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Abstract—In this paper we explore discriminative language
modeling (DLM) on highly optimized state-of-the-art large vo-
cabulary Arabic broadcast speech recognition systems used for
the Phase 5 DARPA GALE Evaluation. In particular, we study
in detail a minimum Bayes risk (MBR) criterion for DLM. MBR
training outperforms perceptron training. Interestingly, we found
that our DLMs generalized to mismatched conditions, such as
using a different acoustic model during testing. We also examine
the interesting problem of unsupervised DLM training using a
Bayes risk metric as a surrogate for word error rate (WER). In
some experiments, we were able to obtain about half of the gain
of the supervised DLM.

I. INTRODUCTION

DLM (discriminative language model) is a log-linear model
complementary to the existing generative n-gram language
model (LM). In contrast to the generative model, it is trained
on patterns of confusions or errors made by the speech
recognizer to optimize an objective function that is directly
related to the word error rate. Thus the model learns from
both positive examples (correct transcriptions) and negative
examples (recognition errors).

Discriminatively trained LMs have been demonstrated to
consistently outperform generative LMs, partly due to im-
proved parameter estimation and partly due to the ease with
which many arbitrary features can be included into the same
model. Linear models have been successfully applied to
DLMs for speech recognition. The perceptron algorithm [1],
[2] or methods based on maximizing the conditional log-
likelihood [1] or minimizing a discriminative loss function [3]
have been used for DLM parameter estimation. A comparison
of different loss functions for DLMs is given in [4]. In addition
to discriminative linear models, a minimum classification error
framework was used for adjusting the parameters of generative
n-gram LMs to achieve minimum sentence error [5], [6].

In DLM based on linear models, hypothesis sentences
are represented as a bundle of arbitrary features, and fea-
ture parameters are estimated discriminatively. The traditional
approach is to use word n-gram counts as DLM features.
Being a feature-based language modeling approach allows
the DLM to integrate relevant information sources into LMs.
Therefore part-of-speech tag features [7], [8], parse tree fea-
tures [7], [8], morphological features [9], [10], discourse level
trigger features [11], automatically induced sub-word class
features [8] and word class features [12], and state and duration
features [13] extracted from the clustered allophone state

sequences have been explored within the DLM paradigm, in
addition to basic word n-gram features.

In this paper we explore using DLMs to improve our best
Arabic speech recognition systems for the latest Phase 5
DARPA GALE Evaluation. Besides the well known parameter
estimation methods, perceptron and global conditional log-
linear model (GCLM) [1], we propose a minimum Bayes
risk (MBR) objective for DLM. MBR has been used in ASR
decoding [14], [15], [16] and model combination [17], but not
extensively in discriminative language modeling. Compared
to previous published results, our experiments are noteworthy
for being applied to highly optimized state-of-the-art systems
that include speaker adaptation, feature and model space
discriminative training, and even sophisticated new models
like Bayesian sensing [18], [19], [20]. The systems have
been trained on large amounts of data, including 1800 h of
acoustic data and 1.6 billion words, and attain average WERs
of about 10%. In addition, the baseline LMs are already very
strong, including neural network LM (NNLM) [21], [22] and
model M [23], a class-based exponential LM.

Our goal was to apply DLMs to improve the DARPA
Evaluation results. Multiple acoustic models were continually
being improved until the deadline, so there was no time to use
the best final acoustic models to decode the DLM training data.
Therefore an important question we address is: can a DLM
trained on some acoustic model be applied when decoding
with a different acoustic model?

We also investigate a new interesting problem of using un-
transcribed speech data for DLM training. In the real world,
we are likely to have much more un-transcribed audio data
and text data than transcribed audio data. To take advantage of
large amounts of text data without corresponding audio, [24],
[25] generate negative examples for DLM training by simu-
lating ASR errors for the text data, after having learned phone
confusion patterns from ASR outputs of transcribed data. In
contrast, to take advantage of un-transcribed audio data, we
explore unsupervised DLM training by using a Bayes risk
metric as a surrogate for WER. After any speech application
has been deployed, a large amount of un-transcribed audio
data can be collected, and this data is arguably more relevant
and in-domain than the available text data.

