
Strategies for Training Large Scale Neural Network
Language Models

Tomáš Mikolov #1, Anoop Deoras ∗2, Daniel Povey †3, Lukáš Burget #4, Jan “Honza” Černocký #5

Brno University of Technology, Speech@FIT, Brno, Czech Republic
1 imikolov@fit.vutbr.cz, 4 burget@fit.vutbr.cz, 5 cernocky@fit.vutbr.cz

∗ HLT-COE, CLSP, Johns Hopkins University, Baltimore, MD, USA
2 adeoras@jhu.edu

† Microsoft Research, Redmond, WA, USA
3 dpovey@microsoft.com

Abstract—We describe how to effectively train neural network
based language models on large data sets. Fast convergence
during training and better overall performance is observed when
the training data are sorted by their relevance. We introduce
hash-based implementation of a maximum entropy model, that
can be trained as a part of the neural network model. This
leads to significant reduction of computational complexity. We
achieved around 10% relative reduction of word error rate on
English Broadcast News speech recognition task, against large
4-gram model trained on 400M tokens.

I. INTRODUCTION

Statistical language models are important part of many
applications that work with natural language, such as machine
translation and automatic speech recognition. Backoff models
based on n-gram statistics have been dominating the language
modeling field for almost three decades, mainly due to their
simplicity and low computational complexity.

In recent years, some other types of language models have
also attracted a lot of attention. The most successful examples
of such models are Maximum entropy language model [1]
(ME LM) and Neural network based language model [2] (NN
LM). The main reason for their attractiveness is their ability
to model natural language more precisely than the backoff
models. Their important drawback is their huge computational
complexity. Thus, a lot of research effort has been devoted
towards making these models more computationally efficient.

In this paper, we briefly mention existing approaches for
reducing the computational complexity of NN LMs (most of
these approaches are applicable to ME LMs). We propose new
simple techniques that can be used to reduce computational
cost of the training and test phases. We show that these new
techniques are complementary to existing approaches.

Most interestingly, we show that a standard neural network
language model can be trained together with a maximum
entropy model, which can be seen as a part of the the neural
network. We introduce a hash-based implementation of a class-
based maximum entropy model, that allows us to easily control
the trade-off between memory complexity and computational
complexity.

We report results on the NIST RT04 Broadcast News
speech recognition task. We use lattices generated from IBM

Attila decoder [3] that uses state-of-the-art discriminatively
trained acoustic models. The language models for this task
are trained on about 400M tokens. This highly competitive
setup has been used in the recent summer workshop at Johns
Hopkins University [4]. In our experiments, we work with
the Recurrent neural network language model [5] (RNN LM),
as we have recently shown that RNN LMs can outperform
standard feedforward NN LMs [6].

II. MODEL DESCRIPTION

A maximum entropy model has the following form:

P (w|h) =
e

P
N

i=1
λifi(h,w)

∑
w e

P
N

i=1
λifi(h,w)

, (1)

where f is a set of features, λ is a set of weights and h is a
history. Training maximum entropy model consists of learning
the set of weights λ. Usual features are n-grams, but it is easy
to integrate any information source, for example triggers or
syntactic features [1]. The choice of features is usually done
manually, and significantly affects the overall performance of
the model.

The standard neural network language model has a very
similar form. The main difference is that the features for this
model are automatically learned as a function of the history.
Also, the usual features for the ME model are binary, while
NN models use continuous-valued features. We can describe
the NN LM as follows:

P (w|h) =
e

P
N

i=1
λifi(s,w)

∑
w e

P
N

i=1
λifi(s,w)

, (2)

where s is a state of the hidden layer. For the feedforward NN
LM architecture introduced by Bengio et al. in [2], the state of
the hidden layer depends on a projection layer, that is formed
as a projection of N − 1 recent words into low-dimensional
space. After the model is trained, similar words have similar
low-dimensional representations.

