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Abstract—While many algorithms for speaker or environment
adaptation have been proposed, far less attention has been
paid to approaches which address both factors. We recently
proposed a method called factored adaptation that can jointly
compensate for speaker and environmental mismatch using a
cascade of CMLLR transforms that separately compensate for
the environment and speaker variability. Performing adaptation
in this manner enables a speaker transform estimated in one
environment to be be applied when the same user is in different
environments. While this algorithm performed well, it relied on
knowledge of the operating environment in both training and test.
In this paper, we show how unsupervised environment clustering
can be used to eliminate this requirement. The improved factored
adaptation algorithm achieves relative improvements of 10-18%
over conventional CMLLR when applying speaker transforms
across environments without needing any additional a priori
knowledge.

I. INTRODUCTION

Because speech recognition systems are statistical pattern

classifiers trained from data, any mismatch between the speech

seen in deployment and that used to train the speech recognizer

will cause a degradation in performance. Two of the biggest

sources of acoustic mismatch are the environment and the

speaker. In both of these cases, acoustic model adaptation has

been proposed as way to reduce the mismatch and improve

performance.

Historically, methods for environmental or speaker adapta-

tion have been developed independently. Environmental adap-

tation is commonly performed using methods that utilize a

parametric model that explains how clean speech is corrupted

by additive and convolutional noise. These methods such as

parallel model combination (PMC) [1] and vector Taylor series

(VTS) adaptation [2] have the advantage that they can adapt all

parameters of the recognizer based on a small observation of

the noise. In order for such approaches to operate, the acoustic

model must be trained from clean speech or using specialized

noise-adaptive training techniques [3], [4].

In constrast, the most common methods for speaker adapta-

tion are data-driven approaches in which the model parameters

are transformed in a manner which maximized the likelihood

of the adaptation data. For example, the various versions

of MLLR or CMLLR use one or more affine transforms to

modify the Gaussian parameters of the recognizer [5]. These

methods are not particular to speaker adaptation and can be

used to compensate for any mismatch, including environmental

noise [6]. While this is a benefit, it can also be a drawback, as

it is unknown exactly what mismatch the estimated transforms

are compensating. This prevents these transforms (and the

adaptation data in general) from being reused in situations

where the same speaker may be in a different acoustic envi-

ronment.

Because of this problem, there has been some interest in

approaches in which the speaker and environmental variability

can be compensated in a way that allows the sources of

variability to be separated. A method of joint environment and

speaker adaptation was proposed in which Jacobian adaptation

for noise compensation was combined with MLLR for speaker

adaptation [7]. This approach was recently improved by using

Vector Taylor Series (VTS) adaptation to update both the

means and variances of speaker-adapted models whose means

were compensated using MLLR [8]. The VTS noise parame-

ters and the MLLR transforms were jointly estimated using an

iterative EM approach. Combining methods that use different

adaptation strategies enables straightforward separation of the

speaker transform parameters and the environmental transform

parameters. This desirable separability was called acoustic

factorization in [9]. In that work, MLLR adaptation was

combined with cluster adaptive training such that the speaker

variability was captured by the MLLR transforms while the

environmental variablity was captured by the cluster weights

in the acoustic model.

Most recently, we proposed a technique called factored

adaptation [10]. In this approach, a cascade of linear trans-

forms was used to jointly compensate for the speaker and

the environment. Because the cascade of transforms is itself

a linear transform, it is computationally equivalent to any

transform-based adaptation method at runtime. In this work,

adaptation was performed using a cascade of CMLLR trans-

forms which is appealing because a CMLLR transform can

compensate both the Gaussian means and the variances and

can be efficiently applied to the features, rather than the model

parameters.

In our previous work, we relied on a priori knowledge of

the speaker identity and the environment. For example, we as-

sumed that the user may be identified using a device hardware

code, caller ID on a phone, or a login name. Similarly, in many

”situated” applications, the environment can also be easily

known, e.g., in an in-car voice control system or a living room

game console. While these assumptions may be reasonable

in some cases, there are many more situations where this
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will not be true. In particular, for speech applications on

mobile phones, it is still reasonable to assume knowledge of

the speaker, but the acoustic environment cannot be known a
priori.