Section II reviews the formulation for DLM, and Section III
describes parameter estimation methods for DLM, one of
which is based on minimum Bayes risk. Section IV discusses
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unsupervised DLM training. Section V describes our exper-
imental setup. Section VI presents the experimental results,
and we conclude with a summary in Section VII.

II. DISCRIMINATIVE LM

The main components of the DLM are the model parameter
vector ᾱ and feature vector Φ(x, y) which is a function of
the input acoustic data, x, and word sequence hypothesis, y.
Suppose there are a total of d features. Then the parameter
vector is ᾱ = [α0 . . . αd]

T and the feature vector is Φ(x, y) =
[φ0(x, y) . . . φd(x, y)]T . Typically the first component of the
feature vector φ0(x, y) comes from the speech recognizer,
either a weighted combination of acoustic and language model
scores 1, or the log posterior probability obtained by normal-
izing the weighted score over the lattice produced for x. The
other components of the feature vector are typically n-gram
counts, i.e. the number of times a particular n-gram is seen in
the candidate hypothesis y. An example word bigram feature
is as follows.

φi(x, y) = the number of times “the paper” is seen in
the candidate hypothesis y

DLM allows for easy integration of relevant information
sources, such as morphology, syntax and semantics, into the
LM via features. In this paper we mainly focus on parameter
estimation algorithms rather than investigating different types
of features in Arabic DLM. For highly inflectional language
(of which Arabic is one), sub-word n-gram features have
been shown to yield higher improvements than word n-gram
features [8]. Therefore we used morph n-gram features. One
advantage over words is a smaller vocabulary size.

The model parameter vector ᾱ is estimated during DLM
training using the training examples (xi, yi) for i = 1 . . . I .
Here yi is the reference transcript corresponding to the acous-
tic input xi. From the acoustic input xi, the GEN(xi) function
enumerates a finite set of candidates for DLM training. The
GEN(xi) function can be the lattice or the N -best list output
of the baseline ASR system for the utterance xi. In this
paper we used N -best lists as candidate hypotheses. After
each candidate hypothesis is mapped to an d-dimensional
feature vector, the feature parameters, αi’s, can be learned
discriminatively [1], [2], [3].

The posterior probability of a hypothesis y for an input xi

under the DLM parameters ᾱ is defined to be

pᾱ(y|xi) =
eΦ(xi,y)·ᾱ

∑
y′∈GEN(xi)

eΦ(xi,y′)·ᾱ
(1)

During decoding of utterance i, the DLM chooses the word
hypothesis in the N -best list with the highest score, or
equivalently, highest posterior probability

ŷi = argmaxy∈GEN(xi)Φ(xi, y) · ᾱ (2)

1log PLM (y) + 1

β
log PAM (x|y) where log PLM (y), log PAM (x|y)

and β are the baseline LM score, acoustic model score and LM weight,
respectively.

Inputs: Training examples (xi, yi) for i = 1 . . . I
Initialization: ᾱI

0 = (α0, 0, . . . , 0)
Algorithm:
For t = 1 . . . T

ᾱ0
t = ᾱI

t−1

For i = 1 . . . I
ŷi = argmaxy∈GEN(xi)Φ(xi, y) · ᾱi−1

t

ᾱi
t = ᾱi−1

t + Φ(xi, yi) − Φ(xi, ŷi)
Output: Averaged parameters ᾱ =

∑
i,t ᾱi

t/IT

Fig. 1. Perceptron algorithm. ᾱi
t represents the feature parameters after the

t’th pass on the i’th example. yi is the gold-standard hypothesis.

III. PARAMETER ESTIMATION FOR DLM

In this section we revisit the perceptron algorithm [1], [2]
and global conditional log-linear model (GCLM) [1]. We also
explain in detail the minimum Bayes risk (MBR) objective
function for DLM parameter estimation.

