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Abstract—A new speech enhancement method using bidirec-
tional speech estimator is introduced. A widely-known speech
enhancement method using the optimally-modi ed log spectral
amplitude (OM-LSA) speech estimator is re-modi ed under the
assumption that the frame-synchronous estimation is not essential
in some of the speech recognition applications. The new method
utilizes two separate ows of the speech gain estimation, one
is along the forward direction of time and the other along the
backward direction. A simple look-ahead estimation mechanism
is also implemented in each ow. By taking the average of
these two gains, the speech estimation becomes more robust
under various noise conditions. Evaluation experiments using
the arti cial and real noisy speech data con rm that the speech
recognition accuracy can be greatly improved by the proposed
method.

I. INTRODUCTION

Speech recognition under adverse conditions has been one
of the hottest topics in the speech community. Numerous
efforts have been made to improve the speech recognition
accuracy, and various methods were proposed. In some cases,
a modi ed feature extraction algorithm (e.g. RASTA [1])
was introduced or standard MFCC features were normalized
before decoded (e.g. cepstral mean normalization (CMN)).
In other cases, the acoustic model was adapted to the noisy
environment using the noise (e.g. parallel model combination
(PMC [2])) or noisy speech (e.g. maximum likelihood linear
regression (MLLR [3])) data. It was also proposed to modify
the decoder itself to deal with the uncertainty of the noise
reducing module [4].

The problem of the above-mentioned methods is that the
speech recognition system itself must be modi ed to adopt the
new algorithm. If a new type of feature set was introduced,
the whole acoustic model must be re-trained. Obviously,
model adaptation is strongly tied with the recognition system.
However, state-of-the-art speech recognition systems for the
commercial use are made of very complex subsystems, and
it is dif cult to modify the whole system without reducing
its stability. In contrast, the development of various speech
recognition applications would be accelerated if the robustness
under noisy conditions can be achieved without touching the
recognition system; even the use of cloud speech recognition
services would be a feasible option. Although much efforts
have been made to standardize the feature for distributed
speech recognition [5], the best and simplest way is to re-
construct the speech waveform after reducing the in uence of

noise.
Speech enhancement from noise has also been an active re-

search area. One of the most successful achievements was the
optimally-modi ed log spectral amplitude (OM-LSA) speech
estimator with the minima controlled recursive averaging
(MCRA) noise estimator, developed by Cohen and Berdugo
[6]. The effectiveness of OM-LSA in terms of high noise
suppression and low speech distortion has been con rmed by
the objective and subjective tests [7], so it was a good starting
point of our research.

When we apply OM-LSA to speech recognition, there is
too strict a constraint in it. OM-LSA is a frame-synchronous
algorithm, meaning that no future information is used to
process the current frame data. Such a constraint is important
if it is applied to real-time speech communication. However,
there are many speech recognition applications in which a
few second latency is allowed. In such cases, using future
information makes the speech estimation more robust. In par-
ticular, robustness can be achieved near the sudden change of
speech signal, which cannot be distinguished from the sudden
noise unless observing the subsequent signals. In addition, the
OM-LSA estimation of the current frame always relies on the
estimation of the previous frames, hence the error propagates
along time accumulatively if the estimation fails at a certain
point.

In this paper, we propose a new speech estimator for noise
robust speech recognition, which takes advantage of using the
future information. A look-ahead estimator provides stability
of the estimation near the sudden change of speech, and time-
inverse propagation of the estimated information reduces the
error accumulation. The proposed estimator uses both forward
and backward recursive estimation, and referred to as the
bidirectional OM-LSA speech estimator.

In the remainder of this paper, we rst review the algorithm
of the OM-LSA estimator in the next section. The details of the
bidirectional OM-LSA estimator will be described in section
III. Experimental results will be shown in Section IV, and the
conclusions are given in the nal section.

II. OVERVIEW OF OM-LSA

Suppose that the observed signal is the mixture of the clean
speech and noise. Assuming that both signals are not corre-
lated with each other, the majority of the previous work did
not take the phase information into account and were realized
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in the spectral domain. Early work in this domain includes
minimum mean square error short-term spectral amplitude
(MMSE-STSA) estimator proposed by Ephraim and Malah
[8], which estimates the gain of each time-frequency bin by
the criterion of minimizing the mean-square error of STSA.
Later, they modi ed the original MMSE-STSA estimator by
replacing the STSA error minimization with the log-spectral
amplitude (LSA) error minimization [9]. Following that, Co-
hen [6] introduced OM-LSA, which introduces the geometric
mean of the gains associated with the speech presence and
absence.

