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Abstract—This paper presents a new beamforming method for
distant speech recognition (DSR). The dominant mode subspace is
considered in order to efficiently estimate the active weight vectors
for maximum kurtosis (MK) beamforming with the generalized
sidelobe canceler (GSC). We demonstrated in [1], [2], [3] that the
beamforming method based on the maximum kurtosis criterion
can remove reverberant and noise effects without signal cancel-
lation encountered in the conventional beamforming algorithms.
The MK beamforming algorithm, however, required a relatively
large amount of data for reliably estimating the active weight
vector because it relies on a numerical optimization algorithm.
In order to achieve efficient estimation, we propose to cascade the
subspace (eigenspace) filter [4, §6.8] with the active weight vector.
The subspace filter can decompose the output of the blocking
matrix into directional signals and ambient noise components.
Then, the ambient noise components are averaged and would
be subtracted from the beamformer’s output, which leads to
reliable estimation as well as significant computational reduction.
We show the effectiveness of our method through a set of
distant speech recognition experiments on real microphone array
data captured in the real environment. Our new beamforming
algorithm provided the best recognition performance among
conventional beamforming techniques, a word error rate (WER)
of 5.3 %, which is comparable to the WER of 4.2 % obtained
with a close-talking microphone. Moreover, it achieved better
recognition performance with a fewer amounts of adaptation
data than the conventional MK beamformer.

I. INTRODUCTION

There has been great interest in distant speech recognition
(DSR) [5], [6], [7], [8]. In many applications, it is not appropri-
ate to force participants to wear intrusive devices such as close
talking microphones. Especially in theme parks, it is perhaps
necessary for children to feel free to join attractions without
unnatural interface equipment. Accordingly, we address a
recognition task of childeren’s speech.

In DSR, a target speech signal is corrupted with reverber-
ant and noise effects. Adaptive beamforming is a promising
approach to speech enhancement because the distortion of the
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target signal caused by noise suppression is less than that of
single channel processing.

Such adaptive beamformers can be implemented in gener-
alized sidelobe canceler (GSC) configuration [6, §13.37]. The
GSC beamformers typically consist of the quiescent vector,
blocking matrix and active weight vector. In prior work, we
developed GSC beamforming methods which adjust the active
weight vector so as to make the beamformer’s outputs as super-
Gaussian as possible [1], [2], [3], [9]. We demonstrated in [1],
[2], [9] that beamforming algorithms based on such criteria
can enhance the target speech by using the reflections without
signal cancellation encountered in the MVDR beamformers. It
was also shown that our beamforming methods achieve better
recognition performance than a variant of MVDR beamform-
ers. Here, we consider the maximum kurtosis criterion which
can be computed in the much simpler way than negentropy. In
contrast to BSS techniques, beamforming based on the maxi-
mum kurtosis criterion [2], [6] can avoid undesired distortion
of the target signal by imposing a distortionless constraint for
the look direction. However, in the same as BSS methods,
maximum kurtosis beamforming has to resort to a gradient-
based numerical optimization algorithm for estimating the
active weight vector. Accordingly, it requires a relatively large
amount of adaptation data for reliable estimation. Furthermore,
the free parameters to be estimated by the gradient method are
preferably reduced.

In this work, we take into account the subspace (eigenspace)
method [4, §6.8] [10], [11] as a pre-processing step for
estimation of the active weight vector. Our motivations behind
this idea are to 1) reduce the dimension of the active weight
vector and 2) improve speech enhancement performance based
on decomposition of the outputs of the blocking matrix
into directional and ambient signal components. In order to
achieve such decomposition, we perform the eigendecompo-
sition and select the D eigenvectors corresponding to the
largest eigenvalues. Such eigenvectors are termed the dominant
modes [4, §6.8.3]. The dominant modes are associated with the
directional sound sources and the other modes are averaged
as a signal model of ambient noise. By doing so, we can
readily subtract the averaged ambient noise component from
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Fig. 1. Schematic of a generalized sidelobe canceling (GSC) beamformer
for an active source.

the beamformer’s output. Moreover, the reduction of the di-
mension of the active weight leads to computationally efficient
and reliable estimation. Notice that we adjust the active weight
vector based on the maximum kurtosis criterion in contrast to
the normal dominant-mode rejection (DMR) beamformers [4,
§6.8.3] which can be considered as the variant of the MVDR
beamformers. Therefore, our technique described here does
not suffer from signal cancellation. It is also worth noting
that subspace filtering here is analogous to whitening used
as a measure of pre-processing in the field of independent
component analysis (ICA) [12].