A. Perceptron Algorithm

A popular algorithm for DLM parameter estimation is the
perceptron algorithm, shown in Figure 1. At the beginning
of the algorithm, all the feature parameters except α0 (weight
associated with φ0(x, y)) are initialized with 0. For each exam-
ple xi, the best hypothesis under the current model is chosen
to maximize the inner product of the feature and parameter
vectors. The parameters, except α0, are updated to penalize
features associated with the current 1-best hypothesis, and to
reward features associated with the gold-standard hypothesis
(reference or lowest-WER hypothesis). It has been found that
the perceptron model trained with the reference transcript as
the gold-standard hypothesis is more sensitive to the value of
the α0 constant [1]. Instead, we use the oracle hypothesis as
the gold-standard hypothesis. Averaged parameters are used in
decoding held-out and test sets.

B. Global Conditional Log-Linear Model

Another popular algorithm uses the GCLM, where the
objective is to maximize the conditional log-likelihood of the
training data under the parameters ᾱ. The objective function
of GCLM is as follows:

F =

I∑
i=1

log pᾱ(yi|xi) =

I∑
i=1

log
eᾱ·Φ(xi,yi)∑

y∈GEN(xi)
eᾱ·Φ(xi,y)

.

(3)
The numerator can be thought of as the score of the correct
hypothesis while the denominator is a sum of the scores of
all N -best hypotheses. F is a convex function so the optimal
parameters can be found with simple gradient updates:

ᾱ′ = ᾱ + ε

I∑
i=1

⎛
⎝Φ(xi, yi) −

∑
y∈GEN(xi)

pᾱ(y|xi)Φ(xi, y)

⎞
⎠

(4)
Thus while the perceptron algorithm compares only the

reference hypothesis and the 1-best hypothesis, GCLM con-
siders all N -best hypotheses in the parameter estimation. The
perceptron algorithm is typically used for feature selection
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and model initialization, and from that starting point, GCLM
training has been shown to further improve the model [1].
Intuitively, Equation 4 says that for a feature that does not
appear in the reference, subtract the posterior probability of
the feature. For a feature that does appear in the reference,
the update is the difference between 1 and the posterior
probability. Hence if the reference hypothesis already has a
large sentence posterior probability, then the update will be
small. In this paper we used a regularized objective function
with zero mean Gaussian prior (||ᾱ||2/2σ2).

C. MBR objective function

We define the minimum Bayes risk (MBR) objective func-
tion, where we try to minimize the expected loss

F =
1

Nc

I∑
i=1

Ey|xi
[L(y, yi)] (5)

=
1

Nc

I∑
i=1

∑
y∈GEN(xi)

L(y, yi)pᾱ(y|xi), (6)

where Nc is the total number of words in the corpus, and
L(y, yi) is the number of word errors (substitution, insertion,
deletion) of hypothesis y compared with reference yi. Note
that L(y, yi) is the number of errors, not a word error rate.
This mirrors the way that WER is calculated: by summing up
the errors and dividing by the total number of words in the
corpus. The MBR objective function can be thought of as a
smooth estimate of the actual WER. It is similar to the MERT
objective function [26], [27], although the interpretation may
be a bit different.

We rewrite the objective function as

F =
1

Nc

I∑
i=1

Fi, (7)

where for each utterance

Fi =
∑

y∈GEN(xi)

L(y, yi)e
Φ(xi,y)·ᾱ

∑
y′∈GEN(xi)

eΦ(xi,y′)·ᾱ
. (8)

Then for each feature s, (Φ = (φ0 . . . φs . . . φd) )

∂Fi

∂αs

= −γi,s(l
avg
i − li,s), (9)

where
γi,s =

∑
y∈GEN(xi)

φs(xi, y)pᾱ(y|xi) (10)

is the expected count of feature s in sentence i,

lavg
i =

∑
y∈GEN(xi)

L(y, yi)pᾱ(y|xi) = Fi (11)

is the expected loss of sentence i, considering all N -best
hypotheses, and

li,s =

∑
y∈GEN(xi)

L(y, yi)φs(xi, y)pᾱ(y|xi)∑
y′∈GEN(xi)

φs(xi, y′)pᾱ(y′|xi)
(12)

is the expected loss of the sentence, considering the subset of
hypotheses containing feature s. If there is only one hypothesis
y∗ containing s, then li,s = L(y∗, yi).