Alternatively, the state of hidden layer can depend on the
most recent word and the state in the previous time step. Thus,
the time is not represented explicitly. This recurrence allows
the hidden layer to represent low-dimensional representation

196978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

Fig. 1. Feedforward neural network 4-gram model (on the left) and Recurrent
neural network language model (on the right).

of the entire history (or in other words, it provides the model
with a memory). The architecture is called the Recurrent
neural network based language model (RNN LM), and we
have described it in [7] and [5]. We have recently shown
that RNN LM achieves state of the art performance on the
well-known Penn Treebank Corpus, and that it outperforms
standard feedforward NN LM architectures, as well as many
other advanced language modeling techniques [6].

It is interesting to see that ME models trained with just
n-gram features have almost the same performance as usual
backoff models with modified Kneser-Ney smoothing [8]. On
the other hand, neural network models, due to their ability
to cluster similar words (or similar histories), outperform
the state-of-the-art backoff models. Moreover, NN LMs are
complementary to backoff models, and further gains can be
obtained by linearly interpolating them.

We can view ME models as NN models with no hidden
layer, with the input layer directly connected to the output
layer. Such a model has been already described in [9], where
it was shown that it can be trained to perform similarly to a
Kneser-Ney smoothed n-gram model.

III. COMPUTATIONAL COMPLEXITY

The computational complexity of a neural network language
model is high for several reasons, and there have been attempts
to deal with almost all of them. The training time of N-gram
neural network LM is proportional to

I × W ×
(
(N − 1) × D × H + H × V

)
, (3)

where I is the number of training epochs before convergence
is achieved, W is the number of tokens in the training set, N

is the N-gram order, D is the dimensionality of words in the
low-dimensional space, H is size of the hidden layer and V

size of the vocabulary (see Figure 1). The term (N − 1)× D

is equal to size of the projection layer. The recurrent NN LM
has computational complexity:

I × W ×
(
H × H + H × V

)
. (4)

It can be seen that for increasing order N , the complexity
of the feedforward architecture increases linearly, while it
remains constant for the recurrent one (actually, N has no
meaning in RNN LM). Assuming that the maximum entropy
model uses feature set f with full N-gram features and that it

is trained using on-line stochastic gradient descent in the same
way as neural network models, its computational complexity
is

I × W ×
(
N × V

)
. (5)

A. Reduction of Training Epochs

Training of NN LMs is usually performed by stochastic
gradient descent with on-line update of weights. Usually, it is
reported that 10-50 training epochs are needed to obtain con-
vergence, although there are exceptions (in [9], it is reported
that thousands of epochs were needed). In the next section,
we will show that good performance can be achieved while
performing as few as 7 training epochs, if the training data
are sorted by their complexity.

B. Reduction of Number of Training Tokens

In usual circumstances, backoff n-gram language models
are trained on as much data as are available. However, for
common speech recognition tasks, only small part of this data
is in-domain. Out-of-domain data usually occupy more than
90% size of the training corpora, but their weight in the final
model is relatively low. Thus, NN LMs are usually trained
only on the in-domain corpora. In [10], NN LMs are trained
on in-domain data plus some randomly subsampled part of
the out-of-domain data that is randomly chosen at the start of
each training epoch.

In a vast majority of cases, NN LMs for LVCSR tasks are
trained on 5-30M tokens. Although the subsampling trick can
be used to claim that the neural network model has seen all
training data at least once, simple subsampling techniques lead
to severe performance degradation, against a model that is
trained on all data - a more advanced subsampling technique
has been recently introduced in [11].

C. Reduction of Vocabulary Size

It can be seen that most of the computational complexity
of NN LM in Eq. 3 is caused by the huge term H × V .
For LVCSR tasks, the size of the hidden layer H is usually
between 100 and 500 neurons, and the size of the vocabulary
V is between 50k and 300k words. Thus, many attempts
have been made to reduce the size of the vocabulary. The
most simple technique is to compute probability distribution
only for the top M words in the neural network model; the
rest of the words use backoff n-gram probabilities. The list
of top M words is then called a shortlist. However, it was
shown in [12] that this technique causes severe degradation of
performance for small values of M , and even with M = 2000,
the complexity of the H × V term is still significant.

