
Efficient Discriminative Training of Long-span
Language Models

Ariya Rastrow, Mark Dredze, Sanjeev Khudanpur

Human Language Technology Center of Excellence
Center for Language and Speech Processing, Johns Hopkins University

Baltimore, MD USA
{ariya,mdredze,khudanpur}@jhu.edu

Abstract—Long-span language models, such as those involving
syntactic dependencies, produce more coherent text than their
n-gram counterparts. However, evaluating the large number of
sentence-hypotheses in a packed representation such as an ASR
lattice is intractable under such long-span models both during
decoding and discriminative training. The accepted compromise
is to rescore only the N -best hypotheses in the lattice using
the long-span LM. We present discriminative hill climbing, an
efficient and effective discriminative training procedure for long-
span LMs based on a hill climbing rescoring algorithm [1]. We
empirically demonstrate significant computational savings as well
as error-rate reduction over N -best training methods in a state
of the art ASR system for Broadcast News transcription.

I. INTRODUCTION

Automatic Speech Recognition (ASR) relies on a language

model (LM) to generate coherent natural language text. The

most common language models rely on simple n-gram statis-

tics and a wide range of smoothing and backoff techniques

[2][3]. For quite some time, LM research has pushed towards

linguistically motivated models, including using semantics [4],

word class [5], part of speech tags [6][7], and full sentence

parsing [8][9]. These LMs, which include non-local informa-

tion based on the entire word sequence, deliver significant im-

provements over the traditional n-gram model. While linguis-

tically appealing, long-span LM integration in full systems still

poses a challenge. n-gram LMs can efficiently operate on a

lattice representation, but long-span LMs require enumeration

of each hypothesis. Since scoring all the hypotheses contained

in a lattice is intractable, these models rescore an N -best list

from the lattice. List size trades off efficient (smaller N) and

accurate (larger N) decoding.

Another trend is towards discriminatively trained models.

Generative models estimate the probability of generating the

observed sequence, whereas discriminative models need only

compare the correct sequence with the highest scoring in-

correct outputs, capturing acoustic confusions in the decoded

hypotheses [10][11][12]. As has been the experience in the

machine learning community, discriminative models, while

more complex to train, yield better performance. Since we are

often interested in minimizing an objective function (WER),

discriminative training based on such criteria often yields

better results than minimizing perplexity.

Discriminative models provide the flexibility to include both

typical n-gram features and arbitrary features based on the

word sequence. Globally normalized (as opposed to locally

normalized) discriminative models also dispense with explicit

computation of the partition function Z, making it easier

to incorporate long-span features. However, unlike generative

LMs with long-span dependencies where one has to resort

to N -best lists only during decoding, globally normalized

discriminative models force the use of N -best lists even

for LM training. [9], for instance, train a syntactic LM on

the 1000-best outputs from a speech lattice. This adds a

significant computational cost to training: parsing all 1000
candidate paths. While attractive in terms of output quality,

the computational burden prohibits long-span LMs in practice.

There are now alternatives to N -best rescoring with long-

span LMs [1][13]. [1] presents a hill climbing procedure on

ASR lattices that iteratively searches for a higher-scoring

hypothesis in a local neighborhood of the current-best hy-

pothesis; the error-reduction from hill climbing matches or

surpasses N -best rescoring, with up to two orders of mag-

nitude reduction in the number of evaluated utterances. We

seek a similar reduction in the computational complexity of

globally normalized discriminative training.

The key idea in this paper may be described as discrimi-
native hill climbing. The main idea of a discriminative LM is

to learn how to prefer a correct sequence hypothesis over all

incorrect alternatives, while the main idea of hill climbing is to

move incrementally towards the correct sequence hypothesis

via local changes to a current hypothesis. The new LM training

procedure we present combines these two ideas: using long-

span features to learn how to prefer a “locally better” hypoth-

esis, so that when the trained LM is applied in conjunction

with hill climbing, a tendency to move towards the correct

hypothesis will result. In effect, we learn how to hill climb.