In this paper, we present an improved method for factored

adaptation that eliminates the need for environment labels.

In the proposed algorithm, unsupervised clustering is used to

characterize and then compensate the environmental variabil-

ity. Unlike the previous algorithm that relied on labeled envi-

ronments, this method can operate in both environments seen

in training and those that are unseen. We demonstrate through

a series of experiments that the factored adaptation algorithm

can perform joint environment and speaker compensation that

a manner which enables the effective reuse of the speaker

transforms across multiple environments.

The remainder of the paper is organized as follows. In

Section II, we introduce the concept of factored adaptation and

factored transforms. In Section III, we show how these trans-

forms can be estimated from adaptation data or training data.

The method used for unsupervised environment clustering is

described in Section IV. In Section V, we show how adaptive

training can be performed using factored transforms. Finally,

experiments that demonstrate the efficacy of the proposed

algorithm are described in Section VI and some concluding

remarks are made in Section VII.

II. FACTORED ADAPTATION USING A CASCADE OF

TRANSFORMS

In this work, we assume that environmental variability and

speaker variability can be jointly compensated for by a single

CMLLR feature transform,

y = Ax+ b (1)

and that this transform can be decomposed into two distinct

transforms that capture each of these sources of variability

separately. This can be expressed as

y = A𝑠(A𝑒x+ b𝑒) + b𝑠 (2)

where W𝑠 = {A𝑠,b𝑠} and W𝑒 = {A𝑒,b𝑒} represent the

speaker and environment transforms, respectively. The equiv-

alence between (1) and (2) can be seen by letting A = A𝑠A𝑒

and b = A𝑠b𝑒 + b𝑠.

Because the relationship between the environmental and

speaker transforms is linear, the transforms in (2) can be

also applied in the reverse order where the speaker transform

is applied first. This is an equivalent model for factored

adaptation but the transforms learned would be different, as

matrix operations are not commutative in general.

III. FACTORED TRANSFORM ESTIMATION

Let us assume that adaptation data exists from many speak-

ers in one or more different environments. Let Λ𝑆 be the set

of speaker transforms for 𝑆 different speakers in the data.

Similarly, let Λ𝐸 be the set of environmental transforms for

the 𝐸 different environments in the data. Given this adaptation

data, the goal is to estimate the set of transforms (Λ𝐸 ,Λ𝑆)

by maximizing the likelihood of the data. If we define 𝑖,
𝑡, and 𝑘 as the indices for the utterance, the frame and

the Gaussian component, respectively, we can the write the

following auxiliary function

𝒬(Λ𝐸 ,Λ𝑆) =
∑

𝑖,𝑡,𝑘

𝛾
(𝑖)
𝑡𝑘 log(𝑝(y

(𝑖)
𝑡 ∣𝑘)) (3)

where y
(𝑖)
𝑡 is defined according to (2) and 𝑝(y

(𝑖)
𝑡 ∣𝑘)) is a

Gaussian distribution with mean 𝝁𝑘 and covariance matrix

Σ𝑘.

Because any linear transform defined in (1) can be arbi-
trarily factored into two transforms as in (2), it is impossible

to separate the environmental and speaker variability without

additional constraints. Thus, we make some assumptions about

the nature of the adaptation data. First, we assume that each

utterances has an associated speaker label and environment

label. These labels may represent the true speaker and/or

environment or some other identifier such as cluster mem-

bership. In addition, we assume that there is a significant

diversity of speakers in each environment of interest. Using

these assumptions, each of the transforms in (Λ𝐸 ,Λ𝑆) is

optimized using a distinct (but overlapping) set of data.