The balance of this paper is organized as follows. Section II
describes the conventional MK beamforming algorithm. Sec-
tion III discusses the subspace method. In the section IV, MK
beamforming with the subspace filter is described. Section V
shows the speech recognition experiments. We finally describe
conclusions and future work in the section VI.

II. CONVENTIONAL MAXIMUM KURTOSIS BEAMFORMING

Consider a subband beamformer in GSC configuration [4,
§6.7.3], as shown in Figure 1. The output of a beamformer
for a given subband at frame k and frequency bin m can be
expressed as

Y (k, m) = [wq(k, m) − B(k, m)wa(k, m)]
H

X(k, m), (1)

where wq(k, m) is the quiescent weight vector for a source,
B(k, m) is the blocking matrix, wa(k, m) is the active weight
vector, and X(k, m) is the input subband snapshot vector.
In keeping with the GSC formalism, wq(k, m) is chosen
to give unity gain in the look direction [6, §13.6]; i.e.,
to satisfy a distortionless constraint. The blocking matrix
B(k, m) is chosen to be orthogonal to wq(k, m), such that
B

H(k, m)wq(k, m) = 0. This orthogonality implies that the
distortionless constraint will be satisfied for any choice of
wa(k, m).

In our study, subband analysis and synthesis are performed
with a uniform DFT filter bank based on the modulation of
a single prototype impulse response [13][6, §11], which is
designed to minimize an indivisual aliasing term.

While the active weight vector is typically chosen to mini-
mize the variance of the beamformer’s outputs, we developed
an optimization procedure to find that wa(k, m) which maxi-
mizes kurtosis [2]. The empirical kurtosis of the beamformer’s
outputs can be expressed as

Jm(Y ) = E
[
|Y (m)|4

]
− βE

[
|Y (m)|2

]2
, (2)

where E[·] indicates the expectation operator and β is typically
set to β = 3. The empirical kurtosis (2) measures how non-
Gaussian Y is [12]. The Gaussian pdf has zero kurtosis;
pdfs with positive kurtosis are super-Gaussian; those with
negative kurtosis are sub-Gaussian. Note that the empirical
kurtosis measure requires no knowledge of the actual pdf of
subband samples of speech, which is its primary advantage
over negentropy as a measure of non-Gaussianity. Maximizing
the degree of super-Gaussianity yields a weight vector wa

capable of canceling interference—including incoherent noise
that leaks through the sidelobes—without the signal cancella-
tion problems encountered in conventional beamforming.

III. SUBSPACE METHOD

This section describes the subspace method for the output of
the blocking matrix in the subband domain. From this section,
we omit the frequency index m for the sake of convenience.

In the case that there are neither steering errors nor mis-
matches between microphones, the blocking matrix’s out-
put, Xb(k) = B

H(k)X(k), only contains the directional
interference and ambient noise signals. However, in the real
environments, it also includes the target signal components
due to those errors as well as the reverberant effects.

Let us first denote the D directional signal components
contained in the output of the Mb × (Mb−1) blocking matrix
as

V(k) = [V1(k), · · · , Vd(k), · · · , VD(k)]
T

. (3)

Then, the output of the blocking matrix can be expressed as

Xb(k) = AV(k) + N(k) (4)

where A and N(k) represent the transfer functions and the
ambient noise signals, respectively. Notice that the direct path
from the target source signal to each microphone is assumed
to be excluded from A because of the distortionless constraint
imposed with the blocking matrix.

