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Abstract—In this paper we describe a linear transform that we call
an Exponential Transform (ET), which integrates aspects of CMLLR,
VTLN and STC/MLLT into a single transform with jointly trained
components. Its main advantage is that a very small number of speaker-
specific parameters is required, thus enabling effective adaptation with
small amounts of speaker specific data. Our formulation shares some
characteristics of Vocal Tract Length Normalization (VTLN), and is
intended as a substitute for VTLN. The key part of the transform is
controlled by a single speaker-specific parameter that is analogous to a
VTLN warp factor. The transform has non-speaker-specific parameters
that are learned from data, and we find that the axis along which male
and female speakers differ is automatically learned. The exponential
transform has no explicit notion of frequency warping, which makes it
applicable in principle to non-standard features such as those derived
from neural nets, or when the key axes may not be male-female. Based
on our experiments with standard MFCC features, it appears to perform
better than conventional VTLN.

I. INTRODUCTION

Vocal Tract Length Normalization (VTLN) [1], [2], [3], [4] is a
standard feature of modern speech recognition systems. The basic
idea is to scale the frequency axis on a per-speaker basis so as
to normalize the formant positions. These can vary by about 20%
between speakers [5] because gender and other factors affect the
length of the vocal tract. Currently, the most commonly used approach
to VTLN operates by repeating feature extraction multiple times (e.g.
20 times), for a discrete set of warping factors, and selecting the warp
that provides the highest likelihood features with respect to a simple
model.

Linear-transform based implementations of VTLN have been in-
vestigated by various authors [1], [6], [7], [8], [9], [10]. The basic
idea is to approximate the VTLN frequency warping by a linear
transformation of the MFCC or PLP features. In some cases [1],
[6], [8] this is based on an analysis that leads to a formula; in other
cases [7], [9] it is based on linear transforms which are trained to
approximate the conventional feature-level VTLN warping. At test
time these techniques are equivalent to Constrained MLLR (CMLLR)
[11] but choosing from a fixed set of transforms. Note that when
applying a linear transform x→ Ax+b, one should add log | detA|
to the log-likelihoods, as dictated by the identity

N (Ax + b; μ,Σ)|detA| = N (x;A−1
μ −A

−1
b,A−1

ΣA
−T ),

(1)
where the right hand side represents the “model-space” interpretation
of the transformation. This is referred to as Jacobian compensation,
since A is the Jacobian of the transformation. In practice not all
authors include the Jacobian term; see [10] for an investigation of the
effect of this. In conventional (feature-level) VTLN, cepstral variance
normalization generally has to be applied because there is no natural
way to do Jacobian compensation [9].

Linear-transform based approaches to VTLN have generally been
found to be about as effective as standard VTLN, while being
more efficient to implement. Typically about 20 transforms would
be estimated at training time, and at test time one would select the
best one of these based on the likelihood assigned by the model to
the transformed data.

A natural question to ask is: once we are working in a linear
transform based framework, why not estimate the (say) 20 transforms
in a purely data-driven way, without reference to the original VTLN?
For large training datasets, the number of parameters to estimate
is relatively quite modest so such an approach may be feasible.
One way to do this would be in a K-means framework, iteratively
estimating transforms and reassigning speakers to transforms. One
might even envision initializing these clusters from the VTLN warp
factors, thereby nudging the system towards normal VTLN. However,
our experiments along these lines (not described further) were not
successful, motivating a more powerful approach.

II. THE EXPONENTIAL TRANSFORM

A. Basic Idea

We now turn to a form of transform which will give us a con-
tinuously varying set of transforms controlled by a single parameter.
We first consider a pure linear transform; later an offset term will be
introduced. The most basic form of the idea is to use a transform of
the form

A
(s) = exp(t(s)A), (2)

where t(s) is a speaker-specific scalar that may be positive or negative
and that is analogous to the log of a VTLN warp factor, A is a global
parameter matrix that is learned from data, and A(s) is the speaker
specific “exponential transform”. Here, exp is the matrix exponential
function, which is defined (for square matrices only) by the Taylor
series expansion:

exp(M) ≡
∞X

n=0

1

n!
M

n, (3)

with Mn defined in the obvious way as a product of M with itself
n times and M0 being the identity matrix I. Thus, if the entries
in M are small, we obtain a transform which is a small delta on
the identity matrix. The attraction of this functional form is that the
family of functions is closed under matrix multiplication, i.e. the
product of two warping matrices is still a warping matrix.