The remainder of this paper proceeds as follows. We begin

by introducing the language model of [9], which provides

the parameterization we use in our model. We summarize the

hill climbing algorithm of [1] and present discriminative hill

climbing. We evaluate in terms of WER and training speedup

on the Broadcast News speech recognition task.

II. DISCRIMINATIVELY TRAINING SYNTACTIC LMS

Syntactic language models extend beyond the local n-gram

context to incorporate long range syntactic dependencies in

the sequence. Recent work has favored discriminative feature

214978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

based approaches that allow for extracting arbitrary features

from the syntactic parse tree. We use the framework (and much

of the notation) of Collins et al. [9] and begin with a review

of this model.

In speech recognition, an acoustic model Pa induces a

conditional distribution over acoustic sequences a given a

sequence of words w. An n-gram language model Pl induces

a prior distribution over word sequences. Given these models,

recognition is formulated as a search task for finding the most

likely word sequence w∗ from the acoustics:

w∗ = argmax
w

(β logPl(w) + logPa(a|w)) (1)

where β > 0 is the usual language model factor.

Collins et al. extend this model to include generic features;

a feature vector Φ(a,w) ∈ R
d that encodes arbitrary features

of a and w. A weighted linear combination of features and

model parameters α ∈ Rd is added to the model (Eq. 1):

β logPl(w) + logPa(a|w) + 〈α,Φ(a,w)〉 (2)

While Φ(a,w) can include features from the input acoustic

sequence, we follow Collins et al. and use word sequence

dependent features alone. To achieve a compact notation, the

first feature is the baseline (first-pass) recognizer score:1

Φ1(a,w) = β logPl(w) + logPa(a|w) (3)

which yields the new model form:

w∗ = argmax
w

〈α,Φ(a,w)〉 (4)

We use the features of Collins et al. (see §3 of Collins et al.),

which are based on part of speech tags and a syntactic parse of

the word sequence. These features include regular n-gram (in

our case 3-gram) features, n-tag features ([ti−2, ti−1, ti, witi],
where ti is the POS tag at position i and wi is the corre-

sponding word, i.e. POS(1) in Collins et al.), and head-to-head

(H2H) dependencies.

A. Parameter Estimation

To estimate the global-linear model parameters α, Collins et

al. rely on the Perceptron learning algorithm, a popular online

learning algorithm with wide applications to structured learn-

ing problems in NLP [14], and in particular, discriminative

language modeling for speech recognition [11]. As an online

algorithm, the Perceptron processes training instances one at

a time, updating α after each example.

For each training example in each algorithm iteration t,
the best scoring hypothesis wm according to current model

parameters α is selected from the set of possible word

sequences in GEN(ai), which is a set of possible word

sequence candidates under the first-pass (baseline) recognizer

for ai (Figure 1). wm is compared to wo ∈ GEN(ai), the

best available sequence as compared to the reference s in terms

of WER (edit distance d(w, s)). If current α does not yield

wo, an update is made based on wo and wm.

1We denote this feature as baseline feature throughout the paper.

Input:
Training examples {(ai, si)}|Mi=1.

A feature-vector representation Φ(a,w) ∈ R
d.

GEN(ai) : the candidate list for example ai.
T (wi): the parse trees for each wi ∈ GEN(ai)

Algorithm:
for t : 1..T [Iterations]

for i : 1..M [Examples]
wm = argmaxw∈GEN(ai)

〈α,Φ(ai,w)〉
wo = argminw∈GEN(ai)

d(w, si)
if wm �= wo [If Mistake]

for j : 2..d [Update]
αj = αj + Φj(ai,wo)− Φj(ai,wm)

Output: α

Fig. 1. The Perceptron training algorithm for discriminative language
modeling [9]. α1 is the weight given to the first-pass (baseline) recognizer
score and is tuned on development data.

