structures and

previously unseen n-grams are estimated to be very unlikely,

which can degrade system performance in new domains. For

new domains without text training data, we seek to train on

available out-of-domain text data and in-domain audio. We can

draw on techniques from work in semi-supervised learning

to facilitate semi-supervised adaptation. One such approach

consistent with MaxEnt trained language models is conditional

entropy regularization. We review this method and define a

new language model adaptation objective.

A. Conditional Entropy Regularization

Consider a classification problem where X are the inputs

(observations) and Y are the corresponding output (class)

labels. The conditional entropy H(Y|X) is a measure of the

average (expected) randomness in the probability distribution

of class labels Y after observing the input X.

H(Y|X) = EX[H(Y|X = x)] =

−
∫

p(x)

(∑
y

p(y|x) log p(y|x)
)
dx (7)

Conditional entropy measures the amount of the class over-

lap and can be related to classification performance through

the well known Fano’s Inequality [7], [14]. This inequality

proves that Y can be estimated with low probability of error

only if the conditional entropy H(Y|X) is small. Intuitively,

class overlap indicates uncertainty about the example and by

minimizing the entropy, we encourage the model to prefer

parameters that minimize class overlap, thereby minimizing

uncertainty. The trained low conditional entropy model will

have a decision boundary that passes through low-density

regions of the input distribution p(X). For problems with
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well separated classes, we can take advantage of unlabeled

examples to find low-density regions [4].

Because conditional entropy minimizes label uncertainty, it

has been used as a regularization term for unlabeled data

in semi-supervised learning, e.g. it is used alongside the

maximum likelihood criterion for semi-supervised training in

classification [4]. Similar objectives have been used in [5] for

training a Conditional Random Field (CRF) for identifying

genes and proteins. Entropy minimization is used in [6] as an

unsupervised non-parametric clustering method and is shown

to result in a significant improvement over k-means, hierar-

chical clustering, and other clustering algorithms. Conditional

entropy minimization is also used in [7] to estimate parameters

for interpolating n-gram LMs in an unsupervised fashion.

B. Adaptation Objective Function

We introduce a new semi-supervised objective based on

conditional entropy regularization for the adaptation of n-gram

MaxEnt language models. We have X = {x1,x2, · · ·xnu},

a set of nu audio utterances from in-domain speech, for

which we have no reference transcripts. Additionally, we have

T = {w1,w2, · · · ,wnl
}, a set of nl sentences from out-of-

domain data. Our goal is to use the out-of-domain text T
(labeled) and the in-domain audio speech data X (unlabeled)

to train a language model for recognizing in-domain speech.

As usual, we will maximize the log-likelihood L(T; Λ)
(Eq. 3) of the MaxEnt language model on the training text

T. Additionally, we will minimize the empirical conditional

entropy Hemp(W|X; Λ,Γ) of the posterior probability over

word sequences W given the in-domain audio X imposed

by MaxEnt language model parameters Λ and acoustic model

parameters Γ.

By minimizing this term, we estimate parameters that result

in unambiguous recognizer output by guiding the decision

boundaries away from dense regions of the in-domain input

distribution, resulting in peaked/confident recognizer output.

Specifically the semi-supervised adaptation objective is

max
Λ

[
1

nl
L(Tnl

; Λ)− γ||Λ||22 − σHemp(W|X; Λ,Γ)

]
. (8)

We include the standard L2 regularizer ||Λ||22 with scale

parameter γ, and the effect of conditional entropy is controlled

by the scale parameter σ, which we tune on a very small

amount of transcribed in-domain speech to minimize word

error rate (WER).

The first part of this objective, the log-likelihood term, is

unaffected by the unlabeled in-domain data and is computed

as usual. The conditional entropy term depends only on the

posterior probabilities of the in-domain unlabeled data,

Hemp(W|X; Λ,Γ) = −
nu∑
i=1

∑
W

PΛ,Γ(W |xi) logPΛ,Γ(W |xi)

nu

where

PΛ,Γ(W |xi) =
PΓ(xi|W )α · PΛ(W )∑

W ′ PΓ(xi|W ′)α · PΛ(W ′)
(9)

is the posterior probability of the word sequence W given

the audio according to the recognizer, α is the standard

acoustic weight and the sum
∑

W ′ runs over all possible word

sequences given the audio xi.