More successful approaches are based on Goodman’s trick
for speeding up maximum entropy models [13]. Each word
from the vocabulary is assigned to a class, and only the
probability distribution over classes is computed. In the second
step, we compute the probability distribution over words that
are members of a particular class (we know this class from the
predicted word whose probability we are trying to compute).
As the number of classes can be very small (several hundreds),

197

this is a more effective solution than using shortlists, and
the performance degradation is smaller. We have recently
shown that meaningful classes can be formed very easily, by
considering only unigram frequencies of words [5]. Similar
approaches have been described in [12] and [14].

D. Reduction of Size of the Hidden Layer

Another way to reduce H×V is to choose a small value of
H . For example, in [15] H = 100 is used when the amount of
the training data is over 600M words. However, we will show
that H = 100 is insufficient to obtain good performance when
the amount of training data is large, as long as usual NN LM
architecture is used.

In Section VII, we show what is to our knowledge the first
technique that allows small hidden layers to be used for models
that are trained on huge amounts of data, while having good
final performance1: we train the computationally complex
neural network model together with maximum entropy model.

E. Parallelization

Artificial neural networks are naturally simple to parallelize.
It is possible to either divide the matrix times vector computa-
tion between several CPUs, or to process several examples at
once, which allows going to matrix times matrix computation
that can be optimized by existing libraries such as BLAS. In
the context of NN LMs, Schwenk [16] has reported a speedup
of several times from parallelization.

It might seem that recurrent networks are much harder to
parallelize, as the state of the hidden layer depends on the
previous state. However, one can parallelize just the compu-
tation between hidden and output layers. It is also possible to
parallelize the whole network by training from multiple points
in the training data simultaneously. However, parallelization
is highly architecture-specific optimization problem, and we
will deal in this paper only with algorithmic approaches for
reducing computational complexity.

Another approach is to divide the training data into K

subsets and train a single NN model on each of them. However,
neural network models profit from clustering of similar events,
thus such an approach would lead to suboptimal results. Also,
in the test phase, we would end up with K models, instead of
one.

IV. EXPERIMENTAL SETUP

We performed recognition on the English Broadcast News
(BN) NIST RT04 task using state-of-the-art acoustic models
trained on the English Broadcast News (BN) corpus (430 hours
of audio) provided to us by IBM [17]. IBM also provided us its
state-of-the-art speech recognizer, Attila [3] and two Kneser-
Ney smoothed backoff 4-gram LMs containing 4.7M N-grams
and 54M N-grams, both trained on about 400M word tokens.
We refer readers to [17] for more details of the recognizer and
corpora used for training the models.

1By good performance, we mean that the resulting NN LM has better
perplexity than normal n-gram model.

0 100 200 300 400 500 600
200

400

600

800

1000

1200

1400

1600

P
er

pl
ex

ity

Dev set
Eval set

Fig. 2. Perplexity of sorted data chunks.

We followed IBM’s multi-pass decoding recipe using the
4.7M n-gram LM in the first pass followed by rescoring
using the larger LM. The development data consisted of
DEV04f+RT03 data (25K tokens). For evaluation, we used the
RT04 evaluation set (47K tokens). The size of the vocabulary
is 84K words.

V. AUTOMATIC DATA SELECTION AND SORTING

Usually, stochastic gradient descent is used for training
neural networks. This assumes randomization of the order of
the training data before start of each epoch. In the context
of NN LMs, the randomization is usually performed on the
level of sentences. However, an alternative view can be taken
when it comes to training deep neural network architectures,
such as recurrent neural networks: we hope that the model
will be able to find complex patterns in the data, that are
based on simpler patterns. These simple patterns need to be
learned before complex patterns can be learned. Such concept
is usually called ‘incremental learning’. In the context of
simple RNN based language models, it has previously been
investigated by Elman [18].

