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Abstract—This paper explores rich morphological and novel
n-best-list features for reranking automatic speech recognition
hypotheses. The morpholexical features are defined over the
morphological features obtained by using an n-gram language
model over lexical and grammatical morphemes in the first-pass.
The n-best-list features for each hypothesis are defined using that
hypothesis and other alternate hypotheses in an n-best list. Our
methodology is to align each hypothesis with other hypotheses
one by one using minimum edit distance alignment. This gives
us a set of edit operations - substitution, addition and deletion
as seen in these alignments. These edit operations constitute our
n-best-list features as indicator features. The reranking model
is trained using a word error rate sensitive averaged perceptron
algorithm introduced in this paper. The proposed methods are
evaluated on a Turkish broadcast news transcription task. The
baseline systems are word and statistical sub-word systems which
also employ morphological features for reranking. We show that
morpholexical and n-best-list features are effective in improving
the accuracy of the system (0.8%).

I. INTRODUCTION

Discriminative ranking and reranking approaches have been

proposed as an alternative to generative history-based proba-

bilistic models [1], [2], [3], [4]. In reranking tasks, a baseline

generative model generates a set of candidates, and then these

candidates are reranked by using local and global features,

generally including the likelihood scores from the baseline

model. For instance, in parsing, a baseline parser produces a

set of candidate parses for each input sentence, with their asso-

ciated probabilities which define an initial ranking over these

parses. Then, a reranking model can be used to rerank these

parses with the anticipation of improving the initial rankings

using additional features derived from the parse tree. As an

advantage over generative models, the discriminative reranking

models allow the use of arbitrary features as evidence without

concerning about the interaction of features or the construction

of a generative model using these features.

As a discriminative reranking approach, the variants of

the perceptron algorithm proved to be very successful. The

perceptron is a simple artificial neural network which can

be used as a binary linear classifier [5]. A variant of the

perceptron algorithm, the voted perceptron has been applied

to classification tasks in natural language processing [6].

Another variant of the algorithm, the averaged perceptron has

been shown to outperform Maximum Entropy Models [7] in

part-of-speech tagging and parsing tasks [2]. The averaged

perceptron algorithm has also been used to estimate discrimi-

natively trained n-gram language models for large vocabulary

speech recognition [8]. The discriminative language models

are trained on acoustic sequences with their transcriptions, in

an attempt to directly optimize word error rate. The perceptron

algorithm has also been used to build discriminative language

models for Turkish using syntactic and sub-lexical features [9].

A variant of the perceptron algorithm for pairwise classifica-

tion with uneven margins has been applied to the task of parse

reranking and machine translation reranking [4]. The word

error rate (WER) of speech recognition hypotheses have been

used to choose the competitors in discriminative reranking of

ASR hypotheses [10].

We previously proposed a morphology-based language

model for Turkish, which is an n-gram language model

estimated over lexical and grammatical morphemes [11]. In

that study, we built a morphology-integrated search network

by composing this morpholexical language model with the

lexical transducer of a morphological parser for Turkish. In

addition to alleviating the out-of-vocabulary word problem

by using a computational lexicon and hence improving the

accuracy of the speech recognition system, this approach

has the advantage that we can obtain morphological units

annotated with morphological features as output from the

system. This paper explores using these features to further

exploit morphology for improving the recognition accuracy in

a reranking framework. In addition to morphological features,

we propose n-best-list features which are extracted for each

hypothesis relative to other candidate hypotheses. When the

discriminative models are considered as an error corrective

model, these features aim to capture morpheme confusions

as discriminative features between the correct hypothesis and

alternate hypotheses.

We improve speech recognition accuracy by using mor-

pholexical and n-best-list features in a discriminative n-best

hypotheses reranking framework with a variant of the percep-

tron algorithm. The perceptron algorithm is tailored for rerank-
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input set of training examples {(xi, yi) : 1 ≤ i ≤ n}
input number of iterations T
ᾱ = 0, γ̄ = 0
for t = 1 . . . T , i = 1 . . . n do
zi = argmaxz∈GEN(xi) Φ(xi, z) · ᾱ
if zi �= yi then

ᾱ = ᾱ+Φ(xi, yi)−Φ(xi, zi)
end if
γ̄ = γ̄ + ᾱ

end for
return γ̄ = γ̄/(nT )

Fig. 1. The averaged perceptron algorithm

ing recognition hypotheses by introducing error rate dependent

loss function and using one versus all hypotheses n-best-list

features extracted by pairwise alignment of hypotheses.

