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Abstract—In this paper, we propose a novel acoustic model
training method which is suitable for speaker adaptation in
speech recognition. Our method is based on feature generation
from a small amount of speakers’ data. For decades, speaker
adaptation methods have been widely used. Such adaptation
methods need some amount of adaptation data and if the
data is not sufficient, speech recognition performance degrade
significantly. If the seed models to be adapted to a specific speaker
can widely cover more speakers, speaker adaptation can perform
robustly. To make such robust seed models, we adopt inverse
maximum likelihood linear regression (MLLR) transformation-
based feature generation, and then train our seed models using
these features. First we obtain MLLR transformation matrices
from a limited number of existing speakers. Then we extract
the bases of the MLLR transformation matrices using PCA. The
distribution of the weight parameters to express the MLLR trans-
formation matrices for the existing speakers is estimated. Next we
generate pseudo-speaker MLLR transformations by sampling the
weight parameters from the distribution, and apply the inverse of
the transformation to the normalized existing speaker features
to generate the pseudo-speakers’ features. Finally, using these
features, we train the acoustic seed models. Using this seed
models, we obtained better speaker adaptation results than using
simply environmentally adapted models.

I. INTRODUCTION

A method to train acoustic models for speech recognition
suitable for speaker adaptation based on feature generation is
proposed. The degradation of speech recognition performance
is often due to the mismatch between the training and test
conditions. There are many reasons for such mismatches:
differences between recording equipment, surrounding noise,
individual speakers, etc. To compensate for such mismatches,
adaptation techniques are often used. Model-based adaptation,
such as maximum a posteriori (MAP) adaptation [1] and
maximum likelihood linear regression (MLLR) [2], transform
acoustic models (usually hidden Markov models (HMMs)) to
fit the target speaker or environment.

Speaker adaptive training (SAT)[3] has also been proposed.
In SAT, training data are normalized to a “virtual” average
speaker for whom the acoustic models are trained. In the
recognition stage, input speech is also normalized and rec-
ognized using the acoustic models for the average speaker.

Adaptation techniques which only need a small amount
of target speech data, such as those used by inter-speaker

adaptation methods like Eigenvoice [4] have been proposed.
In this framework, the super vectors of the mean parameters of
the speaker-dependent acoustic models are used as bases, and
the super vector of the new speaker-specific acoustic models is
expressed as a linear combination of these bases. Eigenvoice
needs a small amount of target speech because the variety in
the speech and environments is expressed in a low dimensional
sub-space. Eigen-MLLR, which is a combination of MLLR
and eigenvoice, was proposed in [5]. Principal component
analysis (PCA) is applied to the MLLR transformation ma-
trices to obtain bases, and then a new speaker’s MLLR matrix
is expressed as a linear combination of the matrices.

Here, we assume that if we can obtain enough data in the
environment where the system is to be used, we can adapt
or train acoustic models to fit test environments. Using such
environment-adapted acoustic models as the seed models for
speaker adaptation, the adaptation is expected to be done more
successful because there is no environmental mismatch and
only the speaker differences should be compensated.

In reality, however, we can only use limited speech data
from such an environment, because the cost of collecting
data in realistic environments is very high. We believe this
assumption is realistic during the early use of such a speech
application.

In this paper, we propose a novel speech feature generation-
based speaker-adaptation seed model training method which
trains acoustic models robustly from the limited speech re-
sources. We do this by reversing the concept of adaptation.
In the proposed method, we do not remove the speaker
variations; we add them to the speech features averaged in
the target environment. We assume that individual speech
variation is generated by adding the individual differences to
an “average” person. If we can obtain the sufficient amount
of training data, it is possible to make robust acoustic models
covering the variation of the speech and thus the models are
suitable for adaptation seed models. Here, we simulate the
variation of the speech artificially. Speaker recognition using
the MLLR transformation matrix [6] suggests that the linear
transformation matrix expresses individuality. We first obtain
the MLLR transformation matrices from limited number of
speakers’ speech data and apply PCA to it to extract a small
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number of bases. Then we generate pseudo-speaker transfor-
mation matrices from the statistical linear combination of the
bases. Finally, the speech features are generated by applying
the inverse transformation matrices to the normalized speech
features to train the speaker-independent (but environment
adapted) acoustic models. Using this technique, we can easily
obtain a huge amount of speech variations from a limited
number of speakers in the target environments, and make
the acoustic models which cover thousands of speakers in
the target environments. Such acoustic models have wide
variances and thus target speaker to adapt is probably covered.
Such condition makes the adaptation easier.

The remainder of this paper is organized as follows. Section
2 describes our proposed feature generation-based acoustic
model training. Section 3 explains the benefit of the use of
the acoustic models trained by the feature generation as the
seed models of speaker adaptation. Experimental results are
shown in Section 4. We conclude this paper in Section 5.