In the context of NN LMs, it was described and formalized
in [15]. It is assumed that the training should start with simple
patterns, so that the network can initialize its internal represen-
tation, and the additional knowledge should be added during
training, in the form of gradually more complex patterns.

Inspired by these approaches, we have decided to change the
order of the training data, so that the training starts with out-
of-domain data, and ends with the most important in-domain
data. Another motivation for this approach is even simpler: if
the most useful data are processed at the end of the training,
they will have higher weights, as the update of parameters is
done on-line.

We divided the full training set into 560 equally-sized
chunks (each containing 40K sentences). Next, we computed
perplexity on the development data given a 2-gram model
trained on each chunk. We sorted all chunks by their perfor-
mance on the development set. We observed that although we
use very standard LDC data, some chunks contain noisy data
or repeating articles, resulting in high perplexity of models
based on these parts of the training data. In Figure 2, we

198

0 2 4 6 8 10 12 14
180

200

220

240

260

280

300

320

340

360

Epoch

P
er

pl
ex

ity
ALL-Natural
ALL-Stochastic
Reduced-Sorted

Fig. 3. Perplexity on the dev set during training RNN models with 80
neurons.

TABLE I
PERPLEXITY ON THE EVALUATION SET WITH DIFFERENTLY ORDERED

TRAINING DATA, FOR RNN MODELS WITH VARIOUS SIZES OF THE

HIDDEN LAYER.

Model Hidden layer size
10 20 40 80

ALL-Natural 357 285 237 193
ALL-Stochastic 371 297 247 204
Reduced-Sorted 347 280 228 183

plot the performance on the development set, as well as
performance on the evaluation set, to show that the correlation
of performance on different, but similar test sets is very high.

We decided to discard the data chunks with perplexity above
600 to obtain the Reduced-Sorted training set, that is ordered
as shown in Figure 2. This set contains about 318M tokens2.
In Figure 3, we show three variants of training the RNN
LM: training on all concatenated training corpora with the
natural order, standard stochastic gradient descent using all
data (randomized order of sentences), and training with the
reduced and sorted set.

We can conclude that stochastic gradient descent helps
to reduce the number of required training epochs before
convergence is achieved, against training on all data with the
natural order of sentences. However, sorting the data results in
significantly lower final perplexity on the dev set - we observe
around 10% reduction of perplexity. In Table I, we show that
these improvements carry over to the evaluation set.

VI. EXPERIMENTS WITH LARGE RNN MODELS

The perplexity of the large 4-gram model with Kneser-Ney
smoothing (denoted later as KN4) is 144 on the development
set, and 140 on the evaluation set. We can see in Table I
that RNN models with 80 neurons are still far away from
this performance. In further experiments, we have used RNN
models with increasing size of the hidden layer, trained on the
Reduced-Sorted data set. We have used just 7 training epochs,
as with sorted data, the convergence is achieved quickly (for

2Training a standard n-gram model on the reduced set results in about the
same perplexity as with the n-gram model that is trained on all data.

TABLE II
PERPLEXITY OF MODELS WITH INCREASING SIZE OF THE HIDDEN LAYER.

Model Dev PPL Eval PPL
+KN4 +KN4

backoff 4-gram 144 144 140 140
RNN-10 394 140 347 140
RNN-20 311 137 280 137
RNN-40 247 133 228 134
RNN-80 197 126 183 127
RNN-160 163 119 160 122
RNN-240 148 114 149 118
RNN-320 138 110 138 113
RNN-480 122 103 125 107
RNN-640 114 99 116 102

10
1

10
2

10
3

6.5

7

7.5

8

8.5

9

Hidden layer size

E
nt

ro
py

 p
er

 w
or

d

RNN
RNN + KN4
KN4

Fig. 4. Entropy per word on the dev set with increasing size of hidden layer.

the first three epochs, we used constant learning rate 0.1,
and halved it at start of each new epoch). These results are
summarized in Table II. We denote RNN model with 80
neurons as RNN-80 etc.