Since almost any word sequence can have a non-zero prob-

ability given the speech audio, it is intractable to enumerate

over all possible word sequences. Instead, we compute an

approximation by restricting the word sequences to those

present in the corresponding lattice L:

Hemp(W|X; Λ,Γ) ≈ Hemp(W|L; Λ,Γ)

= − 1

nu

nu∑
i=1

∑
W∈Li

PΛ,Γ(W |Li) logPΛ,Γ(W |Li). (10)

Including Hemp(W|L; Λ,Γ) in the objective function requires

computing the conditional entropy over the lattice, and its gra-

dient w.r.t. the model parameters Λ. We provide an algorithm

for doing so efficiently in Section IV.

As usual, the log-likelihood term and the L2 regularizer

are concave functions of Λ. However, the conditional entropy

regularizer is non-convex, resulting in a non-convex objec-

tive, subject to local maxima. Therefore, initialization plays

an important role in finding good solutions. In this work

we first learn Λ using the fully supervised objective (omit

conditional entropy), yielding a reasonable solution given the

out-of-domain data. We then use these values to initialize the

parameters of the full semi-supervised model, which modifies

the parameters based on the in-domain data. Since we expect

the optimal parameters to be similar for both domains, using

the supervised objective yields parameters close to the best

parameters on the in-domain data. We found this a more

effective strategy than using the full model initially, since

forcing minimum conditional entropy on in-domain data can

yield degenerate solutions.

For clarity, we emphasize that there is no contradiction in

minimizing the conditional entropy of a maximum entropy

model. The choice of Λ maximizes the difference between (i)

the entropy of the language model constrained to obeying n-

grams frequencies extracted reliably from the out-of-domain

text and (ii) the conditional entropy of the recognizer output
given the in-domain acoustics. The former term prefers a

maximally smooth model that is consistent with the training

text, while the latter a maximally unambiguous transcript of

the unlabeled speech.

IV. CONDITIONAL ENTROPY ON SPEECH LATTICES

In the previous section, we introduced a new conditional

entropy regularizer Hemp(W|X; Λ,Γ) for semi-supervised

language model training (Eq. 8.) The regularizer required

a summation over all possible word sequences, which we

approximated by restricting this summation to word sequences

that appear in the lattice Hemp(W|L; Λ,Γ). The lattice is the

direct output of the ASR system, a directed acyclic graph

(DAG) with unique start and end nodes, nodes time-stamped

with respect to the speech signal x, and edges labeled with

words w. Each path in the DAG from start to end corresponds
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to a candidate time-aligned transcripts W = w1w2...wn of

x. The lattice can be represented as a finite-state automata

(FSA), a compact representation of the hypothesis space for

a given speech signal x. To optimize the objective (8), we

must calculate the lattice conditional entropy (defined in Eq.

10) and its gradient with respect to the MaxEnt language

model parameters Λ. We note, as an aside, that the lattices

are generated using a regular (unadapted) n-gram LM.

Since the number of paths (hypotheses) in the lattice is very

large, it would be computationally infeasible to compute the

conditional entropy by enumerating all possible lattice paths

and calculating their corresponding posterior probabilities.

Instead we use the first- and second-order semirings [8] on

the FSA-representation of the lattice along with the forward

algorithm to calculate the conditional entropy and its gradient.

We define the probability of a path d as p(d) = PΛ,Γ(W (d)|L)
where d is a path in L and W (d) is the word sequence

corresponding to the path. Therefore, the conditional entropy

H(p) of all the paths in a lattice can be written as

H(p) = −
∑
d∈L

p(d) log p(d) = −
∑
d∈L

p′(d)
Z(L)

log
p′(d)
Z(L)

= logZ(L)− 1

Z(L)

∑
d∈L

p′(d) log p′(d)

= logZ(L)− r̄

Z(L)
(11)

where p′(d) = PΓ(x|W (d))α ·PΛ(W (d)) is the unnormalized

score for the path d, and Z(L) =
∑

d′∈L p(d′) is the marginal

probability of the lattice L. Using (11) it is easy to show that,

∇ΛHemp(W|L; Λ,Γ) = ∇ΛH(p) (12)

=
∇ΛZ(L)

Z(L)
− Z(L)∇Λr̄ − r̄∇ΛZ(L)

Z(L)2

Hence it suffices to calculate S = 〈Z(L), r̄,∇ΛZ(L),∇Λr̄〉
on the lattices to get the conditional entropy and its gradient.