II. DISCRIMINATIVE RERANKING WITH PERCEPTRON

The introduction of arbitrary and global features into the

generative models results in difficulty due to dynamic pro-

gramming nature of these models. Therefore, the common

approach in NLP research has been to use a baseline generative

model to generate ranked n-best candidates, which are then

reranked by a rich set of local and global features [4].

The perceptron algorithm has been successfully applied to

various NLP tasks for ranking or reranking hypotheses [6],

[1], [2], [4], [8]. We also used the perceptron algorithm

for morphological disambiguation of Turkish text using mor-

pholexical features [12]. The characteristics like simplicity,

fast convergence, and easy incorporation of arbitrary local and

global features make the perceptron algorithm very attractive

for discriminative training of linear models. Hence, we select

the perceptron algorithm to train linear models with the mor-

pholexical features to rerank the n-best hypotheses generated

by the morpholexical language models. Since those hypotheses

already have the morphological parse representation, we try to

exploit the morphological information to improve the ranking

accuracy. To accomplish that we experimented with various

features and selected a subset of features effective in discrim-

ination. We also introduce some variants of the perceptron

algorithm and evaluate their effectiveness.

A. The Perceptron Algorithm

The perceptron is a linear classifier [5]. The perceptron

algorithm tries to learn a weight vector that minimizes the

number of misclassifications. Fig. 1 shows a variant of the

perceptron algorithm - the averaged perceptron [6], [2] for-

mulated as a multiclass classifier. The algorithm estimates a

parameter vector ᾱ ∈ �d using a set of training examples

(xi, yi) : 1 ≤ i ≤ n. The function GEN enumerates a finite

set of candidates GEN(x) ⊆ Y for each possible input x. The

representation Φ maps each (x, y) ∈ X×Y to a feature vector

Φ(x, y) ∈ �d. The learned parameter vector ᾱ can be used for

mapping unseen inputs x ∈ X to outputs y ∈ Y by searching

for the best scoring output, i.e. argmaxz∈GEN(x) Φ(x, z) · ᾱ.

The given algorithm can also be used to rank the possible

outputs for an input x by their Φ(x, z) · ᾱ scores.

The algorithm makes multiple passes (denoted by T ) over

the training examples. For each example, it finds the highest

scoring candidate among all candidates using the current

parameter values. If the highest scoring candidate is not the

correct one, it updates the parameter vector α by the difference

of the feature vector representation of the correct candidate and

the highest scoring candidate. This way of parameter update

increases the parameter values for features in the correct

candidate and downweights the parameter values for features

in the competitor. For the application of the model to the test

examples, the algorithm calculates the “averaged parameters”

since they are more robust to noisy or inseparable data [2].

The averaged parameters γ are calculated by summing the

parameter values for each feature after each training example

and dividing this sum by the total number of updates. We

define X , Y , xi, yi, GEN, and Φ of the perceptron algorithm

in a reranking setting of ASR hypotheses as follows:

• X is the set of all possible acoustic inputs.

• Y is the set of all possible strings,
∑∗

, for a vocabulary∑
which can be a set of words, sub-words, or morpholex-

ical units of the generative language model.

• Each xi is an utterance - a sequence of acoustic feature

vectors. The training set contains n such utterances.

• GEN(xi) is the set of alternate transcriptions of xi as

output from the speech decoder. Although the speech

decoders can generate lattices which encode alternate

recognition results compactly, we prefer to work on

n-best lists for the efficiency reasons and very small

performance gains with the lattices.

• yi is the member of the GEN(xi) with lowest word error

rate with respect to the reference transcription of xi. Since

there can be multiple transcriptions with the lowest error

rate, we take yi to be the one with the best score among

them.