II. ACOUSTIC MODEL TRAINING BASED ON FEATURE

GENERATION USING INVERSE MLLR TRANSFORMATION

Our proposed seed model training method consists of five
steps: (1) estimation of the MLLR transformation matrices
of speaker utterances recorded in the target environments; (2)
extraction of the bases of the MLLR transformation matrices;
(3) estimation of the basis weight distributions; (4) speech
feature generation applying the inverse transformation matrix
to the speaker-normalized speech data; (5) acoustic model
training with generated features. The flow of the method is
summarized in Fig. 1. Here, we assume that we can use a
certain amount of the training data in the target environments,
but the data do not include the test speakers. This assumption
is practical because we just developed this new application
and were only able to collect a small amount of data in the
field where the application was used.

A. Normalization of training speech

We adopted Constrained MLLR (CMLLR)[7], [8] to nor-
malize the training speech:

ô = Ao + b = Wζ, (1)

where o and ô express an n-dimensional input feature vector
and a normalized one, W =

[
bT AT

]T ∈ Rn×(n+1) is a

transformation matrix, and ζ =
[

1 oT
]T ∈ R(n+1)×1 is an

extended feature vector including a bias.
We obtain transformation matrix Wi, (i = 1, · · · , R) for

speaker i of R speakers in the training data.

B. Basis extraction using PCA

We assume that transformation matrix W consists of a
linear combination of bases. One could use all the W i, (i =
1, · · · , R) as bases, but the number of components in W i

is large (n × (n + 1)). However, speech production is con-
strained by physical limitations such as vocal tract length.
Such constraints should be reflected in the range of individual
differences in the transformation matrix.
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Fig. 1. Flow of the proposed feature generation-based acoustic seed model
training

Thus, we apply PCA to the n × (n + 1)-dimensional R
super vectors Vi(i = 1, · · · , R), which are the concatena-
tions of the columns in Wis, and obtain M eigen vectors
V(m)

E (m = 1, · · · , M) with the largest M eigenvalues as
bases. This means that the transformation expressing individ-
ual differences is constrained as a linear combination of the
basis super vectors. We also consider basis extraction as the
blind estimation of speaker variances.

C. Estimation of distribution of weight parameters

Using the bases extracted in the previous section, we
express the individuality of a certain speaker Vj =
a(j)T(V(1)

E , · · · ,V(M)
E ), where a(j) = (a(j)

1 , · · · , a
(j)
M )T(j =

1, · · · , R). We estimate the distribution of aj .
Each training speaker’s super vector derived from the trans-

formation matrix is approximated by a linear combination
of Ṽi = a(i)T(V1

E , · · · ,VM
E ). Weight a(i) is obtained by

the square error minimization criterion. With a(j)s for some
training speakers and an assumption of a type of distribution of
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a(j), we can estimate the distribution parameters. We assume
that a(j) is distributed as an M -dimensional Gaussian.

D. Speech feature generation by inverse MLLR transformation

Once we obtain the distribution of a(j), we randomly pick
N samples, a′(n), (n = 1, · · · , N), from the distribution.
Using a′(n), we generate N MLLR transformations, W ′

n =
[b′

n A′
n], by linear combination of the bases weighted by

a′(n).
Each generated transformation corresponds to a pseudo-

speaker. We reverse the SAT technique [3] to obtain a variety
of speakers by applying the transformation to the normalized
speech features. We first apply the normalization matrix for
training speaker i, Wi, to the speech features of speaker i
and then apply the inverse of the generated transformation,
W′(−1)

n , to them to generate the speech feature of pseudo-
speaker n:

õn = A′−1
n ôi − A′−1

n b̂′
n (2)

= W′(−1)
n ζ̂i, (3)

ôn = Wiζi, (4)

(i = 1, · · · , R)

where õn is a generated feature of speaker n and ζ i =[
1 oT

i

]T
and ζ̂i =

[
1 ôT

i

]T
are extended feature vectors

of training speech uttered by speaker i before and after
normalization, respectively. Note that speaker n, who is not
included in the training data, is a generated pseudo-speaker.
Applying this procedure using the training speech of speakers
i = 1, · · · , R and pseudo-speakers n = 1, · · · , N , we can
obtain much more training data for the acoustic models.

E. Training acoustic seed models using generated speech

Finally, we use the feature vectors generated by the tech-
nique described in the previous section to train the acoustic
models. The training data consist not only of existing speaker
utterances but also the utterances of other generated speakers.

III. EFFECT OF GENERATION-BASED SEED MODEL

TRAINING ON THE SPEAKER ADAPTATION

As a result of the training expressed in Section II, the
acoustic seed models are expected to cover a broad range of
individual differences of speakers. Such models may be robust
for unknown speaker utterances, but they have possibility to be
too broad to discriminate the appropriate phonetic categories.