OM-LSA starts with the standard procedure in which the
sampled signals are divided into overlapping frames, discon-
tinuity at the frame edge is smoothed by applying a Hanning
window, and a fast Fourier transform (FFT) is executed to
obtain the signals in the frequency domain. In the frequency
domain, speech enhancement is formalized as an estimation
process of the gain as

� ����� ���� � ���� ���� ��� ���� (1)

where ��� �� are the frequency and frame indices, � ��� �� is
the observed signal, ���� �� is the gain to be estimated, and
���� �� is the estimated signal. In the OM-LSA framework,
the gain ���� �� is de ned as the geometric mean of the two
gains associated with speech presence and absence as follows.

���� �� � ������ ����������
��������
��� (2)

where ����� ��, the gain associated with speech presence, is
estimated by the LSA estimator, and ����, the gain associated
with speech absence, is a pre-de ned constant. ���� �� is the
speech presence probability.

Once the power spectrum � ����� ���� is estimated, the phase
information of the original signal is added, and then the frame
signal in the time domain is recovered by inverse FFT and
overlap-adding. The ow of the standard OM-LSA speech
estimator is illustrated by the blocks connected by the dotted
arrows in g. 1.

III. BIDIRECTIONAL OM-LSA WITH LOOK-AHEAD

ESTIMATION

The basic idea of our method is that we introduce two
parallel speech estimators, as shown in g. 1. One estimator
utilizes the forward recursive estimation and the other utilizes
the backward recursive estimation. Even if one of the estima-
tors outputs erroneous signal, it can be compensated by the
output of the other estimator.

Once the output of the FFT module was duplicated, each of
them is sent to the noise estimation module. Noise estimation
based on the MCRA algorithm [6] is formulated as

��	 ��� �� � 	������ �� (3)

������ �� � �
��
�
���� � � �� 	 ��� �
���� ��� ���� (4)

�
� � 
� 	 ��� 
������ �� (5)

where 	 is the noise suppression coef cient that controls the
balance between noise reduction and speech distortion, ���� ��

Fig. 1. Schematic diagram of bidirectional OM-LSA speech estimator with
look-ahead estimation. The blocks connected by the dotted arrows construct
the ow of standard OM-LSA.

is the speech presence probability calculated by the minimum
tracking, and 
� is a pre-de ned weight parameter. The inter-
frame dependency appears in eq. (4), where the ���-th frame
is used to estimate �-th frame since it is forward estimation.
In backward estimation, ��� must be replaced by �	�.

Next, the rst path of gain estimation is executed. It is the
same as standard LSA estimation de ned by

�
���� �� � ��

���� ��� ���� ��� (6)
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where 

� is the a priori SNR and � is the a posteriori SNR.
The subscripts �� stand for the rst path of forward estimation.
The a priori SNR is estimated by



���� �� � 
��
�

���� �������� ����	���
���������� ����� ���

(9)
where 
� is a pre-de ned parameter. It should be noted again
that ��� must be replaced by �	� in the backward estimation
ow as follows.

������ �� � ��
����� ��� ���� ��� (10)


����� �� � 
��
�
����� �������� ����	���
���������� ����� ���

(11)
where the subscripts �� denote the rst path of backward
estimation.
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Fig. 2. Relationship of the paths in the forward and backward ows.

In the case of standard OM-LSA, ������ �� is directly put
into eq. (2), where it is substituted for ����� ��, and

���� �� � �� �
���� ��

�� ���� ��
�� � ������ ����

���������� (12)

	��� �� � 
��� �������� ����� � ������ ��� (13)

where ���� �� is the a priori probability for speech absence.
In contrast, our method introduces the second path of gain

estimation, where the information of the next frame is used
to estimate the current frame. The second path, referred to as
look-ahead estimation, is represented by the subscripts �� and
de ned as follows.