B. N -Best Lists as GEN(a)

The creation of the set GEN(a), candidate word sequences,

is required for training and decoding, when a trained language

model is used to rescore the baseline recognizer’s output. For

n-gram language models, the set of possible outputs GEN(a)
are encoded as a lattice: a directed acyclic graph (DAG)

with unique start and end nodes, nodes time-stamped with

respect to the speech signal a, and edges labeled with words

w. Each path in the DAG from start to end corresponds to

a candidate time-aligned transcript w = w1 w2 . . . wn of

a. Finding wm ∈ GEN(a) can be solved efficiently by

composing weighted finite-state automata (WFSA).

However, long-span dependencies (e.g. syntactic features)

prevent a LM from being represented efficiently as a WFSA

and it is intractable to enumerate all paths. Instead, the con-

ventional solution used by Collins et al. is to approximate the

search space with an N -best list, the N highest scoring paths

from the baseline recognizer. Still, this can pose significant

computational costs as each enumerated path must be tagged

and parsed. This imposes a tradeoff in the selection of N ;

smaller N will suffer from search errors while larger N
are computationally expensive. When considering that the

complexity of statistical parsers are usually on the order of

O(�(w)2) or O(�(w)3), where �(w) is the length of the word

sequence, and that N = 1000 is typical, the LM is often too

costly to use in practice.

III. HILL CLIMBING RESCORING

Given a speech utterance (lattice L) and acoustic sequence

a, lattice rescoring under a global-linear model (with α) tries

to solve the search problem of Eq. 4. Rastrow et al. [1] offer

an efficient rescoring method based on the well-known hill
climbing algorithm, obtaining the same WER reductions with

two orders of magnitude fewer utterance-length hypothesis

evaluations compared to conventional N -best rescoring. Hill

climbing is an iterative search that greedily improves the

current best path by examining neighborhoods in L. Rastrow et

al. define the neighborhood of w = w1 w2 . . . wn at position

i to be all paths in the lattice whose word sequence may

be obtained by editing — deleting, substituting or inserting

a word to the left of — wi; N (w, i) denotes this “distance 1

215

0 1 2 3 4 5
w1 w2 w3 w4 w5

(a)

0 1 2 3 4 5

6

w1

ε
w3 w4 w5

σ w2

ε

(b)

0 1 2 3 4 5 6
w1 w2 w3 w4 w5

σ

ε

(c)
Fig. 2. The FSA representation of the neighborhood set of a given path: (a)
Original path. (b) Neighborhood for a specific position. (c) Neighborhood for
the last position (required to allow insertions to the right of the last word). σ
is a special arc which can be replaced by any word. For example, the path
with σ followed by w2 in (b) corresponds to one insertion to the left of w2 .

at position i” neighborhood of w. Given a selected position i
in word sequence w, all paths in L corresponding to word

sequences w′ ∈ N (w, i) and the current edge scores are

extracted and rescored using Eq. 4; the hypothesis ŵ′(i) with

the highest score becomes the new w. The process is repeated

with new positions until w = ŵ′(1) = . . . = ŵ′(n), i.e. when

w is the highest scoring hypothesis in all 1-neighborhoods.

Rastrow et al. show that N (w, i) can be efficiently

computed using FSA operations. They define the machine

LC(w, i): all word sequences that can be generated from

w with one edit at position i (Figure 2). A second machine

LN(w, i)← LC(w, i)◦L restricts the neighborhood N (w, i)
to word sequences in L (the search space) by composing

LC(w, i) with L.2

The final rescoring algorithm includes three operations

(Figure 3): initialization of the best scoring word sequence in

L, generating the neighborhood LN(w, i) for each position

in i, and selecting the new highest scoring sequence v from

w ∈ LN(w, i) based on 〈α,Φ(a,w)〉. In practice, algorithm

run time is dominated by the neighborhood rescoring step.