B. Full Version

We turn now to an extension of the basic transform which addresses
the further normalization issues of mean normalization and feature
rotation. We augment the d dimensional input vector x with a one
to form a vector x+, and denote the speaker-specific transform with
W(s). The “complete” exponential transform (ET) is:

W
(s) = D

(s) exp(t(s)A)B, (4)

where D(s) handles mean offsets (and, at test time, diagonal scaling),
the middle factor with the exp is the core “exponential transform”
part, and B corresponds to MLLT/STC [12], [13]. Any quantities
without the superscript s are globally shared. The dimensions are
D(s) ∈ R

d×(d+1), A ∈ R
(d+1)×(d+1), and B ∈ R

(d+1)×(d+1).
Reflecting its mean-offset function, D(s) is a matrix with ones

along a d × d diagonal, unconstrained entries in the last column,
and zeros elsewhere. At test time, we optionally allow unconstrained
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entries on the diagonals, but not at training time as this significantly
complicates the reestimation formulae.

The intuition behind adding the D(s) and B components is that if
we want the factor exp(t(s)A) to model a VTLN-like transform,
which might correspond to a relatively subtle difference in the
features, we need to normalize for gross effects such as speaker-
dependent offsets and global correlations between parameters. Other-
wise it is more likely that the central factor exp(t(s)A) would learn
instead to model these types of effects; by modeling such effects
explicitly, we free the exponential term to model the effects that
cannot modeled by B and D(s).

We emphasize that, like linear VTLN, ET is a specially constrained
form of CMLLR.

III. MODEL ESTIMATION

A. Overview

At training time we need to compute the global parameters A and
B, and also train a model on suitably adapted features. The objective
function we optimize is the data likelihood; the procedure is based
on Expectation-Maximization (E-M). An overview of the training
procedure is:

• Initialize the global parameters A and B

• For a number of training iterations:

– Compute t(s) and D(s) for the training speakers
– Update the model (means, variances, etc.)
– On early iterations (e.g. the first 15 iterations), alternately:

∗ Update the matrix A, or:
∗ Update the matrix B.

• Compute a speaker independent model using just (the first d
rows of) B as the feature-space transform.

The speaker independent model has the same mixture-of-Gaussians
structure as the final speaker-adapted model, and is computed in
one pass using Gaussian-level alignments from the speaker-adapted
model. It is used at test time for the first-pass decoding and to obtain
Gaussian-level alignments for estimating the transform.

B. Summary of notation

• The feature dimension is d.
• We assume zero-based indexing of vectors and matrices.
• We use xt for the unadapted features on time t. We don’t have

an index for the utterance (we just assume distinct utterances
have differently numbered time indices).

• x+ means the vector x with a 1 appended to it.
• A−, where A is a matrix, means A with its last row removed.
• A+, means A with a row with value 0 0 . . . 1 appended.
• A(+0), means A with a zero-valued row appended.
• Gaussian mixture components in a HMM-GMM system are in-

dexed j, m where j is the state and m is the mixture component.
• The means and (diagonal) variances are μjm and Σjm, with

σ2
jmi as the i’th variance component.

• The Gaussian-level posteriors on time t are γjm(t).
• Unless otherwise defined, mi is the i’th row of M (viewed as

a column vector), and mi,j is its i, j’th element.

C. Definition of CMLLR statistics

The sufficient statistics for CMLLR (for a particular speaker) are:

β =
X
t,j,m

γjm(t) (5)

K =
X
t,j,m

γjm(t)Σ−1
jmμjmx

+
t

T
(6)

Gi =
X
t,j,m

γjm(t)
1

σ2
jmi

x
+
t x

+
t

T
(7)

for 0 ≤ i < d, and the auxiliary function is:

Q(W) = tr(KT
W) + log |det(WT −

)| − 1
2

PD

i=1 wT
i Giwi (8)

D. Manipulations of CMLLR statistics

It will be necessary in our estimation algorithms to apply a
transform in the feature space to CMLLR statistics; this is done as
follows. Let M ∈ R

(d+1)×(d+1) be a matrix with last row 0 0 . . . 1
that represents an affine transform. We do as follows, which is
equivalent to having pre-multiplied x+ by M while collecting the
statistics:

K ← KM
T (9)