• Each component Φj(x, y) of the feature vector represen-

tation Φ(x, y) ∈ �d holds the number of occurrences

of a feature or indicates the existence of a feature. For

instance one of the features can be defined on part of

speech tags of the words as follows:

Φ1(x, y) = number of times an adjective is followed by

a noun in y.

We also define features between a given transcription and

the rest of the transcriptions for an utterance. The next

section describes the features in more detail.

• The expression Φ(x, y) · α denotes the inner product∑d
j=1 Φj(x, y)αj , where αj is the jth component of the

parameter vector α.

• The zeroth component Φ0(x, y) represents the log-

probability of y in the lattice output from the baseline

recognizer for utterance x. The corresponding weight α0

for Φ0(x, y) is fixed and optimized on a held-out set.

With this setting, the perceptron algorithm learns an av-

eraged parameter vector γ that can be used to choose the
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input set of training examples {(xi, yi) : 1 ≤ i ≤ n}
input number of iterations T
ᾱ = 0, γ̄ = 0
for t = 1 . . . T , i = 1 . . . n do
zi = argmaxz∈GEN(xi) Φ(xi, z) · ᾱ
ᾱ = ᾱ+Δ(yi, zi)(Φ(xi, yi)−Φ(xi, zi))
γ̄ = γ̄ + ᾱ

end for
return γ̄ = γ̄/(nT )

Fig. 2. The WER-sensitive perceptron algorithm

transcription y having hopefully the least number of errors

for an utterance x using the following function:

F (x) = argmax
y∈GEN(x)

Φ(x, y) · γ

B. The WER-Sensitive Perceptron Algorithm

We improve the perceptron algorithm in two ways for

reranking ASR recognition hypotheses. First, we can define

a better loss function which is based on the total number of

extra errors we do by selecting the candidates with higher

WER rather than the best candidates. Then minimizing the loss

function corresponds to minimizing the WER of the reranker.

The loss function of the original perceptron algorithm can be

written as follows:

L(ᾱ) =

n∑

i=1

�ᾱ ·Φ(xi, zi)− ᾱ ·Φ(xi, yi)�

where �x� = 0 if x < 0 and 1 otherwise. We define a better

word error rate sensitive loss function as follows:

L(ᾱ) =

n∑

i=1

Δ(yi, zi)�ᾱ ·Φ(xi, zi)− ᾱ ·Φ(xi, yi)�

where the loss function Δ(yi, zi) for each example xi is

defined as the difference of edit distances of zi and yi with

the reference transcription of xi. Hence, this enables us to

incorporate the word error rate metric into training of the

discriminative model.

The gradient of the loss function can be found by

the stochastic gradient descent as λΔ(yi, zi)(Φ(xi, yi) −
Φ(xi, zi)), where λ is the learning rate. For the experiments in

this paper, we set the λ to 1, for which we found the algorithm

to converge well.

Note that a loss-sensitive perceptron algorithm has been

proposed for reranking speech recognition output in [13].

Although this work is similar in using edit distance as a loss

function, they use it for scaling the margin to ensure that

hypotheses with a large number of errors are more strongly

separated from the members of the set of lowest error (optimal)

hypotheses. They also update the weight vector using features

from optimal and non-optimal set of hypotheses that violate

the scaled margin.

The second improvement comes from the observation that

the candidate hypotheses generated by the baseline model

carry n-best-list information which can be used as discrim-

inative features between the alternatives. For instance, these

features can be effective in capturing frequently occurring

errors due to acoustic similarity. They can also define n-

best-list similarity metrics between hypotheses to improve

the classification. The word error rate sensitive perceptron

algorithm is shown in Fig. 2.