Assuming that V(k) and N(k) are uncorrelated, we can
write the covariance matrix of Xb as

Σb = E
[
Xb(k)XH

b (k)
]

= AΣvA
H + Σn, (5)

where

Σv = E
[
V(k)VH(k)

]
and Σn = E

[
N(k)NH(k)

]
.

The subspace method seeks a set of D linearly independent
vectors contained in the subspace, �{A}, spanned by the
column vectors of A. The first step for obtaining such set
of the vectors is to solve the generalized eigenvalue (GE)
decomposition problem as in [4, §6.8] [10], [11],

ΣvE = ΣnEΛ,

where Λ is a diagonal matrix of the eigenvalues sorted in the
descending order,

Λ = diag [λ1, · · · , λD, · · · , λMb−1] , (6)

and E is a matrix of the corresponding eigenvectors,

E = [e1, · · · , eD, · · · , eMb−1] . (7)

Here, we assume that Σn is an identity matrix. Then, we
select the eigenvectors with the D largest eigenvalues, Ev =
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Fig. 2. Three-dimensional representation of the eigenvalue distribution as a
function of the order and frequencies.

[e1, · · · , eD]. In the similar manner, we define the subspace
for the ambient noise as En = [eD+1, · · · , eMb−1].

The ideal properties of the eigenvectors and eigenvalues can
be summarized as follows.

• The subspace spanned by the eigenvectors is equal to that
of A, i.e., �{Ev} = �{A}.

• The power of the D directional signals is associated with
the D largest eigenvalues.

• The power of N(k) is equally spread over all the eigen-
values and Mb−D−1 smallest eigenvalues are all equal
to σ2

N , i.e., the noise floor.
• �{En} is the orthogonal complement of �{Ev}, i.e.,

�{En} = �{Ev} ⊥.

In order to cluster the eigenvectors for the ambient noise,
we have to determine the number of the dominant eigenvalues
D. Figure 2 illustrates an eigenvalue distribution as a function
of the order of the eigenvalues and frequencies. In order to
generate the plots of the figures in this section, we computed
the eigenvalues from the outputs of the blocking matrix on
the real data which will be described in Section V. As shown
in Figure 2, it is relatively easy to determine the number
of the dominant modes, D, especially in the case that the
number of the microphones is much larger than the number
of the directional signals. In this work, we determine D based
on the threshold of the contribution ratio, λi/

∑Mb−1

j=1 λj .
Figure 3 shows averages of numbers of the contribution ratios
exceeding thresholds, 10−2, 10−3 and 10−4, at each frequency.
Figure 3 indicates how many dominant modes are used in the
lower branch when we ignore the eigenvectors associated with
the lower contribution ratio than the threshold. It is clear from
Figure 3 that the lower threshold for the contribution ratio is
set, the more eigenvectors are used.

Ideally, the number of the dominant modes should be equal
to the number of the directional sound sources over all the
frequencies. However, by closely looking at Figure 3, we
can observe that the number of the dominant modes depends

Fig. 3. The average of the numbers of the contribution ratios exceeding the
thresholds as a function of frequencies.

on frequencies. In particular, more eigenvectors tends to be
chosen in high frequencies due to absence of directional
signals with high frequency components. In the case that
the strong coherent signals do not exist, the distribution of
the eigenvalues become homogeneous, which results in the
uniform contribution ratios.

In optimization of the active weight vector, we estimate
each component corresponding to the ambient noise signal
separately. Accordingly, we use the sum of the eigenvectors for
the ambient noise space as ẽn =

∑Mb−1

d=D+1 ed. Our subspace
filter can be now written as

U = [e1, · · · , eD, ẽn, ] . (8)

Note that we assume the covariance matrix in (5) can be
approximated as

Σb ≈

D∑

d=1

λdede
H
d + σ̄2

N ẽnẽ
H
n , (9)

where

σ̄2
N =

1

Mb − D − 1

Mb−1∑

d=D+1

λd

With the outputs of the subspace filter, we estimate the
active weight vector providing the maximum kurtosis value.
If the output of the subspace filter is a noise signal, the
corresponding component of the active weight vector should
be adjusted so as to subtract the noise component from the
output of the quiescent vector. If it is an echo of the target
signal, the active weight vector should shift the phase and add
the component to the target signal in order to strengthen it.
These operations would be easier by separating the echo from
the ambient noise component with the subspace filter.