It is shown in [8] that if we define a second-order semiring

K = 〈ke,⊗,⊕,0,1〉 with a 4-tuple weight ke equal to

〈pe, log pe, ∇Λpe, (1 + log pe)∇Λpe〉, additive operation ⊕
and multiplicative operation ⊗ as shown in Table I, and the

score pe on each arc of the lattice defined as

pe = (pΓ)
α · pΛ

where pΓ and pΛ are the acoustic and language model scores

respectively, then running the forward algorithm on the lattice

we will yield S as the forward weight of the last node.

For an arc with word-history pair (w, h), pΛ using the n-

gram MaxEnt formulation is defined in (1). Therefore, ∇Λpe
is calculated as,

∇Λpe = pe · (∇Λ log pe) = pe · ∇Λ log pΛ

= pe · ∇Λ log

[
1

ZΛ(h)
exp

(∑
i

λi · fi(w, h)
)]

= pe · [f(w, h)−∇Λ logZΛ(h)] = pe ·ΔΛ(w, h)

(13)

where the first equality is due to the fact that ∇Λ log pe =
∇Λpe

pe
, and ΔΛ(w, h) is from (5). Using the simplifications

above, one may re-write the semiring weight as

ke = 〈pe, log pe, peΔΛ(w, h), pe(1 + log pe)ΔΛ(w, h)〉
where again (w, h) is the corresponding word and history of

the arc on which ke is defined. After we compute ke on each

arc of the lattice, we run the forward algorithm using the

operations shown in Table I to compute S and therefore, the

conditional entropy and its gradient (Eqs. 11 and 12).

A. Efficient Implementation

The semiring weight ke requires vectors in the third and

fourth positions of size equal to the vocabulary (ΔΛ(w, h) is

a vector) and it would be computationally expensive, both in

terms of time and memory, to calculate and save these vectors

for all the arcs of the lattice. We discuss improvements that

both speed up the calculations and also reduce memory usage.

We use the forward-backward speedup for second-order

expectation semirings as explained in Section 4.4 of [8] 1 (in

[8] the technique is referred to as inside-outside speedup). The

key idea is to run the forward-backward algorithm (instead of

only the forward algorithm) on first order semiring weights

k′e = 〈pe, log pe〉 (instead of second order semiring weights

ke) and then iterate through the arcs of the lattice to update

one global second order semiring weight. After visiting all

the arcs the updated global second order semiring is shown

to be equal to S. In this approach, only 2 vocabulary size

vectors are saved at any given time (for the arc that we visit),

a dramatic reduction when compared to requiring 2NL such

vectors, where NL is the number of arcs in L.

While this reduces the memory usage, we still need to

compute ZΛ(h) and ∇Λ logZΛ(h) (the feature expectation

part of ΔΛ(w, h)) for each arc in the lattice, making the

algorithm’s complexity on each lattice O(NL × |V |). We

note that although each arc of the lattice corresponds to a

(w, h) pair, ZΛ(h) and ∇Λ logZΛ(h) are only functions of the

history h. Hence, we can reduce the complexity by caching the

values of ZΛ(h) and ∇Λ logZΛ(h) for each history (instead of

calculating them for each arc.) This will reduce the complexity

to O(|H| × |V |) where |H| is the number of unique histories

seen in the lattice. It is worth mentioning that |H| is usually

10 to 20 times smaller than NL due to timing information

encoded in the lattice nodes. The same history can happen

in many different arcs with different timings. This caching

results in saving |H| vocabulary size vectors (∇Λ logZΛ(h)
is a vector). To summarize, the complexity of our algorithm

is O(|H| × |V |) and we store |H|+2 vectors of size |V |.
Even after our improvements, the algorithm is still computa-

tionally expensive. However, this procedure is conducted only

when we need to adapt a model for a new domain, especially

for large vocabulary tasks. Once adapted, the trained n-gram

LM can be used with complexity equal to standard MaxEnt

LMs.

1We refer the reader to [8] for a detailed explanation of the algorithm.
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Element 〈p, r, s, t〉
〈p1, r1, s1, t1〉⊗ 〈p2, r2, s2, t2〉 〈p1p2, p1r2 + p2r1, p1s2 + p2s1, p1t2 + p2t1 + r1s2 + r2s1〉
〈p1, r1, s1, t1〉⊕ 〈p2, r2, s2, t2〉 〈p1 + p2, r1 + r2, s1 + s2, t1 + t2〉

0 〈0, 0, 0, 0〉
1 〈1, 0, 0, 0〉

TABLE I
SECOND-ORDER SEMIRING: DEFINING multiplicative AND additive OPERATIONS FOR SECOND-ORDER SEMIRINGS.