C. Morpholexical Features

In this study, we used lexical stem-ending units [14] for

building the first-pass language model. The speech decoder

using the morpholexical language models outputs a sequence

of lexical and grammatical morphemes annotated with mor-

phological features. Most of the features that we experimented

are defined as the n-gram counts of these lexical and gram-

matical morphemes. We also employed part-of-speech tag of

words as a feature. The set of features that we incorporate in

the model is a superset of the features used for morphological

disambiguation [15]. The feature templates are given in Ta-

ble I. The notation and feature representation is explained here.

wi represents the current morpholexical word of the trigram

- this is the concatenation of all the morphemes for a word

as output from the recognizer. The morpholexical word wi is

split into a lexical root ri and a lexical ending ei. The lexical

ending ei is the concatenation of the grammatical morphemes

mi,j for j = 1 . . . ni, where ni is the number of grammatical

morphemes in wi. The morphological features not having

grammatical morphemes are concatenated to the previous

lexical or grammatical morpheme. Shortly, the morpholexical

word wi is represented as wi = riei = rimi,1mi,2 . . .mi,ni
.

An example for the morpholexical features of the word

sevmediği is given below.

wi =sev[Verb]+mA[Neg]-DHk[Noun+PastPart]

+[A3sg]+SH[P3sg]+[Nom]

ri =sev[Verb]

mi,1 =+mA[Neg]

mi,2 =-DHk[Noun+PastPart]+[A3sg]

mi,3 =+SH[P3sg]+[Nom]

ei = mi,1mi,2mi,3

ti =Noun (the POS tag of the last derived word)

D. N-best-list Features

As a novel approach, we experimented with n-best-list

features, which are defined between a given transcription y
and the other alternate transcriptions GEN(x) \ {y}. The

idea comes from the observation that sometimes the alternate

hypotheses give us contrastive information for the correct

hypotheses. For instance, the transformation-based learning

has been used to learn a set of rules for discriminating

between the correct and alternate hypotheses in a confusion

set using additional knowledge sources extracted from

the confusion networks [16]. The discriminative language

models can also be considered as error corrective models.

Therefore, it is reasonable to introduce features encoding the

confusion of the words and the similarity of the hypotheses

in terms of error rate. Our approach for incorporating
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(1) uzman[Noun]+[A3sg]+[Pnon]+[Nom] kişi[Noun] +lAr[A3pl]+[Pnon]+[Nom] için[Postp]
(2) zam[Noun]+[A3sg]+[Pnon]+[Nom] kişi[Noun] +lAr[A3pl]+[Pnon]+[Nom]

(1) subs: zam[Noun]+[A3sg]+[Pnon]+[Nom]→uzman[Noun]+[A3sg]+[Pnon]+[Nom], add: için[Postp], avg edit dist: 2
(2) subs: uzman[Noun]+[A3sg]+[Pnon]+[Nom]→zam[Noun]+[A3sg]+[Pnon]+[Nom], del: için[Postp], avg edit dist: 2

Fig. 3. An example for indicator n-best-list features extracted for each hypotheses by minimum edit distance alignment

TABLE I
FEATURE TYPES EXPERIMENTED FOR DISCRIMINATIVE RERANKING

Gloss Feature
morpholexical word unigram (1) wi

morpholexical word bigram (2) wi−1wi

lexical root unigram (3) ri
lexical root bigram (4) ri−1ri
lexical ending unigram (5) ei
lexical ending bigram (6) ei−1ei
number of grammatical morphemes (7) ni

grammatical morphemes (8) mi,j (j = 1 . . . ni)
lexical ending with previous morpholexical (9) wi−1ei
lexical ending with previous lexical root (10) ri−1ei
POS tag unigram (11) ti
POS tag bigram (12) ti−1ti
POS tag with previous morpholexical word (13) wi−1ti
POS tag with previous lexical ending (14) ei−1ti
n-best-list features (15) add, del, subs
average edit-distance (16) avg edit distance

these features is to align a given hypotheses y with each

alternate hypothesis and set the indicator features for the

seen edit operations - substitution, addition and deletion

of morphemes. For instance, an indicator feature for the

substitution of acoustically similar lexical endings can

be subs:+SH[P3sg]+NDA[Loc]→+SH[P3sg]+NDAn[Abl].