Note that since hill climbing algorithms are greedy (no global

maximum guarantee), Rastrow et al. use random-restarts (re-

peating hill climbing with different initial word sequences v).3

IV. DISCRIMINATIVE HILL CLIMBING TRAINING

We are now ready to present our training algorithm. Just

as hill climbing can improve over N -best lists for rescoring,

it can be used to improve discriminative LM training. The

key insight is that discriminative learning, which learns to

select the correct hypothesis over incorrect hypotheses, and

hill climbing, which moves towards the best sequence, can be

integrated by learning how to take steps towards the correct

2LN(w, i) therefore is a WFSA representation of the subset of word
sequences w′ in N (w, i) that are also present in the initial lattice. The
weights associated with the words in LN(w, i) are the scores from the
baseline recognizer, which we will need as the baseline feature parameter
(α1) for finding the global model score according to 〈α,Φ(a,w)〉.

3Starting paths (word sequences) are selected by sampling from L and
including the Viterbi path.

Initialization:
L ← WFSA of the initial (first-pass) lattice
v ← Viterbi path of the initial lattice
N ← length(v)
Algorithm:
repeat

i← 1 [Start at position 1]
while i ≤ N + 1 do

create FSA LC(v, i)
LN(v, i)← LC(v, i) ◦ L [Neighboring paths]

v ← argmaxw∈LN(v,i)〈α,Φ(a,w)〉 [Best w]

N ← length(v) [Adjust length and position]
if DELETION
i← i-1

i← i+1
end while

until v does not change [Stopping criterion]

Fig. 3. Hill climbing algorithm using global-linear models for a given
utterance with acoustic sequence a and initial (baseline) lattice L.

hypothesis. Discriminative Hill Climbing effectively learns

how to hill climb.

Observe that during N -best training, wm is chosen after

scoring N hypotheses, which means we must wait for N
steps before updating α. In contrast, hill climbing produces

wm incrementally, which means that a scoring mistake can

be observed before wm is fully produced. By updating α as

soon as a single hill climbing mistake is made, we can make

model corrections faster and learn how to hill climb correctly

(in the right direction).

Consider the example utterance in Figure 5(3). The baseline

model produces an incorrect word sequence (Figure 5 (base-

line)), which mistakes the word “abortion” for “Al Gore’s”

and “them” for “the”. If Figure 5(2) was the best path in

an N -best list, which corrects only one mistake, standard

N -best list training would update only after all paths have

been scored. Instead, the hill climbing algorithm gradually

corrects the baseline sequence (Figure 5(1-3)). If “the” is not

corrected when the 11th position is visited, the algorithm could

immediately update, encouraging hill climbing to move in a

better direction.

Discriminative hill climbing proceeds as follows (Figure

4). For each training utterance (given a, s and L), select the

Viterbi path in L as v. Hill climbing starts improving from v
using current model parameters α. Select a position i in v (we

start from 0 and move left to right) and use the algorithm in

§III to generate LN(v, i). Select the best path wm ∈ LN(v, i)
by parsing, extracting features Φ(a,w), scoring with α each

path in the neighborhood. Before continuing to the next

sequence position, we evaluate if wm was the best choice

given the reference s. Since, s may not be in the neighborhood,

we instead use the path wo ∈ LN(v, i) closest to s, LN(v, i)
fixes all paths besides position i, using edit distance d(w, s).
This path can be found by composing the FSA LN(v, i)
(after removing the weights) with the edit distance machine

(also known as levenshtein distance machine) and compose

the result with the finite state transducer (FST) representation

of s. The input side of the best path in the resulting composed

FST will be wo.

216

Initialization:
L ← WFSA of the initial (first-pass) lattice
v ← Viterbi path of the initial lattice
s← reference word sequence
N ← length(v)
Algorithm:
repeat

i← 0
while i ≤ N + 1 do

create FSA LC(v, i)
LN(v, i)← LC(v, i) ◦ L [Neighboring paths in the lattice]
wm ← argmaxw∈LN(v,i)〈α,Φ(a,w)〉 [Best path according to model]

wo ← argminw∈LN(v,i) d(w, s) [Best path according to edit-distance]

if d(wo, s) < d(wm, s)
for j : 2..d

αj = αj + Φj(a,wo)− Φj(a,wm)
v ← wo

else
v ← wm

N ← length(v) [Adjusting length and position]
if DELETION
i← i-1

i← i+1
end while

until v does not change [Stopping criterion]

Fig. 4. Discriminative hill climbing training for global-linear models for a
given training utterance with acoustic sequence a, reference s and lattice L.