V. RELATED WORK

There have been several approaches to language model

adaptation. [9] proposed a simple and general MaxEnt (log-

linear) adaptation algorithm for settings in which a limited

amount of in-domain data is available for training, which has

been successfully used for supervised LM adaptation [2]. The

parameters of an out-of-domain model are used as priors,

expressed as an L2-regularizer, for training of the in-domain

model. For language model adaptation, the objective becomes,

Λ̂ = argmax
Λ

L(WT ; Λ)− γ||Λ− ΛO||2 (14)

where L(WT ; Λ) is the log-likelihood on the in-domain train-

ing text WT and ΛO are the MaxEnt parameters trained on the

out-of-domain data. γ is tuned on in-domain development data.

[2] showed that using the out-of-domain model as a prior for

in-domain parameter estimation resulted in better performance

than interpolating out-of-domain and in-domain models when

some labeled in-domain data was available for training. We

call this method Prior and use it as a supervised baseline

for comparison against our semi-supervised technique.

The most relevant semi-supervised adaptation technique is

self-training, where the 1-best output of the ASR system on

in-domain speech data is used as the training text for re-

estimating parameters of the MaxEnt model [10]. This setup

can be augmented with the above approach as follows,

Λnew = argmax
Λ

L(W∗
D(Λold); Λ)− γ||Λ− Λold||2 (15)

W ∗
D(Λold) is the 1-best output of the ASR system for the in-

domain speech data after rescoring with an n-gram MaxEnt

model with parameters Λold. Therefore, we select new parame-

ters to both maximize the probability of the 1-best ASR output

and to minimize the change from the old parameters. We begin

by setting Λold = ΛS and then iterate, producing 1-best output

and training a new model, each time using the parameters from

the previous iteration. The number of iterations is tuned on the

development data. We call this method Self-Train and use

it as a semi-supervised baseline.

While our method is more computationally intensive than

self-training, it has the advantage of being discriminative. The

conditional entropy regularizer is calculated on the lattice,

which captures the acoustic confusions and the language

model parameters are adjusted to reduce these confusions.

VI. EVALUATION

A. Experimental Setup

For our evaluation we consider the adaptation of a 3-gram

MaxEnt language model from broadcast news to the MIT

lectures domain. While the broadcast news domain is well

structured with many rare proper nouns, MIT lectures are

much more fluid with many technical terms. There are plentiful

broadcast news text data but little text data for MIT.

We used the 2007 IBM speech transcription system for the

GALE Distillation Go/No-go Evaluation [15]. The acoustic

models are state of the art discriminatively trained models

trained on Broadcast News (BN) Hub4 acoustic training data.

We used the EARS BN03 closed captions corpus as the out-

of-domain training text (BN training text). The ASR system’s

initial model is a pruned modified Kneser-Ney backoff 3-gram

model, which we refer to as “Baseline 3-gram.” The initial

ASR lattices on the in-domain audio data are then rescored

using a second language model. The second model is our 3-

gram MaxEnt model, trained on the same EARS BN03 corpus.

For this model there was no feature cut-off, resulting in about

17 million parameters (|ΛO| = 17M ). The L2 regularizer’s

weight was γ = 0.7 based on tuning using the rt03 BN

development set. We call refer to this model “MaxEnt 3-gram.”

Our in-domain data comes from the MIT lectures corpus

[16], which is split into an adaptation set – 5 hours or about

1800 utterance and 42K words – a development set – 0.5 hour

– and an evaluation set – 2.5 hours or about 1K utterances and

20K words. For semi-supervised adaptation we use the 5 hours

of speech audio from the adaptation set and for supervised

adaptation we use the associated adaptation set transcripts.

To train our conditional entropy (CE) regularization model,

we optimized the objective function (Eq. 8 and Eq. 10) by

calculating the conditional entropy and its gradient on the

MIT in-domain adaptation set speech lattices. The lattices

were generated by the recognizer using the Baseline 3-gram

language model. We initialize model parameters Λ to the

parameters obtained by training MaxEnt 3-gram on the BN

data (ΛO). The regularization parameter was γ = 0.7 for both

the MaxEnt 3-gram model and CE regularization. Optimizing

on MIT development for WER yielded the CE regularization

parameter σ = 2.5.