Gi ← MGiM
T . (10)

Applying a transform in the model space to some statistics is done
as follows. Let W ∈ R

d×(d+1) be the affine transform. The model-
space transformation can only be done if W is a diagonal transform,
i.e. W = [M b] with M diagonal. We’ll write the (i, i)’th element
of M as mi. The transform corresponds to setting xi ← mixi + bi.
After working out how to equivalently apply this transform to the
means and variances and obtaining the corresponding transforms on
K and Gi, we get as follows. The elements of K change with:

ki,j ← miki,j −mibigi,d,j , (11)

where the index d is the feature dimension, and then the matrices Gi

are scaled with:
Gi ← m2

i Gi. (12)

E. Computing the matrix exponential function

For a review of ways to compute the matrix exponential function,
see [14]. The method we used is one of the simpler methods discussed
there. Suppose we are computing exp(M). Define P = 2−NM. We
choose the smallest integer N ≥ 0 such that ||P|| < 0.1 (using
the Frobenius norm). The method is a slight twist on the identity
exp(P)2

N

= exp(M), using successive squaring to compute the
power. Define B0 = exp(P)− I, computed with:

B0 =
KX

n=1

1

n!
P

n, (13)

the series is truncated when we detect that adding the latest term has
not caused any change in B0 (we remember the number of terms as
K). Then we use the recursion, for 1 ≤ n ≤ N ,

Bn = Bn−1Bn−1 + 2Bn−1, (14)

and the answer is given by exp(M) = BN + I.

F. Reverse differentiating through the matrix exponential function

In this section we define for later use a function exp-backprop, of
the form

exp-backprop(M, X̂) = M̂, (15)

where the elements of M̂ are the derivatives of scalar f =
tr(X̂T exp(M)) w.r.t. the corresponding elements of M. We assume
that the intermediate quantities used while computing the matrix
exponential function exp(M) (as described in the previous section)
are available. We are going backwards through that computation
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computing derivatives. We first set B̂N = X̂. Then for n =
N−1, N−2, . . . , 0 we do:

B̂n = B̂n+1B
T
n + B

T
n B̂n+1 + 2B̂n+1. (16)

Next we want to compute P̂, and we will do so with

P̂ =

KX
n=1

P̂n, (17)

where P̂n is the part of the derivative arising from the n’th term of
the truncated Taylor series 13. We set P̂1 = B̂0, and for 2 ≤ n ≤ K,
let

P̂n =
1

n
P̂n−1A

T +
1

n!
A

n−1 T
B̂0, (18)

where it is convenient to cache the powers of A from the forward
computation. The final answer is given by M̂ = 1

2N P̂.

G. Computing the speaker-specific transforms

In this section we describe how to compute the speaker-specific
parameters t(s) and D(s), given the sufficient statistics K, Gi and
β. At training time these statistics are computed with Gaussian-
level alignments given by the previous iteration’s speaker-specific
transforms W(s). At test time the Gausian-level alignments are
computed using features transformed only with B, and the speaker-
independent model trained using single-pass retraining with features
transformed only with B.

We will omit the speaker superscript s. We first initialize t ← 0
and D← [I 0]. Then we apply B as a feature-space transform to the
statistics as described in Section III-D. We next do several iterations
of update (we used three iterations). On each iteration we first re-
estimate D and then re-estimate t.

1) Updating D: In the update of D, we first estimate a transform
D′ that will go to the right of any existing transform D, and then
modify D to take into account the new transform D′. We estimate
D′ via Maximum Likelihood from K, Gi and β as either an offset-
only CMLLR transform (at training time) or a diagonal CMLLR
transform (at test time). We then set D ← DD′+ (the meaning of
+ was explained in Section III-B), and then apply D′ as a model-
space transformation to the statistics K and Gi as described in
Section III-D.

2) Updating t: The update for t is similar to the update for D

in that we always estimate an “incremental part” t′ and add this
to t. To compute t′ we do a single iteration of Newton’s method ,
starting from t′ = 0. The update formulas are as follows. First define
J ∈ R

d×(d+1) by:
J = K− S, (19)

where the i’th row si of S is the same as the i’th row gii of Gi. This
equals the auxiliary function derivative w.r.t exp(t′A)−, ignoring
the log determinant. We will be maximizing the quadratic function
f(t′) = at′ − 1

2
bt′

2, with

a = tr(JT
A

−) + β tr(A) (20)

b = b1 − b2 (21)

b1 =

 
d−1X
i=0

a
T
i Giai

!
(22)

b2 = tr(JT (AA)−) (23)

where ai is the i’th row of A. To ensure the correct sign of update
even in pathological cases far from convergence, we replace b1 − b2

with b1−min(0.8b1, b2). We have never seen this flooring take place
in practice. We set t′ = a/b. We then set t← t + t′, and apply the

matrix exp(t′A) as a feature-space transformation to the statistics as
decribed in Section III-D.