IV. MAXIMUM KURTOSIS BEAMFORMING WITH SUBSPACE

FILTERING

Figure 4 shows configuration of our new MK beamformer.
Our beamformer’s output can be expressed as
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Fig. 4. Maximum kurtosis beamformer with the subspace filter.

Y (k) = [wq(k) − B(k)U(k)wa(k)]
H

X(k). (10)

The active weight vector is adjusted so as to achieve the max-
imum kurtosis of beamformer’s output. Zelinski post-filtering
can then be performed on the output of the beamformer [14].

The difference between (1) and (10) is the subspace filter
between the blocking matrix and active weight vector. Our
subspace filter can decompose the output vector into the
directional signal and ambient noise components. Therefore,
we only need to estimate the phase shifts of the active weight
vector on the constrained subspace fundamentally [12, §7.4].
Moreover, the solution of the general eigenvector decompo-
sition is less dependent of the initial values than that of the
gradient algorithm for multi-dimensional maximization.

A. Block-Wise Adaptation of the Active Weight Vector

Based on equation (10), the kurtosis of the outputs is
computed from a block of input subband samples at each block
instead of using the entire utterance data. We incrementally
update the dominant modes and active weight vector at each
block b consisting of Lb samples here. Accordingly, the
beamformer’s output of (10) should be precisely re-rewritten
as

Y (k) = [wq(k) − B(k)U(�k/Lb�)wa(�k/Lb�)]
H

X(k). (11)

where �.� is the floor function and �k/Lb� indicates the
block index b. The kurtosis for a block of Lb samples starting
from frame bs can be expressed as

Jb(Y ) =

0
@ 1

Lb

bs+Lb−1X
k=bs

|Y (k)|4

1
A−β

0
@ 1

Lb

bs+Lb−1X
k=bs

|Y (k)|2

1
A

2

. (12)

where bs is zero at the first input sample and shifted with
Lb after one block is processed.

In order to improve robustness by inhibiting the formation of
excessively large sidelobes, we apply a regularization term [6]
to the cost function (12) and have the modified optimization
criterion

J b(Y ;α) = Jb(Y ) − α|wa(b)‖
2 (13)

where we set α = 0.01 based on the results of the speech
recognition experiments in prior work [1], [2]. In addition to
the regularization term, we also impose a unity constraint on
a norm of the active weight vector so as to prevent it from
exceeding that of the quiescent vector.

We estimate the active weight vector which maximizes the
sum of the kurtosis and regularization term (13) under the

norm constraint at each block . In the absence of a closed-form
solution, we resorted to the gradient descent algorithm [15,
§1.6]. Upon substituting (11) into (13) and taking the partial
derivative with respect to the active weight vector, we obtain

∂J b(Y ;α)

∂wa(b)∗
= −

2

Lb

0
@

bs+Lb−1X
k=bs

|Y (k)|2UH(b)BH(k)X(k)Y ∗(k)

1
A

+
2β

L2
b

0
@

bs+Lb−1X
k=bs

|Y (k)|2

1
A

0
@

bs+Lb−1X
k=bs

U
H(b)BH(k)X(k)Y ∗(k)

1
A

− αwa(b).
(14)

The gradient (14) is iteratively calculated with a block
of subband samples until the kurtosis value of the beam-
former’s outputs converges. For the gradient algorithm, the
active weight vectors are initialized with the estimates at the
previous block. The active weight vector of the first block is
initialized with wa = [0, · · · , 1]T because the last component
corresponds to the ambient noise which should be subtracted
from the output of the quiescent vector.