These features aim to learn error corrective rules such as if

a word is frequently mistaken with another word then the

occurrence of the same mistake in the alternate hypotheses

should signal that the word is likely to be in the utterance.

We also used the average edit distance with the alternate

hypotheses as a feature. Fig. 3 shows an example of n-best-list

features for two hypotheses. The two hypotheses are aligned

and edit operations are used as indicator features for both

hypotheses.

III. EXPERIMENTS

This section gives experimental results for the application

of proposed discriminative reranking methods to a Turkish

broadcast news transcription task.

A. Broadcast News Transcription System

The automatic transcription system uses hidden Markov

models (HMMs) for acoustic modeling and WFSTs for model

representation and decoding. The HMMs are decision-tree

state clustered cross-word triphone models with 10843 HMM

states and each state is a Gaussian mixture model (GMM)

having 11 mixture Gaussian densities with the exception of

silence model having 23 mixtures. The model has been trained

on 188 hours of acoustic data from the Boğaziçi broadcast

news (BN) database [17], [18]. Separate from the training

data, disjoint held-out (3.1 hours) and test (3.3 hours) data

sets are used for parameter optimization and final performance

evaluation, respectively.

The language models are trained using two text corpora.

The larger corpus is the NewsCor corpus (184 million words)

described in [15] and acts as a generic corpus collected from

news portals. The other one is the BN corpus (1.3 million

words) and it contains the reference transcriptions of BN

database and acts as in-domain data. The generative language

models of this paper are built by linearly interpolating the

language models trained on these corpora. The interpolation

constant is chosen to optimize the perplexity of held-out tran-

scriptions. The baseline n-gram language models are estimated

with interpolated Kneser-Ney smoothing and entropy-based

pruning using the SRILM toolkit [19]. The discriminative

models are trained using only the BN corpus. The speech

recognition experiments are performed by using the AT&T

DCD library. This library is also used for the composition

and optimization of the finite-state models to build the search

network for decoding.

B. Discriminative Reranking of ASR Hypotheses

The speech decoder generates word, sub-word or morpheme

lattices depending on the units of the language model used in

the first pass. Then, we extract an n-best list of hypotheses

from these lattices which are ranked by the combined score

obtained from the language and acoustic model. The resulting

n-best hypotheses are reranked with a discriminative linear

model trained with the perceptron algorithm using the features

extracted from the hypotheses.

In the reranking experiments, we used the experimental

setup of Arısoy [18]. In the first set of experiments, we com-

pared the discriminative reranking results of the morpholexical

model with the word and morphs (statistical sub-words) model

as shown in Table II. The results for word and morph models

are also taken from Arısoy’s work [18]. The n-best hypotheses

for all systems are generated by decoding the acoustic training

data with the corresponding generative model. The acoustic

model trained on all the utterances in the training data is used

to decode all the utterances. However, in language modeling,

12-fold cross validation is employed to prevent over-training of

the discriminative model. This is done by decoding utterances

in each fold with a fold-specific language model which is

built by interpolating the generic language model trained on

NewsCor corpus with the in-domain language model trained

with the reference transcriptions of the utterances in the other

11 folds. The same interpolation constant - 0.5 - is used for

building fold-specific language models of all systems. 200K

word, 76K morph and 200K lexical stem-ending units of
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vocabulary were employed while building 3-gram word, 4-

gram morphs, and 4-gram lexical stem-ending models, re-

spectively. Since the n-gram language models are pruned for

computational reasons, the lattices generated in the first-pass

at ∼1.5 real-time factor are rescored with unpruned language

models.

The best reranking result for the word-based system is

obtained by using the unigram counts of inflectional groups

(IGs) and roots as features. The morphological analysis of a

word is split at derivation boundaries to give the IGs. The

best reranking result for the morph-based system is obtained

by using the unigram counts of morphs and bigram counts

of part-of-speech tags of words. POS tags are obtained by

converting morphs to words and using morphological parsing

and disambiguation tools. Note that best reranking results

for both words and morphs are obtained by using linguistic

tools to process the hypothesis to obtain the morphological

information. In contrast, the morphological information is

readily available for reranking in the morpholexical approach

since it is carried on the morpholexical units. For the lexical

stem-ending model, we experimented with the features given

in Table I. The features numbered 3, 7, and 13 are selected by

incrementally adding best performing features on a held-out

set and these features are used on the test set.