H. Updating B

The accumulation and update formulas for B are based on those for
MLLT (equivalently, global STC). Defining x′ as W(s)x+, i.e. the
current transformed features, we accumulate the sufficient statistics
(for 0 ≤ i < d),

Gi =
X

t

γjm(t)

σ2
jmi

`
μjm − x

′
´ `

μjm − x
′
´T

, (24)

and β =
P

t
γjm(t). Let the result of the MLLT/STC update be

the feature transformation matrix C ∈ R
d×d, which we optimize

starting from C = I using the formulas from [15, Appendix A].
For convenience, we repeat them here. The auxiliary function is
β log |detC| − 1

2

Pd−1
i=0 cT

i Gici. To maximize it, for a number of
iterations (e.g. 10), we do as follows: for 0 ≤ i < d,

F ← C
−T (25)

ci ←

s
β

fT
i G−1

i fi
G

−1
i fi. (26)

Let Cf be C extended with an extra row and column, with zeros
except for a 1 in position (d, d). After estimating C we do as follows:

• Transform the model by setting μjm ← Cμjm

• Transform all the current speaker transforms by setting W(s) ←
CW(s)

• Set A← CfAC−1
f , and B← CfB.

I. Updating A

The statistics for updating the matrix A are functions of the
standard CMLLR statistics for the training speakers. These CMLLR
statistics are computed with Gaussian alignments obtained with
features transformed with W(s), but the statistics themselves contain
the original features x, not the transformed features.

For each training speaker s, let the CMLLR statistics accumulated
as in Section III-C be K(s), G(s) and β. Using the current values
of D(s) and B, apply B as a feature transform to the statistics and
apply D(s) as a model-space transform to the statistics, as described
in Section III-D. Let us write the transformed statistics as K̃(s) and
G̃

(s)
i . Define

X
(s) = exp(t(s)A). (27)

We will write the derivative of Q w.r.t. X(s) as X̂(s), using notation
where x̂

(s)
i,j = ∂Q

∂x
(s)
ij

. We have

X̂
(s) =

“
K̃

(s)
i − S

(s)
”(+0)

(28)

where (+0) means appending a zero row, and the i’th row of S(s)

is given by:

s
(s)
i = G̃

(s)
i c

(s)
i . (29)

The derivative of Q(s) w.r.t A is given by:

Â
(s) = t(s) exp-backprop(t(s)A, X̂(s)). (30)

The statistics for updating A are written as follows, where summa-
tions over s are over all training speakers. The index i takes values
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0 ≤ i < d.

β =
X

s

β(s) (31)

βt =
X

s

t(s)β(s) (32)

Â =
X

s

Â
(s) (33)

Gi =
X

s

t(s)
2
“
G̃

(s)
i + max(g

(s)
i,i,i − k

(s)
i,i , 0)eie

T
i

”
, (34)

where ei is the unit vector in the i’th dimension. Note that Gi is
not the same as the Gi quantities for the B update or the speaker-
dependent G(s)

i quantities in the CMLLR statistics. The (weak-sense)
auxiliary function we optimize at test time is a quadratic function with
quadratic part − 1

2

Pd−1
i=0 aT

i Giai, and a derivative (at the current
value of A) given by H = ÂT + βtI; the βtI comes from the log
determinant. The update equation is, for 0 ≤ i < d,

ai ← ai + G
−1
i hi (35)

where ai and hi are the i’th rows of A and H, viewed as column
vectors; the last row of A is not updated (it is always zero). The
auxiliary function improvement is 1

2

Pd−1
i=0 hT

i G−1
i hi. This should

generally decrease as training progresses.
We want to keep the warp factors t(s) “centered” at training time so

that they average to zero; this makes them more consistent between
training runs, and makes the approximations we used in deriving the
estimation formulas for A more valid (since we ensure smaller values
of t(s)). To do this, after updating A we take the “average part” of
exp(t(s)A), and put it into B. The update equation is:

B← exp

„
βt

β
A

«
B. (36)

We then normalize A to have unit Frobenius norm; this keeps the
t(s) values in a more consistent range from run to run (it doesn’t
affect the actual transforms produced by the method).