The Self-Train method was trained by starting from ΛO

and then iteratively optimizing Eq. 15. We stopped training

after two iterations based on WER on the development set.

It is worth mentioning that we do not let the number of

parameters increase in any of the adaptation methods.

B. Results

We evaluate our conditional entropy trained language model

(CE Regularization) on the MIT corpus in terms of both per-

plexity and WER on the reference transcripts in the evaluation

set. We compare our model to the two baseline out-of-domain
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Adaptation Type Language Model Perplexity WER
None Baseline 3-gram 289 25.9

MaxEnt 3-gram 278 25.7
Semi-Supervised Self-Train 263 25.3

CE Regularization 264 24.9
Supervised Prior 221 22.8

TABLE II
PERPLEXITY AND WER RESULTS ON MIT EVALUATION DATA FOR

DIFFERENT ADAPTATION METHODS. OUR SEMI-SUPERVISED APPROACH

OF CONDITIONAL ENTROPY (CE) REGULARIZATION IMPROVES OVER THE

OUT-OF-DOMAIN BASELINES AND PREVIOUS SEMI-SUPERVISED METHODS

(Self-Train).

language models (“Baseline 3-gram” and “MaxEnt 3-gram”)

as well as the semi-supervised Self-Train and supervised

Prior methods. The Prior model’s regularization parame-

ter γ was tuned on the MIT development set, yielding γ = 0.5.

Results for all five language models are reported in Table II.

We first observe that switching from standard n-gram

language model training to MaxEnt training gives a 0.2

improvement in WER, which confirms previously published

results that MaxEnt language models perform better [3], [2].

This can be attributed to either a better training procedure

or because the Baseline 3-gram model is heavily pruned to

facilitate lattice generation; there was not feature cutoff for the

MaxEnt 3-gram model. Next, we observe that the supervised

adaptation algorithm Prior yields significant reductions in

WER, from 25.7% to 22.8%. This suggests that the MIT

domain differs from the BN domain and access to transcribed

text can significantly improve the model.

Turning towards the more challenging semi-supervised set-

ting, our CE Regularization method improves both over the

out-of-domain baselines (25.7 to 24.9) but also the semi-

supervised baseline Self-Train. Furthermore, our method

recovers 28% of the possible improvement between the base-

line and fully supervised method, as compared to 14% for

Self-Train. It is interesting that both semi-supervised

methods result in a similar perplexity, while our model still

gives a further WER reduction, possibly due to the discrim-

inative nature of our method. Finally, we can observe that

conditional entropy minimization is a desirable property of a

language model. Table III shows the mean conditional entropy

of each language model on the adaptation data. As expected,

since CE regularization is explicitly minimizing this quantity

it obtains lower CE than the other semi-supervised and un-

adapted methods. However, the supervised baseline obtains an

even lower mean CE, suggesting that further reductions may

be associated with improved model performance.

VII. CONCLUSION

We have presented a new language model training objective

for model adaptation based on conditional entropy minimiza-

tion. Additionally, we provide an algorithm for efficiently

computing the conditional entropy of speech lattices using ex-

pectation semirings. By training our model on out-of-domain

text data and regularizing on in-domain audio, we achieve

larger reductions in WER than other popular semi-supervised

adaptation techniques. Additionally, we demonstrate progress

Adaptation Type Language Model Conditional Entropy
None MaxEnt 3-gram 9.61

Semi-Supervised Self-Train 7.34
CE Regularization 6.48

Supervised Prior 5.88

TABLE III
MEAN CONDITIONAL ENTROPY ON THE MIT ADAPTATION SET FOR EACH

OF THE MAXENT LANGUAGE MODELS. OUR CE REGULARIZATION

ACHIEVES THE LOWEST VALUES AMONG THE SEMI-SUPERVISED AND

UNADAPTED MODELS. FURTHER REDUCTIONS BY THE SUPERVISED

METHOD SUGGESTS THAT CONDITIONAL ENTROPY MINIMIZATION IS A

SENSIBLE ADAPTATION OBJECTIVE.

in closing the gap between semi-supervised and supervised

adaptation algorithms.
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