This formulation is similar to MPE training for discrimi-
native estimation of HMM parameters for ASR [28]. There,
Equation 9 is used to compute MPE arc occupancies over a
word lattice. The occupancies are used to compute statistics
which are used in extended Baum-Welch updates of the
Gaussian means and variances.

For the DLM, intuitively, the MBR gradient update says
that, for each feature, if the expected loss of the sentence,
considering all N -best, is more than the expected loss, consid-
ering only hypotheses containing that feature, then the feature
is “helpful,” so increase the parameter. If the loss considering
all N -best is less than the loss considering hypotheses with
that feature, then decrease the parameter.

Notice that the nature of the updates for GCLM and MBR
are intuitively different. GCLM does not take the errors of each
N -best into account and explicitly uses the reference/oracle
hypothesis. MBR does not explicitly use a reference/oracle
hypothesis but takes advantage of the error information for
each N -best hypothesis to reduce the expected loss. Not
having to specify a single oracle hypothesis is useful, since
there could be multiple hypotheses with the same WER after
text normalization, e.g. it is vs. it’s. Text normalization such
as hamza normalization is very prevalent in Arabic ASR.

IV. UNSUPERVISED DLM

DLM normally requires acoustic data with their reference
transcripts as the training data. One strength of DLM lies
in learning from the recognition errors as negative examples
and correcting these errors during decoding. However, the
amount of acoustic data with reference transcripts is very
limited compared to the available text data used in generative
language model training. Moreover, it is much cheaper to
collect acoustic data than to have the data also transcribed by
humans. There will always be a lot of un-transcribed acoustic
data, and how to take advantage of such data is an important
problem. In this paper, we explore using un-transcribed speech
data for DLM training.

We borrow ideas from minimum Bayes risk classifiers,
which have been used in ASR [14], [15] and N -best list
re-scoring [16], to tackle the problem of unsupervised DLM
training. A Bayes risk metric for a hypothesis y can be
calculated from the N -best hypotheses as follows:

l(y|xi) = Ey′|xi
[L(y, y′)] (13)

=
∑

y′∈GEN(xi)

L(y, y′)p(y′|xi),

where L(y, y′) is the number of errors (substitution, insertion,
deletion) between the hypotheses y and y′ when y′ is consid-
ered as the reference, and p(y′|xi) is the posterior probability
of the hypothesis y′ produced by the baseline recognizer for
the acoustic input xi. Given the Bayes risk, l(y|xi), for all the
hypotheses in the N -best list, ŷi is the minimum Bayes risk
(MBR) hypothesis for xi:

ŷi = argminy∈GEN(xi)l(y|xi). (14)
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In the supervised DLM scenario the reference transcript is
used to calculate the number of errors for each hypothesis to
pick the oracle or to be used in MBR DLM training. In the
unsupervised approach, we assign the Bayes risk metric in lieu
of the number of errors to each N -best hypothesis in the train-
ing data. For each hypothesis, this metric is calculated using
Eq. 13. For perceptron training, instead of the reference/oracle
hypothesis, we use the MBR hypothesis. We specify the oracle
hypothesis in the same way for GCLM training. For MBR
DLM training, instead of using word errors for L(y, yi), we
use the risk metric, l(y|xi). The update equations and the
formulations remain the same.

V. EXPERIMENTAL SETUP

Data preparation for DLM training involves the following
issues and steps.

1) Select speech recognizer. We chose an Arabic ASR
system used in Phase 3 of the DARPA GALE Evalua-
tion. The acoustic model was trained on 1500 h of data
and included speaker adaptation, and feature and model
space discriminative training. It is an un-vowelized (or
grapheme) system that uses pronunciations constructed
by using the letters as phones without using the short
vowel information encoded in diacritics (which are
typically missing in written Arabic text). We label this
acoustic model P3U (for Phase 3 Unvowelized). The
language model was trained on 20 corpora with about
1.6 billion words, with a vocabulary size of 795K words.
The LM is an interpolated Kneser-Ney smoothed 4-gram
LM, pruned to 77M n-grams.