These models, however, have some levels of likelihood for
outlier speakers’ utterances. Because of this characteristic,
these models are expected to be suitable for the speaker
adaptation seed models.

IV. EXPERIMENTS

A. Experimental conditions

We collected real-field speech data using the MusicNavi2
[9] spoken dialog-based music retrieval system. This system
obtains user utterances from the Internet using loss-less speech
compaction. Many anonymous users can use this system.

TABLE I
EXPERIMENTAL SETUP

# Training speakers 100 (50 males and 50 females)
# Training utterances 3000 (30 uttr. per person)

# Test speakers 12 (6 males and 6 females)
Exclusive with training sets

Amount of test data 600 (50 uttr. per person)
Features 12 MFCC + 12 Δ + 12 ΔΔ

+Δpower + ΔΔpower
Speech recognizer Julius-4.1[10]
Acoustic model Gender-independent triphone HMM

structure 300 states, 16 mixtures per state
Language model Word loop grammar

Dictionary Words for MusicNavi2
(approx. 8000 words)

For recognition, we used a word-loop grammar with a
vocabulary including all the words in the test utterances. There
were no unknown words. We randomly selected 50 males
and 50 females as training speakers. Utterances spoken by
each training speaker were used as the training data. Training
set was 30 utterances from each subject (100 × 30 = 3000
utterances).

We used test utterances from 12 speakers (6 males and 6
females). Fifty utterances from each speaker were used as test
data. A feature vector consisted of a 12-dimensional MFCC,
their first and second derivatives, and the first and second
derivatives of the power. Experimental setup conditions, in-
cluding these, are summarized in Table I.

For comparison, we performed MAP adaptation using all
the training utterances, which is the adaptation for the envi-
ronment.

B. Basis extraction

We set the cumulative proportion to 95% to extract the
bases, resulting that we extracted 84 bases.

C. Recognition results using feature generation-based acous-
tic model training

First, we perform a recognition experiment using acoustic
models trained by proposed feature-generation based training
without speaker adaptation.

We generated 1000 pseudo-speakers from the bases de-
scribed in Section IV-B, randomly selected 600 real training
speaker utterances from the training data, and converted these
utterances for each pseudo-speaker. Thus we were able to
obtain 60,000 training utterances. We trained the acoustic
models using these utterances. For comparison, we used
the acoustic models trained by the Corpus of Spontaneous
Japanese (CSJ)[11], and those adapted by MAP from the CSJ
models with the real training data described in Table I (MAP).
The average recognition rates and the standard deviations are
shown in Table II. The test speakers were all different from
the training speakers, so the recognition rates in Table II can
be seen as the recognition rate without any speaker adaptation
(but with environmental adaptation in the cases of “MAP” and
“Proposed.”).
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TABLE II
RECOGNITION RATES [%] USING ACOUSTIC MODELS TRAINED USING

PSEUDO-SPEAKER UTTERANCES, THOSE TRAINED USING CSJ DATABASE,
AND THOSE ADAPTED BY MAP

CSJ MAP Proposed
Recog. rate 58.3 68.5 73.3

The table shows that the models adapted by the proposed
method outperforms not only the CSJ models but also MAP-
adapted models.

D. Recognition results by speaker-adapted models from those
by generation-based training

We applied speaker adaptation methods to the CSJ models,
environment-adapted models using MAP, and models trained
using features generated by our proposed method. The results
are shown in Figs. 2 and 3. Figures 2 and 3 are the results by
MLLR adaptation and MAP adaptation, respectively, and the
lines with marks show the tendencies by changing the number
of utterances used for adaptation.

We can find that the performance differences between
models without adaptation are kept after the adaptation, even
after the adaptation using 80 utterances for each speaker. After
the adaptation using a small number of utterances as five, the
performance improvement by the adaptation using the models
trained by our method as the seed models is larger than the
others. This result implies that the our proposed models covers
broad variations of speakers and adapted robustly using small
nuber of utterances.

V. CONCLUSION

In this paper, we proposed a generative acoustic model
training based on the generation of pseudo speech features
using a linear combination of principal components of MLLR
transformation matrices. Our models outperform conventional
MAP environment-adapted models. Using our models as seed
models, speaker adaptation was effectively performed.

In the future, we will use more real speech data to generate
a huge amount of feature vectors to produce an accurate
and robust acoustic model. Currently we only use PCA to
constrain the freedom of combination, but we need to in-
vestigate an appropriate constraint for speech generation. In
an appropriate constraint subspace, we can generate a huge
number of more accurate unknown speaker utterances to train
a universal model. We believe that robust acoustic models are
more suitable for adaptation seed models.
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