To determine if the current hill climbing direction improves

the best path with respect to the reference, we compare both

wm and wo to the reference s. If d(wo, s) < d(wm, s), then

the algorithm is not moving in the optimal direction. In this

case, since wm,wo ∈ LC(v, i), this means that wo correctly

includes, deletes or substitutes a word at position i of s as

compared to wm. Therefore, model parameters α should be

encouraged to select wo instead of wm, which we achieve

through a Perceptron update:

αj = αj +Φj(a,wo)− Φj(a,wm) , (5)

where αj is the jth parameter.4 Notice that while Φ(a,w)
is based on the entire sequence, only parameters that change

based on position i will be updated. Furthermore, If there does

not exist a correctable error in the neighborhood because either

position i of the neighboring paths is not matched with the

reference s (correction can not be made by considering the

paths in the neighborhood) or the algorithm already selects

the correct path, we do not update the parameters.

After an update the current word sequence becomes the

best sequence: v ← wo, which leads to faster convergence

during training.5 If no update occurs, we apply the selected

path (v ← wm) and move to the next position. We iterate

over positions until hill climbing converges, i.e. no change

is available in any position of the sequence. In §VI, we

will empirically demonstrate that this procedure requires the

evaluation of far fewer word sequences, leading to a dramatic

reduction in the number of calls to the parser. Additionally,

since we parse many word sequences in a neighborhood, we

could obtain further speedups by using lattice parsing [15].

4Following [9], we tune α1 – the baseline model weight – on development
set for decoding instead of updating it during training.

5Alternatively, we could obtain a new wm and repeat the process, or
continue to the next position with no change to v.

Remarks: Our approach is reminiscent of learning al-

gorithms that improve sequences through iterative updates.

[16] use a Monte Carlo technique for decoding phrase based

translation lattices. Bi-directional learning uses a Perceptron

to iteratively label each position of a word sequence, updating

parameters when a single incorrect label is applied [17].

We believe our approach is well suited to speech lattices.

Normal perceptron training updates using the optimal path,

but it may be unrealistic for the model to select the optimal

sequence from the baseline lattice, which leads to overly

aggressive learning. Instead, our method encourages gradual

improvement towards the best sequence, which will be selected

if available. Otherwise, the model is still trained to improve as

many positions of the sequence as possible. This may be more

compatible with minimizing WER as we correct as many word

positions as possible, as opposed to conventional Perceptron

training which favors sentence error rate by selecting the best

sequence overall.

A. Additional Efficiencies

We obtain further speedups by parallelization based on

the distributed Perceptron of [18] (iterative parameter mix-
ing with uniform weights). We divide the training examples

{(ai, si)}|Mi=1 among S machines and train a single epoch

of discriminative hill climbing on each machine in parallel,

mixing the model weights α after each iteration. The mixed

parameter vector is then used by each machine to start another

single epoch of training. The parameter values are uniformly

mixed at the end of each iteration: αj =
1
S

∑S
s=1 α

s
j ,where t

and j indicate the iteration and machine respectively.

For additional efficiency, we reduce the number of parser

calls by caching parse results. For each utterance, we store a

record of every sequence and its parse. If a parser call requests

a previous sequence, we return the cached result. The cached

parse tree structures are maintained across iterations. Note that

caching cannot be used for N -best list training since every N -

best entry is unique and must be parsed before training.