The beamforming algorithm can be summarized as follows:

1) Initialize the active weight with wa(0) = [0, · · · , 1]T .
2) Given estimates of time delays, calculate the quiescent

vector and blocking matrix.
3) For each block of input subband samples, recursively

update the covariance matrix as Σb(b) = μΣb(b− 1) +
(1− μ)Σb(b) where μ is the forgetting factor, calculate
the dominant modes U

H(b) and estimate the active
weight vector wa(b) based on the gradient information
computed with (14) subject to the norm constraint
until the kurtosis value of the beamformer’s outputs
converges.

4) Initialize the active weight vector obtained in step 3 for
the next block and go to the step 2.

Our preliminary experiments revealed that this block-wise
method is able to track a non-stationary sound source, and
provides a more accurate gradient estimate than sample-by-
sample gradient estimation algorithms.

V. SPEECH RECOGNITION EXPERIMENT

We ran speech recognition experiments on children’s speech
data captured with a microphone array. This section describes
our experimental conditions and the results.

Figure 5 shows a flow chart of the distant speech recognition
(DSR) system used in our experiments. Our DSR system
first estimates the time delays based on the phase trans-
form (PHAT) [6, §10.1]. Then, reliable channels are selected
based on the maximum multi-channel cross coefficient crite-
rion(MCCC) [16]. Following channel selection, beamforming
and post-filtering are performed. The enhanced speech are
input to our automatic speech recognition (ASR) system.

Our basic automatic speech recognition (ASR) system was
trained on two publicly available corpora of children’s speech:

1) the Carnegie Mellon University (CMU) Kids’ Corpus,
which contains 9.1 hours of speech from 76 speakers;
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Fig. 5. A flow chart of our distant speech recognition system.

2) the Center for Speech and Language Understanding
(CSLU) Kids’ Corpus, which contains 4.9 hours of
speech from 174 speakers.

The feature extraction used for the experiments was based
on cepstral features estimated with a warped minimum vari-
ance distortionless response (MVDR) spectral envelope of
model order 30 [6, §5.3]. Front-end analysis involved ex-
tracting 20 cepstral coefficients per frame of speech, and
then performing cepstral mean normalization (CMN). The
final features were obtained by concatenating 15 consecutive
frames of cepstral coefficients together, then performing linear
discriminant analysis (LDA), to obtain a feature of length 42.
The LDA transformation was followed by a second CMN step,
then a global semi-tied covariance transform estimated with a
maximum likelihood criterion [17].

The acoustic HMM was initialized from a context indepen-
dent model with three states per phone with the global mean
and variance of the training data. Thereafter, five iterations of
Viterbi training [6, §8.1.5] were conducted. This was followed
by an additional five iterations whereby optional silences and
optional breath phones were allowed between words. The next
step was to treat all triphones as distinct and train three-
state single-Gaussian models for each in order to cluster the
states [18]. In the final stage of conventional training, the
context-dependent state-clustered model was initialized with
a single Gaussian per codebook from the context-independent
model; three iterations of Viterbi training followed by splitting
the Gaussian with the model training steps. These steps were
repeated until no more Gaussians had sufficient training counts
to allow for splitting. The conventional model had 1,200 states
and a total of 25,702 Gaussian components. Conventional
training was followed by speaker-adapted training (SAT) as
described in [6, §8.1.3].

In our experiments, the ASR system consisted of three
passes:

1) Recognize with the unadapted acoustic model;
2) Estimate vocal tract length normalization (VTLN) [6,

§9.1], maximum likelihood linear regression (MLLR) [6,
§9] and constrained maximum likelihood linear regres-
sion (CMLLR) [6, §9] parameters, then recognize once
more with the adapted conventially trained model;

3) Estimate VTLN, MLLR and CMLLR parameters for the
SAT model, then recognize with same.

For all but the first unadapted pass, unsupervised speaker
adaptation was performed based on word lattices from the
previous pass.