A. Optimizing the speaker transforms

To optimize the speaker transform for speaker 𝑠, we define

𝑖𝑠 as the index over all utterances from that speaker and rewrite

the auxiliary function as

𝒬(W𝑠,W̄𝑠, Λ̄𝐸) =
∑

𝑖𝑠,𝑡,𝑘

𝛾
(𝑖𝑠)
𝑡𝑘 log(𝑝(y

(𝑖𝑠)
𝑡 ∣𝑘)) (4)

Throughout this paper, a bar on top of a variable, e.g. Ā,

represents the current estimate of that variable. Under this

objective function, y𝑡 can be written as

y𝑡 =A𝑠(Ā𝑒(𝑖𝑠)x
(𝑖𝑠)
𝑡 + b̄𝑒(𝑖𝑠)) + b𝑠 (5)

=A𝑠x̄
(𝑖𝑠)
𝑒,𝑡 + b𝑠 (6)

where 𝑒(𝑖𝑠) is the environment for the utterance 𝑖𝑠 and x̄
(𝑖𝑠)
𝑒,𝑡 is

the observation with the transform for environment 𝑒 applied.

Thus, the log probability in (4) can be written as

log(𝑝(y
(𝑖𝑠)
𝑡 ∣𝑘)) = log(∣Σ𝑘∣)− log(∣A𝑠)∣2)+

(A𝑠x̄
(𝑖𝑠)
𝑒,𝑡 + b𝑠 − 𝝁𝑘)

𝑇Σ−1
𝑘 (A𝑠x̄

(𝑖𝑠)
𝑒,𝑡 + b𝑠 − 𝝁𝑘) (7)

From (7), it is clear that the auxiliary function in (4) is equiv-

alent to that of conventional CMLLR where the observations

are replaced by the environmental-transformed features and the

standard row-by-row optimization procedure can be employed

[5].

B. Optimizing the environment transforms

To update the set of environment transforms, we define a

similar auxiliary function for each of the environments, in

which we define an index 𝑖𝑒 that indexes all utterances from

that environment.

𝒬(W𝑒,W̄𝑒, Λ̄𝑆) =
∑

𝑖𝑒,𝑡,𝑘

𝛾
(𝑖𝑒)
𝑡𝑘 log(𝑝(y

(𝑖𝑒)
𝑡 ∣𝑘)) (8)
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This is similar to (4) except that the set of utterances is

different and the speaker transforms are now assumed fixed.

In this case,

y
(𝑖𝑒)
𝑡 = Ā𝑠(𝑖𝑒)(A𝑒x

(𝑖𝑒)
𝑡 + b𝑒) + b̄𝑠(𝑖𝑒) (9)

where 𝑠(𝑖𝑒) is the speaker for utterance 𝑖𝑒. The log probability

in (8) can be then be expressed as

log(𝑝(y
(𝑖𝑒)
𝑡 ∣𝑘)) = log(∣Σ𝑘∣)− log(∣Ā𝑠)∣2)− log(∣A𝑒∣2)+

(y
(𝑖𝑒)
𝑡 − 𝝁𝑘)

𝑇Σ−1
𝑘 (y

(𝑖𝑒)
𝑡 − 𝝁𝑘) (10)

Substituting (9) into (10) and rearranging terms gives

log(𝑝(y
(𝑖𝑒)
𝑡 ∣𝑘)) = log(∣Σ̄𝑘,𝑠(𝑖𝑒)∣)− log(∣A𝑒∣2)+
(x

(𝑖𝑒)
𝑒,𝑡 − 𝝁̄𝑘,𝑠(𝑖𝑒))

𝑇 Σ̄
−1
𝑘,𝑠(𝑖𝑒)(x

(𝑖𝑒)
𝑒,𝑡 − 𝝁𝑘,𝑠(𝑖𝑒)) (11)

where

x
(𝑖𝑒)
𝑒,𝑡 = A𝑒x

(𝑖𝑒)
𝑡 + b𝑒 (12)

𝝁̄𝑘,𝑠(𝑖𝑒) = Ā−1
𝑠(𝑖𝑒)

(𝝁𝑘 − Ā𝑠(𝑖𝑒)b̄𝑠(𝑖𝑒)) (13)

Σ̄𝑘,𝑠(𝑖𝑒) = Ā−1
𝑠(𝑖𝑒)

Σ𝑘Ā
−1,𝑇
𝑠(𝑖𝑒)

(14)

By substituting (11) – (14) into (8), we can see that optimiz-

ing the environmental transforms is equivalent to performing

CMLLR with adapted Gaussian parameters given by (13) and

(14). Note that the adapted covariances have the same stucture

as the speaker transforms. If the transforms are full matrices,

then so are the covariance matrices. In this case, the row-by-

row optimization for full covariances must be used [11].