V. EXPERIMENTAL SETUP

The ASR system used in this paper is based on the 2007

IBM Speech transcription system for the GALE Distillation

Go/No-go Evaluation [19]. The acoustic models are state of

the art discriminatively trained models trained on Broadcast

News (BN) Hub4 acoustic training data, which contains about

153K utterances and transcriptions (400 hours of speech).

To train the discriminative language model we use Hub4

utterances with length < 50, giving 115K training utterances

(2.6M words). The baseline language model is a modified

Kneser-Ney backoff 4-gram model trained on 1996 CSR

Hub4 Language Model data and EARS BN03 closed captions

corpora (about 193M words).

To produce word-lattices, each training utterance is de-

coded/processed by the baseline ASR system. The best path

in the lattice in terms of WER with respect to the transcription

is used as the reference s for discriminative hill climbing

training. The baseline (4-gram LM) 1-best output had a 10.7%

217

Baseline ABORTION LEGAL TEAM IS ASKING THE COURT TO ORDER THEM RECOUNTING OF BALLOTS

(1) (deletion) GORE’S LEGAL TEAM IS ASKING THE COURT TO ORDER THEM RECOUNTING OF BALLOTS

(2) AL GORE’S LEGAL TEAM IS ASKING THE COURT TO ORDER THEM RECOUNTING OF BALLOTS

(3) AL GORE’S LEGAL TEAM IS ASKING THE COURT TO ORDER THE RECOUNTING OF BALLOTS

Fig. 5. An example utterance corrected by our algorithm. The first line (baseline) shows the word sequence provided by the baseline model. Errors are
shown in red. After the first pass through the sequence, the algorithm delete’s the word ABORTION and inserts the word GORE’S. The second pass adds
the word AL and the third pass replace THEM with THE, yielding the correct transcription.

WER
Baseline ASR 15.07

Training Algorithm
Hill Climbing Rescoring DHC N-best
1 initial path 14.86 15.01
5 initial paths 14.74 14.96

TABLE I
TEST SET RESULTS: RESCORING A BASELINE RECOGNIZER USING A

SYNTACTIC LANGUAGE MODEL TRAINED WITH EITHER DISCRIMINATIVE

HILL CLIMBING OR CONVENTIONAL N = 50-BEST TRAINING.

Fig. 6. WER on development data for the baseline recognizer versus
discriminative hill climbing for varying values of the baseline feature α1.

WER w.r.t to these references. The test set is the 2.5 hour rt04

Broadcast News evaluation set (45K words). The dev set for

tuning the baseline feature weight (α1) is the dev04f Broadcast

News data.

Syntactic features were extracted using the parser of [20]

which achieves state of the art performance on BN. It is trained

on the Broadcast News treebank from Ontonotes [21] and the

WSJ Penn Treebank along with self-training on Hub4 CSR

1996 utterances. The parser has complexity of O(l(w)3).

VI. RESULTS

We begin with an evaluation of discriminative hill climbing

(DHC) in terms of WER improvements on the dev and test

sets. We use a model trained for 100 iterations with a total

of 3.77M parameters. The baseline ASR system’s output

is rescored with our discriminative syntactic LM using hill

climbing rescoring with either one or five starting paths (§III).
Results are reported for test data in Table I. We observe

a 1.4% relative error reduction for one starting initial path

and a 2.2% reduction for starting with 5 initial paths as

compared to the baseline model, a statistically significant result

(p < 0.01 using the paired permutation test). We note these

improvements are over an already state of the art acoustic

Parser Complexity Complexity-Ratio
Linear 18.19

Quadratic 15.25
Cubic 13.08

TABLE II
COMPLEXITY-RATIO OF 1000-BEST LIST PERCEPTRON OVER

DISCRIMINATIVE HILL CLIMBING AFTER 100 ITERATIONS.

model, and our baseline recognizer gives results close to state

of the art for the BN task. We next investigate how tuning

the baseline feature affects performance on dev data. Figure 6

shows that for a wide range of parameter values, our model

improves over the baseline. We selected a value of 0.7 for the

test data experiments above, which reduces WER on dev data

from 16.71 to 16.47 with one starting path.