2) Select DLM training data. In Phase 4 we received an
additional 300 h of acoustic data (about 160K sentences
and 2.5M words) with no overlap with the 1500 h data.
Adding this 300 h to acoustic model training did not
show any improvement on our test sets. Likewise, adding
the corresponding transcripts to the LM did not improve
the system. Therefore, we use this 300 h data as the
DLM training data since it can be excluded from base-
line system training without affecting the performance.

3) Decode training data, generate lattices, extract N-
best hypotheses. We chose to use N=50 because prior
experiments showed no significant improvements with
larger N.

4) Extract features. We chose to use morph unigrams, bi-
grams, and trigrams as features in the DLM. The morphs
are created from a simple Arabic segmentation process.
Each vocabulary word is decomposed into morphs using
context independent segmentation. Out of 795K words,
245K morphs were obtained.

5) Word error information. For each N -best sentence
hypothesis, we compute the number of errors with
respect to the training reference transcript.

To apply the DLM during testing, we also have to perform
steps 3 and 4, i.e. decode the test data, generate N -best
hypotheses, and extract features. The DLM then re-ranks the
N -best hypotheses based on the extracted features.

The DLMs are first tested on a matched decoding setup,
where the test data is decoded using the same acoustic and

language models used for training, i.e. the P3U system. On
the other hand, what we really wanted was to improve the
performance when using our very best acoustic models trained
for the Phase 5 DARPA GALE Evaluation. We therefore also
test the DLMs on systems not matched to the DLM training.

In particular, we test on our two best Phase 5 Evaluation
systems, trained on the full 1800 h of data and included
sophisticated modeling and combinations, described in [29].
The two systems are

• M+NNM The M+NNM system is a multi-stream combi-
nation of two acoustic models M and NNM, where during
decoding, the acoustic scores are computed as a weighted
sum of scores from the two models. M and NNM both use
a pronunciation dictionary (distinctly different from P3U)
that is derived from MADA analysis, with short vowel
information from predicted diacritics, plus pronunciation
mapping rules. M uses conventional PLP front end while
NNM uses neural network acoustic features.

• U+BS+NNU The U+BS+NNU system is a combination
of three acoustic models: U, BS, and NNU. All three
acoustic models use the un-vowelized grapheme dictio-
nary similar to P3U. U is similar to P3U but has some
tuning improvements in discriminative training and uses
300 h more training data. BS is a Bayesian Sensing
acoustic model [18], [19], [20] and NNU is similar to
U but has a neural network front end.

Another mismatch in testing the Phase 5 Evaluation systems
is that the baseline language models are significantly im-
proved. The LM is a linear interpolation of an un-pruned 916M
4-gram LM (created from 21 corpora), model M LMs [23]
(trained on 7 important corpora), and a NNLM [21], [22]
(trained on 3 important corpora).

We use two data sets for developmental tuning: dev07 (2.5
h) and dev08 (3 h). We report results on several test sets: dev09
(2.8 h); eval08 (3 h) and eval09 (4.2 h), the unsequestered
portions of the GALE Phase 3 and 4 evaluation sets; and
eval11 (3 h), the GALE Phase 5 evaluation set.

VI. RESULTS

A. Supervised DLM Training

Our first experiment uses the perceptron algorithm for DLM
training. We trained many DLMs by using α0 values from 0
to 30, and the DLM with the best results on P3U dev07 was
chosen. From all possible morph unigram, bigram, and trigram
features, the perceptron algorithm selected a relatively small
set of important features, about 1M features. Table I shows the
perceptron DLM results when tested with a matched acoustic
model (P3U). The improvements range from 0.2-0.6%.