������ �� � �������� ��� 
��� ��� (14)

������ �� � 
����	
��	����
��	
��
��	��� ����� �� (15)

���	 � ������� ���� ������� ������� (16)


��	 � �
��� ���� � 
��� �������� (17)

Although the whole bidirectional system requires all data to be
observed and stored before the estimation begins, it is possible
to use look-ahead estimation alone, by which only one frame
latency is required. Similar idea was proposed by Cohen [10],
in which the estimated a priori SNR is partly replaced by the
non-recursive average from the near past to the near future.
In our method, which uses fewer adjustable parameters than
Cohen’s, the future gain is estimated recursively in the rst
path, and fed back to the second path.

The second path is also applied to the backward ow, where
the subscripts are changed to ��. The output of the second path,
��� and �
�, are then put into eq. (2),

�� ��� �� � ������� ���
���������

����������
�
� (18)

�
��� �� � ��
���� ���
���������

����������
�
� (19)

where ������ �� and �
���� �� are obtained by eq. (12) using
��� or �
� instead of ��� respectively. Finally,

���� �� � ��� ��� �� ��
��� ������ (20)
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Fig. 3. Experimantal results for the arti cial data obtained by standard OM-
LSA (forward) and three improved methods. Recognition rates are the average
under four SNR conditions.

is the gain of the proposed method, and the standard procedure
to reconstruct the waveform follows. The relationship of these
paths in the two ows is illustrated in g. 2.

IV. EXPERIMENTAL RESULTS

The proposed method was evaluated by two sets of speech
recognition experiments. The rst set consists of the arti cial
noisy speech data. The noise was added with various SNRs
to the clean speech, so we can compare the data and results
with various SNRs. The second set consists of the well-
known public database, CENSREC-2. Since all of the data
in CENSREC-2 were recorded in real noisy environments, we
can obtain more reliable evaluation results, although we cannot
analyze them using the clean speech. It is also helpful that the
results can be easily compared with the literature.

Pre-de ned parameters such as ��
�, ���� ��� ��, 
�, and

� were empirically determined, but they are xed throughout
all the experiments described below. The window size and
window shift of speech enhancement were 62 msec and 32
msec respectively, which are not the same as the speech
recognition experiments.

A. Experiments using arti cial data

The evaluation data of the rst set of experiments were
made with our proprietary database. The clean dataset consists
of 4,000 isolated words uttered by 10 male and 30 female
speakers. Each word is a Japanese family name such as
“suzuki” and “sato.” The noise was recorded in a computer
room, and added to the clean dataset with the SNR of 15dB,
10dB, 5dB, and 0dB. Training data for the acoustic model were
made of phonetically balanced sentences and words uttered by
200 male and 282 female speakers in a quiet room. The total
length of the training data is approximately 240 hours. All
data were recorded with 16kHz sampling frequency.

The acoustic model is made of tied-state left-to-right tri-
phone HMMs. Each of 2,563 states has 16 Gaussian mixtures.
To reduce the execution time, all of 41,008 mixtures are quan-
tized to 1,024 codewords in nine subspaces separately using
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Fig. 4. Example of speech estimation. The speaker said “UCHIDA.” (a) Clean speech (b) Noisy speech (0dB SNR) (c) Estimated speech by the proposed
method (d) Cepstral distances between MFCC feature vectors of clean and estimated speeches. The speech estimated by “forward” and “forward-lookahead”
were recognized as “ISHIDA,” due to the large mismatch around “CH.” The speech estimated by “bidirectional-lookahead” was recognized correctly.

subvector quantization. The recognition task is the isolated
word recognition of 100 Japanese family names. Each entry
of the vocabulary is made of three to eight phonemes (average
6.1 phonemes). The feature vector consists of 13 MFCCs
including 0-th MFCC, with their rst and second order time
derivatives. Cepstral mean normalization was applied to the
training and test data, where the cepstral mean was calculated
for each utterance. The recognition rate for the clean data was
99.2%

Figure 3 shows the average recognition rates of the four
SNR conditions obtained by standard OM-LSA (thin solid
line denoted by “forward” in the gure) and three improved
methods, as the function of the noise suppression coef cient
�. The dashed line denoted by “forward-lookahead” represents
the experiments using �� ��� �� instead of ���� �� in eq. (1).
The dotted line denoted by “bidirectional” represents the
experiments using eq. (20) but omitting the second path of
eqs. (14) – (17). The thick solid line denoted by “bidirectional-
lookahad” represents the experiments with all improvements.