In Figure 4, we show that the performance of RNN models
is strongly correlated with the size of the hidden layer. We
needed about 320 neurons for the RNN model to match
the performance of the baseline backoff model. However,
even small models are useful when linearly interpolated with
the baseline KN4 model. It should be noted that training
models with more than 500 neurons on this data set becomes
computationally very complex: the computational complexity
of RNN model as given by Eq. 4 depends on the recurrent
part of the network with complexity H × H , and the output
part with complexity H×C+H×W , where C is the number
of classes (in our case 400) and W is the number of words
that belong to a specific class. Thus, the increase is quadratic
with the size of the hidden layer for the first term, and linear
for the second term.

We rescore the word lattices using the iterative decoding
method previously described in [19], as it is much less
computationally intensive than basic N-best list rescoring. As
shown in Figure 5, RNN models perform very well for lattice
rescoring; we can see that even the stand-alone RNN-80 model
is better than the baseline 4-gram model. As the weights
of individual models are tuned on the development set, we

199

10
1

10
2

10
3

11.5

12

12.5

13

13.5

14

14.5

Hidden layer size

W
E

R
 o

n
ev

al
 [%

]
RNN
RNN+KN4
KN4
RNNME
RNNME+KN4

Fig. 5. WER on the eval set with increasing size of hidden layer.

have observed a small degradation for the RNN-10 model
interpolated with baseline 4-gram model. On the other hand,
the RNN-640 model provides quite an impressive reduction of
WER, from 13.11% to 12.0%.

It is intersting to notice that the RNN-80 model outpeforms
already the large backoff model in terms of WER, although its
perplexity is much higher, as shown in Figure 4. This suggests
that even limited RNN models are able to discriminate well
between correct and ambiguous sentences.

By using three large RNN models and a backoff model
combined together, we achieved the best result so far on this
data set - 11.70% WER. The model combination was carried
out using the technique described in [20]. The models in
combination were: RNN-480, RNN-640 and RNN-640 model
trained on 58M subset of the training data.

VII. HASH-BASED IMPLEMENTATION OF CLASS-BASED

MAXIMUM ENTROPY MODEL

We have already mentioned in the introduction that maxi-
mum entropy models are very close to neural network models
with no hidden layer. In fact, it has previously been shown
that a neural network model with no hidden layer can learn
a bigram language model [9], which is similar to what was
shown for the maximum entropy models. However, in [9], the
memory complexity for bigram model was V 2, where V is
size of the vocabulary. For a trigram model and V around
100k, it would be infeasible to train such model.

The maximum entropy model can be seen in the context of
neural network models as a weight matrix that directly con-
nects the input and output layers. Direct connections between
projection layer and the output layer were previously investi-
gated in the context of NNLMs in [2], with no improvements
reported on a small task.

In our work, we have added direct connections to the class-
based RNN architecture that we have proposed earlier [5]. We
use direct parameters that connect input and output layers, and
input and class layers. We learn direct parameters as part of
the whole network - the update of weights is performed on-
line. We found that it is important to use regularization when
learning the direct parameters on small data sets (we currently

TABLE III
PERPLEXITY ON THE EVALUATION SET WITH INCREASING SIZE OF HASH

ARRAY, FOR RNN MODEL WITH 80 NEURONS.

Model Hash size
0 10

6
10

7
10

8
10

9

RNNME-80 183 176 160 136 123
RNNME-80 + KN4 127 126 125 118 113

use L2 regularization). Using classes also helps to avoid over-
fitting, as the direct parameters that connect input and class
layers already perform ad-hoc clustering.

We have used bigram and trigram features for the direct
part of the RNN model, and we denote this architecture as
RNNME. As only two features are active in the input layer
at any given time, the computational complexity of the model
increases about the same as if two neurons were added to the
hidden layer.