TABLE I
PERCEPTRON DLM RESULTS ON MATCHED SYSTEM

dev07 eval08 dev09 eval09
4-gram 10.5% 10.2% 15.6% 11.6%
Perceptron (P3U) 10.3% 9.9% 15.0% 11.4%

Then we performed experiments under mismatched training
and test conditions. The trained DLMs remained the same but
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the dev and test set N -best lists were generated with M+NNM
and U+BS+NNU systems. There is considerable mismatch
in such a test scenario since the acoustic model, pronun-
ciation dictionary, and language model can all be different.
For example, M+NNM system uses a different pronunciation
dictionary (that includes short vowels and other diacritics not
used by P3U). The acoustic model training data included the
300 h that was used for DLM training, and it has overall a
much lower WER. Furthermore, before applying the DLM,
the lattices were rescored with model M and word NNLM,
resulting in a much stronger baseline. Can the DLM improve
the test performance of the best eval systems even though the
DLM training data was not prepared using those systems?

Table II shows the DLM results on the M+NNM system.
The perceptron result uses the perceptron DLM (α0 and
iteration number) that optimizes dev07 on M+NNM. WER
improves by 0.1% for the dev set and by 0.2% for the test sets.
Where dev09 improved by 0.6% for the matched P3U system,
the improvement is only 0.2% for M+NNM. This could be
a result of mismatch in DLM training and testing, or simply
because the baseline WER is much lower. It is nevertheless
encouraging to see that improvements can be obtained even
when the DLM is applied to a different system from the one
it was trained on. Starting with the features selected by this
perceptron DLM, we trained DLMs using GCLM or MBR.

For GCLM, we used a batch training implementation.
Feature parameters were initialized with the perceptron DLM
after scaling all the parameters by α0 of the model. α0 started
as 1.0 but was updated during training. Tuning parameters
included the regularization parameter σ and the step size ε.
When properly regularized, the model converges nicely and it
was not necessary to do early stopping based on a dev set.
We ran the training for 500 iterations/epochs. dev07 was used
to pick the best σ and ε; typical values that work well are
σ = 0.2 and ε = 0.01.

For MBR, we used an online training implementation with-
out perceptron-style averaging. Tuning parameters included
α0, which we varied between 1 and 30, like for perceptron,
and an initial step size ε0. Typical values that work well are
α0 = 7 and an initial step size of ε0 = 0.1α0. Intuitively,
α0 should not be too large; otherwise most of the posterior
probability will be on the 1-best hypothesis and the update will
be very little. We used the training set and dev07 to adjust the
step size, using the heuristic to halve the step size whenever
the training or dev set objective function or WER does not
improve. We found that the model converges fairly quickly
using this online implementation, sometimes under 20 epochs.

Table II also shows the results of DLMs trained with GCLM
or MBR. The GCLM DLM is better than the perceptron
DLM by 0.1% on dev09 and eval11. The MBR DLM further
outperforms the GCLM DLM by 0.1% on all the test sets.
Overall, on top of a very good baseline (model M + word
NNLM), the MBR DLM achieves 0.1-0.4% improvement in
WER, and the impact on eval11 is 0.4% absolute WER.

Table III shows the results on the U+BS+NNU system,
also a mismatched testing condition. For this system, the
performance of GCLM and MBR DLMs was very similar and
was 0.1% better than the perceptron DLM for eval11. Again

TABLE II
DLM RESULTS ON MISMATCHED M+NNM SYSTEM

dev07 dev09 eval09 eval11
4-gram 8.1% 13.3% 9.8% 9.3%
+ model M + word NNLM 7.5% 12.2% 9.1% 8.5%
Perceptron (M+NNM) 7.4% 12.0% 8.9% 8.3%
GCLM 7.5% 11.9% 8.9% 8.2%
MBR 7.4% 11.8% 8.8% 8.1%

on top of a good baseline (model M + word NNLM), we
obtain 0.2-0.3% improvement, specifically an absolute WER
reduction of 0.3% on eval11.