IV. BASELINE VTLN IMPLEMENTATION

As the first element of our baseline VTLN implementation we
implemented the standard, feature-level form of VTLN. This operates
by shifting the locations of the center frequencies of the triangular
mel bins during the MFCC computation. The warping function is
as diagrammed in Figure 1. The two solid lines are examples of
warping functions for warping factors greater than, and less than,
one. The longest, central line segment always “points” at the origin.
Ours is similar to the approach used in the Attila speech recognition
toolkit [16], which uses a bilinear function with the property that the
inverse of each function is also in the functional family1; it handles
the upper frequency cutoff differently from HTK [17], in which the
knee is always at the same point on the x-axis. Our function is similar
to HTK in that it also supports a lower cutoff (this would normally be
zero if the lower frequency cutoff for the mel-bin computation was
zero). In our experiments, the lower cutoff was 100 and the upper
cutoff was always 600 Hz lower than the Nyquist frequency.

We implemented linear VTLN (LVTLN) in a way quite similar
to [9], except that the linear functions are implemented as follows.
On a small subset of data (the same for all warp factors), we compute
the original features xt and the warped features yα

t , warped with
warping factor α as described in the previous paragraph. We used
31 separate warping factors: 0.85, 0.86, . . . 1.15. For each warping

1Brian Kingsbury, personal communication

Fig. 1. VTLN warping function

factor, we estimate a CMLLR matrix Wα to minimize the sum-of-
squares error of predicting yα

t given xt: that is, if zα
t = Wαxt, we

first estimate Wα to minimize the sum-of-squares difference betwen
z and y. We then scale each row of the CMLLR matrices so that the
variance of zα

i matches the variance of xi (any shift in mean does
not matter, for reasons that will become clear below).

Our training process for LVTLN is essentially a constrained form
of speaker adapted training. On selected iterations of the training
process (we used iterations 2, 4, 8 and 12), we compute sufficient
statistics for CMLLR and for each training speaker, choose the Wα,
that maximizes the likelihood, but treating the offset term in the
last column as a variable to be optimized (we compare the auxiliary
function values after optimizing this offset term). Thus, we combine
VTLN with offset-only CMLLR. At test time, we optionally extend
this to estimating a diagonal CMLLR matrix, applied after the W(s)

transform. We train the model on the adapted features. In experiments
we reported here, we always used the Jacobian as required by the
math (we found that omitting the Jacobian sometimes helped a little,
but sometimes hurt a lot).

In order to implement conventional, feature-level VTLN, we used
the final warp factors computed during LVTLN training and did
an iteration of single-pass retraining, along with the conventionally
warped features, to convert the model. At test time we used the
LVTLN approach and LVTLN-trained models to work out the warp
factor to use in the feature-level VTLN. In our implementation, we
found the use of LVTLN derived warp factors more reliable than
conventionally estimated warp factors, even for VTLN itself. As
with ET, we did the speaker-independent decoding at test time using
a speaker independent model with the same mixture-of-Gaussians
structure as the speaker-adapted model. The speaker independent
model was obtained using a single iteration of re-estimation using
Gaussian alignments from the final adapted model and features, but
accumulating speaker-independent statistics.

V. EXPERIMENTAL RESULTS

Our experiments are conducted with the recently released, open-
source Kaldi toolkit [18], available from http://kaldi.sourceforge.net.
We report results on the Resource Management (RM) and Wall Street
Journal (WSJ) corpora. Scripts corresponding to the experiments
reported here are available in version 1.0 of the toolkit.

The Resource Management corpus has 3.8 hours of training data.
The Word Error Rates (WERs) we give are averaged over the Feb’89,
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Feb’91, Mar’87, Oct’87, Oct’89 and Sep’92 test sets, 1.3 hours of
data in total; we use the standard word-pair bigram language model.