Representing the direct connections in memory is however
a problem: on our setup with V = 84K, the full set of all
possible trigram features would be impractically large. Thus,
instead of having full weight matrix, we use hash function to
map the huge sparse matrix into one-dimensional array. This
exploits the fact that most of the weights are almost never
used. This approach has an obvious advantage: we can easily
control size of the model by choosing a single parameter,
the size of the hash array. In Table III, we show how the
hash size affects the overall performance of the model. In the
following experiments, we have used a hash size of 109, as it
gives reasonable performance (using a larger hash would lead
only to marginal improvements and would increase memory
demands considerably). If we train just the ME part of the
model (RNNME-0) with hash size 109, we obtain perplexity
157 on the evaluation set.

The achieved perplexity of 123 on the evaluation set with
RNNME-80 model is significantly better than the baseline
perplexity 140 of the KN4 model. After interpolation of
both models, the perplexity drops further to 113. This is
significantly better than the interpolation of RNN-80 and KN4,
which gives perplexity 127. Such result already proves the
usefulness of training the RNN model with direct parameters.

Most importantly, we have observed good performance
when we used the RNNME model for rescoring experiments.
Reductions of word error rate on the RT04 evaluation set are
summarized in Table IV. The model with direct parameters
with 40 neurons in the hidden layer performs almost as well
as model without direct parameters and with 320 neurons

VIII. CONCLUSION AND FUTURE WORK

We have shown that neural network models, in our case with
recurrent architecture, can provide significant improvements
on state-of-the-art setup for Broadcast News speech recog-
nition. The models we built are probably the largest neural
network based language models ever trained. We have used
about 400M tokens (318M in the reduced version). Size of
the hidden layer of the largest model was 640 neurons, and
the vocabulary size 84K words.

200

TABLE IV
WORD ERROR RATE ON THE RT04 EVALUATION SET AFTER LATTICE

RESCORING WITH VARIOUS MODELS, WITH AND WITHOUT

INTERPOLATION WITH THE BASELINE 4-GRAM MODEL.

Model WER[%]
Single Interpolated

KN4 (baseline) 13.11 13.11
RNN-40 13.36 12.90
RNN-80 12.98 12.70
RNN-160 12.69 12.58
RNN-320 12.38 12.31
RNN-480 12.21 12.04
RNN-640 12.05 12.00
RNNME-0 13.21 12.99
RNNME-40 12.42 12.37
RNNME-80 12.35 12.22
RNNME-160 12.17 12.16
RNNME-320 11.91 11.90
3xRNN - 11.70

We have shown that by discarding parts of the training data
and by sorting them, we can achieve about 10% reduction of
perplexity, against classical stochastic gradient descent. This
improvement would be probably even larger for tasks where
only some training corpora can be considered as in-domain.

The relative word error rate reduction was almost 11%, over
a large 4-gram model with Kneser-Ney smoothing - absolutely,
we reduced WER from 13.11% to 11.70%. We are aware of
slightly better baseline for this setup - in [17], 13.0% was
reported as baseline, and 12.3% after rescoring with “model
M” [21] (while in our experiments, rescoring with model M
resulted in 12.5% WER). We suspect that if we used wider
lattices, we would be able to observe further improvements in
our experiments.

We have shown that training RNN model with direct con-
nections can lead to good performance both on perplexity and
word error rate, even if very small hidden layers are used.
The model RNNME-40 with only 40 neurons has achieved
almost as good performance as RNN-320 model that uses 320
neurons. We have shown that direct connections in NN model
can be seen as a maximum entropy model, and we have also
verified that it is important to train the RNN and ME models
jointly. Roughly speaking, we can reduce training times from
weeks to days by using the novel RNN architecture. We have
performed additional experiments on a Wall Street Journal
setup that we have used previously [6], and we were able to
reduce WER from 17.2% to 14.9% with RNNME-100 model
that was trained in a single day, on 36M training tokens.

In the future, we plan to extend our results even further. It
would be interesting to see if the RNN model would benefit
from training together with a more refined maximum entropy
model, for example with model M.