TABLE III
DLM RESULTS ON MISMATCHED U+BS+NNU SYSTEM

dev07 dev09 eval09 eval11
4-gram 8.2% 12.6% 9.5% 8.9%
+ model M + word NNLM 7.5% 11.7% 8.7% 8.2%
Perceptron (M+NNM) 7.4% 11.5% 8.6% 8.0%
GCLM 7.3% 11.6% 8.5% 7.9%
MBR 7.3% 11.5% 8.5% 7.9%

B. Unsupervised DLM Training

After the DARPA Evaluation, we performed some pre-
liminary experiments to address the interesting scenario of
training DLMs without transcripts. Table IV shows the results
of unsupervised DLMs on the P3U system. The unsupervised
perceptron DLM did not improve over baseline. However, with
GCLM and MBR training, we obtained 0.1-0.2% absolute
improvement in WER.

For GCLM training, we had to use a different dev set dev08
to do early stopping. Unlike supervised training, it was possi-
ble to over-train and degrade test performance, even with regu-
larization. It was also necessary to use dev08 instead of dev07
for this purpose, probably because dev07 was used to select the
features and this bias made it an unreliable dev set. For MBR
training, dev07 was used for step size modification (described
earlier) and dev08 was used to select the α0. Interestingly, the
optimal value for unsupervised training always turns out to
be α0 = 2, compared with α0 = 7 for supervised training.
This has the effect of spreading the posterior probabilities to
more of the N -best hypotheses (rather than concentrating the
probabilities in the top hypotheses.)

TABLE IV
UNSUPERVISED DLM RESULTS FOR P3U

dev07 eval08 dev09 eval09
Baseline 10.5% 10.2% 15.6% 11.6%
Perceptron 10.4% 10.2% 15.6% 11.6%
GCLM 10.4% 10.1% 15.5% 11.5%
MBR 10.4% 10.0% 15.5% 11.5%

Conceptually, one big difference between perceptron and
MBR DLM training is that perceptron training only makes
updates if the 1-best hypothesis is different from the oracle
hypothesis. It turns out that when the MBR hypothesis is used
as the oracle in the training data, the oracle differs from the
1-best in only about 3,000 out of 160k sentences. MBR and
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GCLM training have the distinct advantage that updates can
happen even when the oracle and 1-best are the same.

TABLE V
UNSUPERVISED DLM RESULTS FOR M+NNM AND U+BS+NNU

dev07 dev09 eval09 eval11
M+NNM System
Baseline 7.5% 12.2% 9.1% 8.5%
Perceptron 7.6% 12.2% 9.0% 8.5%
GCLM 7.5% 12.2% 9.0% 8.4%
MBR 7.5% 12.2% 9.0% 8.3%
U+BS+NNU System
Baseline 7.5% 11.7% 8.7% 8.2%
Perceptron 7.5% 11.7% 8.7% 8.2%
GCLM 7.5% 11.7% 8.6% 8.1%
MBR 7.5% 11.7% 8.6% 8.1%

Table V shows the results of unsupervised DLMs on the
Phase 5 Evaluation systems. It is encouraging to see an
improvement of 0.2% (from 8.5% to 8.3%) on the eval11 test
set for the M+NNM system. This represents about half of the
improvement we had obtained with the supervised DLM.

VII. CONCLUSION

In this paper we used discriminative language models to
improve our best Arabic speech recognition systems for the
Phase 5 DARPA GALE Evaluation. We explored different
parameter estimation methods, including the minimum Bayes
risk criterion, which minimizes the expected loss, calculated
using the word error information and posterior probabilities
of the N -best hypotheses of all the training sentences. One
advantage of the MBR framework is that it is not necessary to
designate a single reference or oracle hypothesis; this is useful
since multiple hypotheses may turn out to have the same WER
after text normalization (particularly relevant for Arabic).

During the Evaluation, a single MBR DLM thus trained
was used to rescore the N -best hypotheses from all the
systems with different acoustic models. Although there is
significant mismatch between training and test conditions
(different acoustic and language models), improvements were
still observed. Finally we investigated unsupervised DLM
training and found that in certain experiments, about half of
the gain of the supervised DLM can be achieved. The DLM
training data (300 h, 2.5M words) is much less than that for
the baseline system (1800 h audio, 1.6B words for LM), so
the gains are encouraging. Training on large amounts of un-
transcribed speech data may yield more improvements.