C. Jointly optimizing the speaker and environmental trans-
forms

Because there is no closed-form for solution to optimizing

the full set of transforms jointly, the speaker and environmental

transforms are optimized alternately. After choosing initial

values for the transforms, the environment transforms are

estimated while the speaker transforms are fixed, and then

vice versa. This process can be repeated for a fixed number

of iterations or until the likelihood of the adaptation data

converges.
In this work, the following recipe was used:

1) Initialize the transforms. All A matrices were initialize

to identity and all offset vectors b were initialized to

zero.

2) Fix speaker transforms Λ𝑆 and optimize W𝑒 for each

environment 𝑒 = {1, . . . , 𝐸}.

3) Fix environmental transforms Λ𝐸 and optimize the

speaker transforms W𝑠, 𝑠 = {1, . . . , 𝑆}.

4) If more iterations desired, go to step 2.

In the experiments reported in this paper, we performed

a single iteration of this joint optimization and used full

matrices for all transforms. Because we chose to start with the

optimization of the environment transforms with the speaker

transforms initialized to A𝑠 = I and b𝑠 = 0, the environment

transforms could be optimized with conventional CMLLR

with a diagonal covariance Gaussians, rather than the full

covariances indicated by (14). If a second iteration were to

be performed full-covariance optimization would be required.

IV. ENVIRONMENT CLUSTERING

In order to perform factored adaptation, groups of utterances

with common speakers or environments must be identified.

While it is in theory possible to label the environments seen in

the training data by listening to the utterances, this solution is

obviously not scalable to large amounts of data. Alternatively,

we propose to automatically cluster the environments in an

unsupervised way.

Many methods for environment clustering have been pro-

posed in the literature. These methods have sometimes been

referred to as ”acoustic sniffing” algorithms [12], [13]. In

this work, we use a simple approach that uses a Gaussian

mixture model trained on the silence regions of the utterances

in the training data. After the mixture model has been trained,

each Gaussian in the model is assumed to define a unique

acoustic environment. The utterances in the training set are

labeled by computing the average posterior probability of the

silence segments in the utterance and finding the Gaussian in

the mixture with the highest score. All the data associated

with each cluster is then used to train the transform for that

environment. At run time, the initial silence portion of the

utterance is used to estimate the environmental cluster for

the utterance. The transform for the cluster with the highest

posterior probability is then applied to the utterance.

V. ADAPTIVE TRAINING WITH FACTORED TRANSFORMS

Because both the environment and speaker transforms are

linear operations on the features, they can be combined into a

single linear transform that can be applied to the features. As

a result, performing adaptive training [14] is quite straightfor-

ward. To do so, we simply add the set of HMM parameters

Λ𝑋 to the auxiliary function in (3),

𝒬(Λ𝑋 ,Λ𝐸 ,Λ𝑆) =
∑

𝑖,𝑡,𝑘

𝛾
(𝑖)
𝑡𝑘 log(𝒩 (y

(𝑖)
𝑡 ,𝝁𝑘,Σ𝑘)) (15)

As in the recipe in Section III-C, the speaker transforms,

environment transforms, and acoustic model parameters are

each optimized in succession while the other parameters are

held fixed. To update the acoustic model parameters, the

speaker and environment transforms are combined into a

single linear transform (depending on the speaker and the

environment of the utterance) and then the acoustic model

parameters can be updated using the transformed features. We

refer to this training as Speaker and Environment Adaptive

Training (SEAT) to reflect that fact that separate transforms

are estimated to compensate for the speaker variability and

the environmental variability.