Test data for our experiments were collected at the Carnegie
Mellon University Children’s School. The speech material
in this corpus was captured with a 64-channel Mark IV
microphone array; the elements of the Mark IV were arranged
linearly with a 2 cm intersensor spacing. In order to provide a
reference for the DSR experiments, the subjects of the study
were also equipped with Shure lavelier microphones with a
wireless connection to a preamp input. All the audio data were
captured at 44.1 kHz. The test set consists of 356 (1305 words)
utterances spoken by an adult and 354 phrases (1,297 words)
uttered by nine children. The children were native-English
speakers (aged four to six). They were asked to play Copycat,
a listen-and-repeat paradigm in which the adult experimenter
speaks a phrase and the child tries to copy both pronunciation
and intonation. As is typical for children in this age group,
pronunciation was quite variable and the words themselves
sometimes indistinct.

The search graph for ASR was created by constructing
a finite-state automaton by stringing Copycat utterances in
parallel between a start and end state. This acceptor was
convolved together with a finite-state transducer representing
the phonetic transcriptions of the 147 words in the Copycat
vocabulary. Thereafter this transducer was convolved with the
HC transducer representing the context-dependency decision
tree estimated during state-clustering [6, §7.3.4].

Table I shows word error rates (WERs) of every decoding
pass obtained with the single distant microphone (SDM),
super-directive beamforming (SD BF), conventional maximum
kurtosis beamforming (MK BF) and maximum kurtosis beam-
forming with the subspace filter (MK BF w SF). The WERs
obtained with the lapel microphone are also described as
a reference . It is clear from the table I that the speaker
adaptation techniques can significantly reduce the WERs. It
is also clear from table I that the new maximum kurtosis
beamformer achieved the best recognition performance after
the third pass.

Table II shows the WERs for the threshold of the contri-
bution ratio. The difference of the threshold does not give a
big impact on recognition performance. However, the compu-
tational reduction can be significant especially in the case that
the number of the channels are large because we can reduce
the dimension of the active weight vector without sacrificing
recognition performance by setting a low threshold value.

Table III shows the WERs of the conventional and new
MK beamforming algorithms as a function of amounts of
adaptation data at each block. We can see from table III
that MK beamforming with subspace filtering (MK BF w SF)
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Pass
1 2 3

Algorithm Exp. Child Exp. Child Exp. Child
SDM 9.2% 31.0% 3.8% 17.8% 3.4% 14.2%

SD BF 5.4% 24.4% 2.5% 9.6% 2.2% 7.6%
MK BF 5.4% 25.1% 2.5% 9.0% 2.1% 6.5%

MK BF w SF 6.3% 25.4% 1.2% 7.4% 0.6% 5.3%
CTM 3.0% 12.5% 2.0% 5.7% 1.9% 4.2%

TABLE I
WORD ERROR RATES (WERS) FOR EACH DECODING PASS.

Pass
Threshold for the 2 3
contribution ratio Exp. Child Exp. Child

10−1 0.8% 8.3% 0.5% 6.3%
10−2 1.2% 7.4% 0.6% 5.3%
10−3 1.3% 8.7 % 1.2% 5.9%

TABLE II
WERS FOR THE THRESHOLDS OF THE CONTRIBUTION RATIO.

provides better recognition performance with the same amount
of the data than conventional MK beamforming. In the case
that a few amount of data are available, the solution of the
active weight vector obtained by normal MK beamforming
does not always improve recognition performance due to the
dependency of the initial value and noisy gradient information
which can significantly change over the blocks. The results
in Table III suggest that unreliable estimation of the active
weight vector can be avoided by constraining the search space
on the subspace spanned by the dominant modes and basis
vector representing the ambient noise component. Note that
the solution of the eigendecomposition does not depend on
the initial value in contrast to the gradient-based numerical
optimization algorithm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the cascade of the subspace filter
and blocking matrix for the maximum kurtosis beamformer.
We also demonstrated through a set of the DSR recognition
results that the beamforming algorithm proposed here effec-
tively suppresses interference and ambient noise signals.

We plan to use different criteria for the detection of the sub-
space dimension such as AIC and MDL measures [4, §7.8]. We
also plan to apply the online subspace learning algorithms [4,
§7.9][19] in order to further reduce computation.
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