The WSJ test sets are decoded with the 20K open vocabulary
with non-verbalized pronunciations, which is the hardest of the test
conditions. We used a highly-pruned version of the trigram language
model included with the WSJ corpus; this is because Kaldi does not
yet have a decoder that works with large language models (the full
trigram model has 6.7 million entries/arcs; the pruned one has 1.5
million). We report results on the Nov’92 and Nov’93 evaluation test
sets, which have 3439 and 5641 words respectively. For our results
here, for fast turnaround of experiments we trained on half the SI-84
data, using randomly sampled utterances.

Both systems use decision-tree-clustered triphones and standard
HMM-GMM models. In addition, for the WSJ experiments we used
an extended phone set with position and stress dependent phones,
but decision-tree roots corresponding to “real” phones (questions can
be asked about the central phone). As reported in [18], results for
this setup are comparable to previously published results on the RM
and WSJ corpora. The features are based on 13-dimensional MFCCs;
we show experiments either with delta and acceleration features, or
processed by splicing 9 adjacent frames together and doing LDA
to 40 dimensions. LDA features are further transformed via Semi-
tied Covariance (STC) estimation, except for ET systems in which
STC is automatically included. The RM systems had 1473 leaves
and 9 000 Gaussians. The WSJ systems had 1583 leaves and 10 000
Gaussians. Whenever we accumulate statistics to estimate any kind of
transformation matrix, whether global or speaker-specific, at training
or test time time, we always exclude the statistics corresponding to
silence.

TABLE I
BASELINE %WERS, UNADAPTED

System WSJ
Features ID RM Nov’92 Nov’93

Delta+Accel tri2a 4.0 12.5 18.3
Delta+Accel+STC tri2d 4.3 13.0 19.4

Splice+LDA tri2e 4.7 14.3 19.1
Splice+LDA+STC tri2f 3.9 12.2 17.7

We show the unadapted WERs in Table I. Considered separately,
LDA and STC both hurt performance, but together they improve it.
Although this is unintuitive, the combination of LDA plus STC/MLLT
is known to work well [19]. Bear in mind that ET does STC/MLLT
as part of the training process, so it should be at a slight disadvan-
tage versus conventional VTLN when working from the delta plus
acceleration features.

Figure 2 shows the distribution of t values and VTLN warp factors,
on RM and WSJ. This is for systems based on MFCC plus delta plus
acceleration features. Both with (linear) VTLN and ET we have a
very reasonable distribution of warp factors, with a good separation
between male and female; this is clearer in RM, and we speculate
that it has to do with the characteristics of the speakers. The number
of speakers is relatively small, which accounts for the noise in the
distributions.

A. Integration of CMLLR with ET/LVTLN/VTLN

We should emphasize that our implementations of both ET and
LVTLN incorporate an element of Constrained MLLR. When com-
puting the speaker-specific transform W(s) in ET, we make the factor
D(s) a diagonal CMLLR matrix at test time (i.e. it contains a scale
and an offset term for each dimension). In order to make our LVTLN
results comparable, we also enabled the estimation of offset-only

Fig. 2. Distribution of warp factors and t values (female dark blue, male
pale green)
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TABLE II
ET VERSUS LVTLN VERSUS VTLN: ON DELTA PLUS ACCELERATION

FEATURES. %WERS

Adapting per speaker
VTLN CMLLR System WSJ
type type id RM Nov’92 Nov’93
None None tri2a 4.0 12.5 18.3
None Diag tri2a 3.9 12.7 17.2
ET Diag tri2b 3.1 11.5 15.0

LVTLN Offset tri2g 3.3 11.1 16.4
LVTLN Diag tri2g 3.1 10.7 16.5
VTLN None tri2g 3.7
VTLN Offset tri2g 3.2
VTLN Diag tri2g 3.1 10.9 15.9

Adapting per utterance
None Diag tri2a 3.9 12.6 17.3
ET Diag tri2b 3.3 11.5 15.0

LVTLN Offset tri2g 3.3 11.2 16.2
LVTLN Diag tri2g 3.1 11.1 16.1
VTLN Diag tri2g 3.4 10.9 16.1

and diagonal CMLLR matrices after the pure “LVTLN” part of the
transform. This uses the same CMLLR statistics that are used to
estimate the warp factor, and it is integrated into the warp factor
calculation in that we compare the likelihoods after including the
effect of the diagonal or offset-only transform. In the case of feature-
level VTLN, after extracting the VTLN-warped features using the
warp factor obtained from the LVTLN computation, we estimated
an offset-only or diagonal CMLLR transform on top of the VTLN-
warped features. This was done without an extra pass of decoding,
i.e. all results in Tables II and III are done with a single speaker-
independent decoding pass and a single adapted decoding pass.