ACKNOWLEDGMENT

We would like to acknowledge the support of DARPA under Grant

HR0011-06-2-0001 for funding part of this work. The views, opinions, and/or

findings contained in this article/presentation are those of the author/presenter

and should not be interpreted as representing the official views or policies,

either expressed or implied, of the Defense Advanced Research Projects

Agency or the Department of Defense. We also thank the reviewers.

REFERENCES
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gram language modeling for Turkish,” in Proc. Interspeech, Brisbane,
Australia, 2008, pp. 825 – 828.

[11] N. Singh-Miller and M. Collins, “Trigger-based language modeling
using a loss-sensitive perceptron algorithm,” in Proc. ICASSP, Honolulu,
Hawaii, USA, 2007, pp. 25 – 28.

[12] E. Arısoy, B. Ramabhadran, and H.-K. J. Kuo, “Feature combination
approaches for discriminative language models,” in Proc. Interspeech,
Florence, Italy, 2011.

[13] M. Lehr and I. Shafran, “Discriminatively estimated joint acoustic,
duration and language model for speech recognition,” in Proc. ICASSP,
Dallas, Texas, USA, 2010, pp. 5542 – 5545.

[14] V. Goel and W. J. Byrne, “Minimum Bayes-risk automatic speech
recognition,” Computer Speech and Language, vol. 14, pp. 115 – 135,
2000.

[15] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in speech
recognition: word error minimization and other applications of confusion
networks,” Computer Speech and Language, vol. 14, no. 4, pp. 373 –
400, 2000.

[16] A. Stolcke, Y. Konig, and M. Weintraub, “Explicit word error mini-
mization in n-best list rescoring,” in Proc. Eurospeech, Rhodes, Greece,
1997.

[17] A. Deoras, D. Filimonov, M. Harper, and F. Jelinek, “Model combination
for speech recognition using empirical Bayes risk minimization,” in
Proc. SLT, 2010.

[18] G. Saon and J.-T. Chien, “Discriminative training for Bayesian sensing
hidden Markov models,” in Proc. ICASSP, 2011, pp. 5316–5319.

[19] ——, “Bayesian sensing hidden Markov models for speech recognition,”
in Proc. ICASSP, 2011, pp. 5056–5059.

[20] ——, “Some properties of Bayesian sensing hidden Markov models,”
in Proc. ASRU, 2011.

[21] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of Machine Learning Reseach, vol. 3,
2003.

[22] A. Emami and L. Mangu, “Empirical study of neural network language
models for Arabic speech recognition,” in Proc. ASRU, Kyoto, Japan,
Dec. 2007, pp. 147–152.

[23] S. F. Chen, “Shrinking exponential language models,” in Proc. NAACL-
HLT, 2009.

[24] G. Kurata, N. Itoh, and M. Nishimura, “Training of error-corrective
model for ASR without using audio data,” in Proc. ICASSP, Prague,
Czech Republic, 2011.

[25] P. Jyothi and E. Fosler-Lussier, “Discriminative language modeling using
simulated ASR errors,” in Proc. Interspeech, Makuhari, Japan, 2010.

[26] F. J. Och, “Minimum error rate training in statistical machine transla-
tion,” in Proc. ACL, 2003, pp. 160 – 167.

[27] D. A. Smith and J. Eisner, “Minimum risk annealing for training log-
linear models,” in Proc. COLING/ACL, Sydney, 2006, pp. 787 – 794.

[28] D. Povey and P. C. Woodland, “Minimum phone error and I-smoothing
for improved discriminative training,” in Proc. ICASSP, Orlando, FL,
USA, 2002, pp. 105 – 108.

[29] L. Mangu, et. al., “The IBM 2011 GALE Arabic speech transcription
system,” in Proc. ASRU, 2011.

213