The reranking models are trained with the perceptron al-

gorithm of Fig. 1. The 50-best hypotheses extracted for each

utterance from the rescored lattices are used for the training

and reranking. The number of iterations of the algorithm and

the weight α0 used for scaling the hypothesis score from the

first-pass are optimized on a held-out set. The held-out set is

also used to decide which feature types will be incorporated

in the model based on the reranking performance on that

set. The final reranking results are given on a test set in

Table II. We observe that lexical stem-ending model has the

best baseline and reranking performance. However, we can see

that reranking improvement of the lexical stem-ending model

over the baseline is not as large as word and morph models.

This can be explained by noting that the lexical stem-ending

model already uses the morphological information implicitly

in the morpholexical n-gram model of the first pass. Therefore,

it can be expected that morphological information improves

the word and morph model more than the lexical stem-ending

model in the reranking. This is more evident when we consider

that the morph model can generate invalid word forms, which

may be corrected by using the morphological information.

The second set of experiments is designed to evaluate the

effectiveness of WER-sensitive perceptron algorithm and n-

best-list features proposed in section II. In this reranking

experiments, we use 10-best hypotheses for two reasons.

First, they show nearly identical performance with 50-best

hypotheses on a held-out set with the standard features.

Second, it becomes computationally prohibitive to extract n-

best-list features with longer hypotheses lists since the run time

complexity of the feature extraction algorithm is O(n2m2),
where n is the number of hypotheses and m is the average

number of units in the hypotheses. The features are selected by

TABLE II
DISCRIMINATIVE RERANKING RESULTS WITH PERCEPTRON

Models 50-best oracle 1-best Reranked
Words 15.0 23.4 22.5
Statistical morphs 13.9 22.4 21.4
Lexical stem-ending 14.2 21.7 21.2

TABLE III
EVALUATION OF THE WER-SENSITIVE PERCEPTRON AND n-BEST-LIST

FEATURES FOR RERANKING 10-BEST HYPOTHESES

Algorithm-Features Test
10-best oracle 16.5
1-best 21.7
Perceptron
+ morpholexical features (3,7,13) 21.2
+ n-best-list features 21.0
WER-sensitive Perceptron
+ morpholexical features (3,7,13) 21.1
+ n-best-list features 20.9

incrementally adding the best performing feature on a held-

out set from Table I. The feature selection is repeated for

both algorithms. The reranking results are given in Table III.

The WER-sensitive perceptron algorithm and n-best-list fea-

tures show consistent improvements on the test set, however,

the improvements are not very significant. Nevertheless, the

reranking with the WER-sensitive perceptron and n-best-list

features improves the WER by 0.3% relative to the original

perceptron and 1-best-list features, and by 0.8% relative to the

first-pass recognition result.

IV. CONCLUSION

In this paper, we experimented with a proposed word error

rate sensitive perceptron algorithm using morpholexical and

novel n-best-list features to exploit morphological information

in a discriminative reranking framework. We tailored the per-

ceptron algorithm to better suit for reranking recognition hy-

potheses by introducing error rate dependent loss function and

using one versus all hypotheses n-best-list features extracted

by pairwise minimum edit distance alignment of hypotheses.

We applied the proposed methods for reranking n-best list

hypotheses from a first-pass recognition using a morphology-

based language model for Turkish. We compared our results

with a baseline word and statistical sub-word model in the

same reranking framework. The improvements of the first-

pass in word error rate are mostly preserved in the reranking

as 1.6% absolute over word models and 0.5% absolute over

statistical sub-word models.
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news transcription and retrieval,” IEEE Transactions on Audio, Speech
& Language Processing, vol. 17, no. 5, pp. 874–883, 2009.

[18] E. Arısoy, “Statistical and discriminative language modeling for turkish
large vocabulary continuous speech recognition,” Ph.D. dissertation,
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