In g. 3, the baseline recognition rate of 44.8% corresponds
to the point at � � �. The recognition rate ascends rapidly
as � increases in any case, and takes the peak at � � ���
or � � ���. In most cases, all three improved methods
provide higher recognition rates than standard OM-LSA. In

TABLE I
DETAILED COMPARISON OF THE RECOGNITION RATES FOR THE

ARTIFICIAL DATA.

SNR baseline forward bidirectional
(dB) normal look-ahead normal look-ahead

15 89.6 95.7 96.2 96.0 96.6
10 63.9 87.2 90.4 88.0 91.0
5 21.0 66.4 75.0 69.1 77.1
0 4.5 32.4 44.1 33.6 45.5

overall 44.8 70.4 76.5 71.7 77.6
(rel.imp.) (46.4) (57.4) (48.7) (59.4)

particular, introducing look-ahead estimation brings signi cant
improvement.

Table I shows the details of the recognition rates with
various SNRs. The noise suppression coef cient � was xed
at the optimal point for each method. It can be seen that
the recognition rates under low SNR conditions were greatly
improved. In this table, the relative improvement was de ned
as

��	� 
��� �
� � ��


����� ��
� 
���� (21)

where � and �� are the recognition rates of the modi ed
and baseline experiments, respectively. The largest relative
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Fig. 5. Experimantal results for CENSREC-2 obtained by standard OM-LSA
(forward) and three improved methods without CMN. Recognition rates are
the average under seven conditions.

improvement of 59.4% was obtained by the “bidirectional-
lookahead” method, which is 13.0 point higher than standard
OM-LSA and 2.0 points higher than OM-LSA with look-ahead
estimation only.

To illustrate how the speech signal is estimated from the
noisy speech input, an example utterance and the detailed
analysis of its estimation process are shown in g. 4. In this
example, the original speech (a), an utterance of “UCHIDA,”
was mixed with the noise at the SNR of 0dB. The noisy
speech (b) was modi ed to (c) by the proposed “bidirectional-
lookahead” method. At the bottom of the gure, cepstral dis-
tances between the clean and estimated speeches are plotted.
The cepstral distance of the �-th frame was de ned by

�� �

���

���

����� ��� ����� ���� (22)

where ���� �� is the �-th MFCC of the clean speech and ����� ��
is the �-th MFCC of the estimated speech. Both clean and
estimated MFCCs had been normalized by CMN beforehand.

It can be seen in g. 4 that there are large mismatches
at the positions of all phonemes, and the mismatch near “A”
was not reduced by any method. The mismatch near “D” was
reduced greatly by the look-ahead estimation, and no further
improvement was obtained by the bidirectional estimation.
However, it did not help the recognition very much because
there was no confusing word that differs only at this phoneme
from the uttered word. The mismatch around “CHI” was
gradually reduced by the look-ahead and then bidirectional
estimation, and the correct recognition was achieved only
by the bidirectional-lookahead estimation. It is because the
vocabulary includes a confusing word “ISHIDA.” The clues
to distinguish “UCHIDA” and “ISHIDA” exist at “U/I” and
“CH/SH,” but the mismatch at the former position was not
reduced by any method, and hence the latter is the only chance
to avoid the misrecognition.
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Fig. 6. Experimantal results for CENSREC-2 obtained by standard OM-LSA
(forward) and three improved methods with CMN. Recognition rates are the
average under seven conditions.

B. Experiments using CENSREC-2

The second set of experiments was carried out using
CENSREC-2 [11]. CENSREC-2 is a combination of a speech
database and an evaluation framework. The database consists
of the training and test data, and the evaluation framework
consists of various scripts for the experiments with HTK [12].
The voices were recorded when the car was and was not
running, by the close-talk and hands-free microphones at the
same time. However, we used the close-talk data that were
recorded when the car was not running for HMM training,
and the hands-free data that were recorded when the car
was running for evaluation. This combination was de ned as
Condition 4 by the creator of CENSREC-2. The test data
consist of 2,058 utterances uttered by 19 male and 12 female
speakers, each of which is made of one to seven connected
digits pronounced in Japanese. The training data consists of
2,737 utterances uttered by 33 male and 40 female speakers.
All data were recorded with 16kHz sampling frequency

The acoustic model was trained automatically using the
CENSREC-2 scripts. The feature vector consists of 12 MFCCs
and log-energy with their rst and second order time deriva-
tives. The experiments using this model belong to Category
0 de ned in the attached document of CENSREC-2. We also
made another model using CMN. The experiment using this
model belongs to Category 1, but the change of the script
was only one line, so it is very close to Category 0.