Parser computational complexity prohibits training with

large N -best lists. We evaluate the training method of Collins

et al. with N = 50 (Table I); we selected N = 50 since it is

equivalent in terms of computational complexity to discrim-

inative hill climbing (see below.) Despite having equivalent

training complexity, our method improves over N -best list

training, even when both models rely on the hill climbing

rescoring algorithm.6 This performance gap can be attributed

to the ability of our algorithm to consider options that appear

deep in the N -list by exploring paths in the lattice. Our model

is thus trained on more informative errors.7 In fact, the model

which was trained using N -best perceptron training has about

1M parameters (only a quarter of our model’s size).

A. Analysis

We analyze the behavior of discriminative hill climbing and

compare it to the N -best list Perceptron in terms of efficiency.

First, we compare the relative training complexity in terms

of the parser with hypothesized N -best perceptron training

with N = 1000, as used by Collins et al. We compute the

complexity ratio as:

complexity-ratio =

∑
w l(w)i ·N(w)

∑
w l(w)i ·NHC(w)

, (6)

where w is the training utterance, N(w) is the size of the N -

best list (1000), i.e. the number of parser calls, and NHC(w)
is the number parser calls for w during discriminative hill

climbing training (taking into account cached parses). The

parser complexity is indicated by i (in our case i = 3). A

6We obtain a smaller error reduction than reported in Collins et al. because
we use a much stronger baseline.

7We also explained in §IV that discriminative hill climbing’s objective
function is directly related to WER whereas N -best discriminative training
tries to minimize the sentence error rate.

218

Fig. 7. The WER of training data after each training iteration.

complexity ratio of 10 means that the N -best list training

complexity is an order of magnitude larger.

The average number of cumulative parser calls for each

utterance (NHC(w)) was 42.82. 8 The N -best list has no

duplicates, so it must all be parsed (1000 parser calls before

the training). Table II shows the complexity-ratio for different

parser complexities. For longer utterances, N(w) is fixed

whereas NHC(w) must consider more possible paths, which

decreases the gap between the two algorithms. Therefore, as

i (parser complexity) increases, the term l(wi) dominates the

ratio for longer utterances and the complexity-ratio decreases.

For the parser used in this work, we would observe an order

of magnitude improvement in complexity. For faster linear

parsers, which typically require a reduction in parser accuracy,

we would observe more dramatic improvements.

In terms of raw computation, our 100 training iterations

took about 6.5 days on 60 machines (390 cpu days). Of

this time, about 250 minutes (1.7% of the time) was spent

on neighborhood generation and FSA operations for finding

oracle paths. For comparison, we can use the complexity-ratio,

which is based on parse statistics collected during training, to

estimate that it would take more than 10 times as long with

the same resources and parser to train an N = 1000-best list

Perceptron, about 13.8 CPU years. Obviously, we cannot run

the original Perceptron training algorithm for N=1000 with

our state of the art parser.

We can also measure learning effectiveness by considering

the WER of the training data after each iteration by discrim-

inative hill climbing. Figure 7 shows the WER after each

training iteration. After a single iteration, our algorithm learns

to reduce the WER from 10.7% to 10.0%. Also it can be seen

from the Figure that after 100 iterations, the training WER

stops improving significantly.

VII. CONCLUSION AND FUTURE WORK

We have presented discriminative hill climbing, a new train-

ing algorithm for long-span language models that normally

8Note that we chose to evaluate N = 50 in the previous section as it
is roughly equivalent to the 42.82 parser calls used by our method. In fact,
allowing 50 instead of 43 is being generous to the baseline.

require the use of N -best lists for training and rescoring.

For a syntactic language model that relies on a parser, we

demonstrate improvements in WER with an order of mag-
nitude reduction in training complexity. We also observe

improvements over N -best training with comparable compu-

tational resources. Our algorithm can be used to train complex

language models on large corpora with state of the art parsers.