B. Results on delta and acceleration features

Table II compares ET with LVTLN and VTLN, on top of MFCC
plus delta and acceleration features. The rows that say “Diag”
(meaning, the transforms have a diagonal CMLLR component) are
probably the most suitable ones to compare, as this is always the
best configuration. We do not see any consistent pattern— none of
the three methods is consistently best across all test sets. However,
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it is clear that doing some form of VTLN or VTLN substitute is
better than doing nothing at all. We should note that ET contains
STC/MLLT, and we can see from Table I that STC makes things
worse on delta and acceleration features, so in some sense ET is at
a disadvantage here.

C. Results on LDA+STC features

TABLE III
ET VERSUS LVTLN VERSUS VTLN: ON SPLICED PLUS LDA PLUS STC

FEATURES. %WERS

Adapting per speaker
VTLN CMLLR System WSJ
type type ID RM Nov’92 Nov’93
None None tri2f 3.9 12.2 17.7
ET Diag tri2k 3.1 10.6 14.7

LVTLN Offset tri2m 3.2 10.8 15.0
LVTLN Diag tri2m 3.1 10.7 16.5
VTLN Offset tri2m 4.7
VTLN Diag tri2m 3.1 10.7 14.9
SAT Full tri2m 2.7 9.6 13.7

Adapting per utterance
ET Diag tri2k 3.0 10.4 14.6

LVTLN Offset tri2m 10.6 14.4
LVTLN Diag tri2m 3.3 10.8 14.5
VTLN Diag tri2m 4.3 10.6 14.4
SAT Full tri2l 5.1 12.0 16.8

In Table III we show results on top of features based on LDA plus
STC/MLLT. In the case of the ET models, the estimation of the STC
is part of the ET computation so we just need to provide it with the
LDA features. In the case of the LVTLN or VTLN, it would have
been too complex to embed the estimation of STC/MLLT into the
training procedure, so instead we used the STC transform estimated
with the baseline LDA+STC system, and initialized the system build
using alignments from the LDA+STC model. This possibly provides
an unfair advantage to the LVTLN/VTLN system, as it uses an extra
phase of system building and better alignments.

This time, we again do not see perfectly consistent results, but the
general advantage seems to be in favor of ET. Note that our imple-
mentation of VTLN seems to fail quite badly in some circumstances
on RM; we could not find the reason for this.

The bottom row of each section of Table III is with Speaker
Adapted Training (SAT), in which we train with CMLLR-adapted
features. We felt that this was a relevant comparison for VTLN
because both the ET and LVTLN training procedures are special
cases of SAT. It can be seen that when adapting per speaker,
SAT outperforms all the versions of VTLN, but when adapting per
utterance, the SAT trained system performs very badly and in the case
of RM, is worse than a completely unadapted system (this could not
necessarily be fixed by adjusting the count cutoff for estimating a
transform, because the “default” transform may not be well matched
to the SAT trained model).

VI. CONCLUSIONS

We have introduced a new form of adaptation which fuses elements
of VTLN, CMLLR and STC/MLLT. Our method is a generic feature
transformation with parameters learned from data, and does not
include any explicit notion of frequency warping. The experimental
results show that it generally performs about the same as linear-
transform based VTLN (LVTLN) or conventional VTLN, and may
have a slight advantage when combined with features based on
spliced frames plus LDA plus STC/MLLT. For us, the most com-
pelling advantage is that it is a simple, attractive formulation in

which the training consists of optimizing a simple objective function,
as opposed to VTLN in which many implementation details are
not obvious and have to be tuned (e.g. frequency cutoffs; variance
normalization; what to do with the determinant). The exponential
transform is also applicable in principle to any kind of feature, which
is an advantage if we want to significantly change the features.

We have noted that both ET and the linear version of VTLN are
special cases of Constrained MLLR, and the training procedure is just
a specially constrained form of Speaker Adapted Training (SAT). We
find that SAT-trained models and standard CMLLR is better as long
as we are adapting per speaker rather than per utterance (that is, is we
have enough adaptation data). When adaptation must be done on a
per-utterance level, however, the Exponential Transform can achieve
superior results.

A longer version of this paper with more discussion, more deriva-
tions and more experimental results can be obtained as [20].
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