Figure 5 shows the average recognition rates of CENSREC-
2 experiments without CMN. Corresponding results with CMN
were plotted in g. 6. The four methods evaluated in these
experiments are the same as in g. 3. It can be seen again
that bidirectional and look-ahead estimation improved the
recognition rate. However, contrary to the previous experi-
ments, the dotted line representing “bidirectional” lies above
the dashed line representing “forward-lookahead.” It means
that introducing bidirectional estimation was more effective
than look-ahead estimation under the running car condition.
Although the baseline recognition rates with and without
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TABLE II
DETAILED COMPARISON OF THE RECOGNITION RATES FOR CENSREC-2.

speed condition baseline CMN Li [13] Proposed

normal 63.8 71.5 86.2 89.3
low fan on 56.8 54.1 83.3 90.7

audio on 51.4 56.3 69.2 61.5
window open 46.6 44.8 70.8 79.2

normal 43.3 42.6 73.0 81.4
high fan on 40.0 33.7 70.3 79.6

audio on 41.1 39.2 62.4 61.1

overall 49.1 49.0 73.7 77.6
(relative improvement) (-0.2) (48.3) (56.0)

CMN are very close to each other, greater improvement was
obtained with CMN regardless of the estimation method.
The recognition rate with CMN and bidirectional-lookahead
estimation was 77.6% when � � ���, which means 56.0%
relative improvement from the baseline.

Since CENSREC-2 is a publicly available database, we also
compared our results with literature. In [13], it was said that
a non-linear spectral contrast stretching method outperforms
some of the well known methods such as LSA [9] and ETSI
advanced front-end [5], so the performance of their method
could be a good benchmark.

Table II shows the detailed comparison between the pro-
posed method and Li’s non-linear spectral contrast stretching.
There are seven subsets representing various car speeds and
in-car conditions, and the proposed method outperformed Li’s
method in ve of them. The relative improvement of the
proposed method (56.0%) was 7.7 points higher than Li’s
(48.3%). The two subsets in which the proposed method was
worse than Li’s were both under “audio on” condition. We can
infer that the proposed method is less effective for the noises
including music and human voices.

V. CONCLUSION

In this paper, we introduced a new speech enhancement
method, which is based on the OM-LSA speech estimator,
and optimized for pre-processing of speech recognition. In the
proposed method, the gain estimation in the spectral domain
is separated into two ows: forward recursive estimation and
backward recursive estimation. Even if the estimation error
accumulates in one of two ows, it can be compensated by the
estimation of the other ow. In each ow, additional improve-
ment was obtained by introducing a look-ahead estimation that
is expected to stabilize the gain estimation. The two gains
obtained by the forward and backward estimation ows are
averaged and multiplied to the input signal, resulting in the
reconstruction of the estimated speech signal, which is fed
into the speech recognizer.

The effectiveness of the proposed method was con rmed
by two sets of evaluation experiments. The experiments using

arti cial data, which was made by combining the clean speech
and computer room noise, revealed that the look-ahead estima-
tion was particularly effective under such conditions, whereas
an additional improvement can be obtained by the bidirectional
estimation. An opposite trend was observed in the experiments
using CENSREC-2, a publicly available evaluation environ-
ment. The improvement by the bidirectional estimation was
larger than that of the look-ahead estimation, but we had the
consistent result that the proposed speech estimator equipped
with these two improvements was the best among various
methods. In the experiments using CENSREC-2, it was also
con rmed that the proposed method outperformed other noise
robust speech recognition methods found in the literature. A
more detailed analysis showed that the proposed method could
not outperform the existing method only under “audio-on”
conditions. It would be an important future work to investigate
the mechanism in which the proposed method fails to suppress
the audio noise ef ciently, and provide a solution for such
cases.
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