There are a number of promising avenues for future work,

including considering more aggressive online algorithms, or

scaling training to much larger corpora by utilizing more

efficient parsers, including lattice parsers. Additionally, im-

proved training time means we can effectively explore new

LM features.

REFERENCES

[1] A. Rastrow, M. Dreyer, A. Sethy, S. Khudanpur, B. Ramabhadran,
and M. Dredze, “Hill climbing on speech lattices : A new rescoring
framework,” in ICASSP, 2011.

[2] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in ICASSP, 1995.

[3] S. Katz, “Estimation of probabilities from sparse data for the language
model component of a speech recognizer.” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 35, no. 3, 1987.

[4] S. Khudanpur and J. Wu, “Maximum entropy techniques for exploiting
syntactic, semantic and collocational dependencies in language model-
ing,” Computer Speech and Language, pp. 355–372, 2000.

[5] P. Brown, P. Desouza, R. Mercer, V. Pietra, and J. Lai, “Class-based
n-gram models of natural language,” Computational linguistics, vol. 18,
no. 4, pp. 467–479, 1992.

[6] T. Niesler, E. Whittaker, and P. Woodland, “Comparison of part-of-
speech and automatically derived category-based language models for
speech recognition,” in ICASSP, 1998.

[7] D. Filimonov and M. Harper, “A joint language model with fine-grain
syntactic tags,” in EMNLP, 2009.

[8] C. Chelba and J. Frederick, “Structured language modeling,” Computer
Speech and Language, vol. 14, no. 4, pp. 283–332, 2000.

[9] M. Collins, B. Roark, and M. Saraclar, “Discriminative syntactic lan-
guage modeling for speech recognition,” in ACL, 2005.

[10] H.-K. J. Kuo, B. Kingsbury, and G. Zweig, “Discriminative training of
decoding graphs for large vocabulary continuous speech recognition,” in
Proc. ICASSP, vol. 4, 2007, pp. 45–48.

[11] B. Roark, M. Saraclar, and M. Collins, “Discriminative n-gram language
modeling,” Computer Speech & Language, vol. 21(2), 2007.

[12] A. Rastrow, A. Sethy, and B. Ramabhadran, “Constrained Discriminative
Training of N-gram Language Models,” in ASRU, 2009.

[13] A. Deoras and F. Jelinek, “Iterative decoding: A novel re-scoring
framework for confusion networks,” in ASRU, 2009.

[14] M. Collins, “Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms,” in EMNLP, 2002.

[15] J. Cheppalier, M. Rajman, R. Aragues, and A. Rozenknop, “Lattice
parsing for speech recognition,” in Sixth Conference sur le Traitement
Automatique du Langage Naturel (TANL’99), 1999.

[16] A. Arun, B. Haddow, P. Koehn, A. Lopez, P. Blunsom, and C. Dyer,
“Monte carlo techniques for phrase-based translation,” Machine Trans-
lation, vol. 24, no. 2, August 2010.

[17] L. Shen, G. Satta, and A. Joshi, “Guided learning for bidirectional se-
quence classification,” in Annual Meeting-Association for Computational
Linguistics, vol. 45, no. 1, 2007, p. 760.

[18] R. McDonald, K. Hall, and G. Mann, “Distributed training strategies for
the structured perceptron,” in NAACL-HLT, 2010.

[19] S. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon, H. Soltau, and
G. Zweig, “Advances in speech transcription at IBM under the DARPA
EARS program,” IEEE Transactions on Audio, Speech and Language
Processing, pp. 1596–1608, 2006.

[20] Z. Huang and M. Harper, “Self-Training PCFG grammars with latent
annotations across languages,” in EMNLP, 2009.

[21] R. Weischedel, S. Pradhan, L. Ramshaw, M. Palmer, N. Xue, M. Marcus,
A. Taylor, C. Greenberg, E. Hovy, R. Belvin, and A. Houston, OntoNotes
Release 2.0, Linguistic Data Consortium, Philadelphia, 2008.

219