The presented techniques can also be easily applied to more
traditional feedforward NN LMs. We extended our publicly
available toolkit3 to support training of RNNME models.

3Available at http://www.fit.vutbr.cz/~imikolov/rnnlm/

ACKNOWLEDGMENTS

We are grateful to Bhuvana Ramabhadran and Brian Kings-
bury for sharing with us state-of-the-art IBM speech recogni-
tion system (Attila) and relevant statistical models. We thank
Karel Veselý and Stefan Kombrink for discussions about
parallel training of neural networks. This work was partly
supported by Technology Agency of the Czech Republic grant
No. TA01011328, Czech Ministry of Education project No.
MSM0021630528, Grant Agency of Czech Republic project
No. 102/08/0707, and by Czech Ministry of Trade and Com-
merce project No. FR-TI1/034. Anoop Deoras was partly
funded by the HLT-COE, Johns Hopkins University.

REFERENCES

[1] R. Rosenfeld, “A maximum entropy approach to adaptive statistical
language modeling,” Computer, Speech and Language, vol. 10, pp. 187–
228, 1996.

[2] Y. Bengio, R. Ducharme, P. Vincent et al., “A neural probabilistic
language model,” Journal of Machine Learning Research, vol. 3, pp.
1137–1155, 2003.

[3] H. Soltau, G. Saon, and B. Kingsbury, “The IBM Attila speech recogni-
tion toolkit,” in Proc. IEEE Workshop on Spoken Language Technology,
2010.

[4] G. Zweig, P. Nguyen et al., “Speech recognition with segmental condi-
tional random fields: A summary of the JHU CLSP summer workshop,”
in Proceedings of ICASSP, 2011.

[5] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in Proceed-
ings of ICASSP, 2011.

[6] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Černocký,
“Empirical evaluation and combination of advanced language modeling
techniques,” in Proceedings of Interspeech, 2011.

[7] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur,
“Recurrent neural network based language model,” in Proceedings of
Interspeech, 2010.

[8] T. Alumae and M. Kurimo, “Efficient estimation of maximum entropy
language models with N-gram features: an SRILM extension,” in Pro-
ceedings of Interspeech, 2010.

[9] W. Xu and A. Rudnicky, “Can artificial neural networks learn language
models?” in International Conference on Statistical Language Process-
ing, 2000.

[10] H. Schwenk and J.-L. Gauvain, “Training neural network language
models on very large corpora,” in Proceedings of EMNLP, 2005.

[11] P. Xu, A. Gunawardana, and S. Khudanpur, “Efficient subsampling for
training complex language models,” in Proceedings of EMNLP, 2011.

[12] H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and F. Yvon, “Structured
output layer neural network language model,” in Proceedings of ICASSP,
2011.

[13] J. Goodman, “Classes for fast maximum entropy training,” in Proceed-
ings of ICASSP, 2001.

[14] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network
language model,” in AISTATS, 2005, pp. 246–252.

[15] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of ICML, 2009.

[16] H. Schwenk, “Continuous space language models,” Comput. Speech
Lang., vol. 21, pp. 492–518, July 2007.

[17] S. F. Chen, L. Mangu, B. Ramabhadran, R. Sarikaya, and A. Sethy,
“Scaling shrinkage-based language models,” in Proceedings of ASRU,
2009.

[18] J. L. Elman, “Learning and development in neural networks: The
importance of starting small,” Cognition, vol. 48, pp. 71–99, 1993.

[19] A. Deoras, T. Mikolov, and K. Church, “A fast re-scoring strategy to
capture long-distance dependencies,” in Proceedings of EMNLP, 2011.

[20] A. Deoras, D. Filimonov, M. Harper, and F. Jelinek, “Model combination
for speech recognition using Empirical Bayes risk minimization,” in
Proc. of IEEE Workshop on Spoken Language Technology (SLT), 2010.

[21] S. F. Chen, “Shrinking exponential language models,” in Proc. NAACL
HLT, 2009.

201