VI. EXPERIMENTS AND RESULTS

In order to validate the proposed factored adaptation al-

gorithm, we performed a number of experiments using the

Aurora 2 corpus [15]. Aurora 2 consists of data degraded

with eight types of noise at a range of SNRs. Evaluation is

performed using three test sets that contain noise types seen

in the training data (Set A), unseen in the training data (Set

B), and additive noise plus channel distortion (Set C). There
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are 110 speakers in the training set and 104 speakers in the

test set with no overlap between the two sets. In this work,

our evaluation is limited to Set A and Set B.

The acoustic models were trained from the multi-condition

training set using HTK with the “complex back end” recipe.

An HMM with 16 states per digit and 20 Gaussians per state is

created for each digit as a whole word model. There is a three-

state silence model with 36 Gaussians per state and a one state

short pause model tied to the middle state of silence. Standard

39-dimensional MFCC features consisting of 13 static, delta,

and delta-delta features were computed from power spectral

observations and C0 was used instead of log energy. The

baseline system included cepstral mean normalization (CMN)

and had a word error rate 1 (WER) of 7.30% on Set A and

7.41% on Set B .

A. Environment compensation in unknown environments

In the first series of experiments, we wanted to assess the

performance of CMLLR transforms for compensating envi-

ronmental distortions both when the environments in training

and test are known a priori and in the more challenging case

when the environments are unknown. In these experiments, the

following procedure was followed. The training data was first

clustered by environment and then a single CMLLR transform

was estimated per cluster using the training data with known

transcriptions. During evaluation, each test utterance was as-

signed to a cluster and the corresponding CMLLR transform

learned from the training data was applied prior to decoding.

For the experiments where the environments were assumed

to be known, the training data was clustered simply using

the noise and/or SNR labels associated with each utterance.

At test time, cluster assignment was likewise done using the

label associated with each test utterance. The results obtained

using transforms estimated from labeled environments are

shown in Table I. The table shows two different methods of

environmental clustering using the labels available in Aurora

2. The first uses four clusters that represent the four noise

types N1-N4 in the multi-condition training data. The second

uses twenty clusters that represent the combination of four

noise types and five SNRs in the training data. As these results

indicate, even just using four clusters results in a significant

improvement over the baseline while additional improvement

is obtained with more granular clusters that utilize on both

noise type and SNR. Note that we can only obtain results for

Set A, since the noises in Set B are unseen in training.

To evaluate performance when the environmental labels are

unknown, the unsupervised GMM-based clustering described

in Section IV was performed. A GMM was trained using

the first and last 20 frames of all utterances in the multi-

condition training set. The GMM was trained using static

cepstral features without any preprocessing such as CMN or

AGC. All utterances in the training set were then assigned

to a cluster by finding the Gaussian in the the mixture with

the highest average posterior probability computed from the

1In Aurora 2, only SNRs 0-20 are included when reporting average WER

TABLE I
WER SET A AND SET B USING A SINGLE CMLLR TRANSFORM FOR

EACH ENVIRONMENT. THE TRANSFORMS WERE ESTIMATED USING THE

MULTI-CONDITION TRAINING DATA. THE BASELINE WER FOR SET A IS

7.3% AND FOR SET B IS 7.41%

Environment Number of Set A Set B
Clustering Clusters % WER % WER

Supervised 4 6.86 –
(Labels) 20 6.24 –
Unsupervised 4 6.86 7.22
(GMM) 8 6.63 7.22

16 6.45 7.12
32 6.43 7.08

first 20 frames of the utterance. Once the training data was

clustered, a CMLLR transform was then estimated for each

Gaussian in the mixture. At runtime, the first 20 frames of each

test utterance were used to determine the utterance’s cluster

assignment and the corresponding environment transform was

applied.

The unsupervised results in Table I indicate using the

proposed GMM-based clustering method can provide per-

formance that is comparable to that obtained using labeled

noise types and close to the performance achieved where the

SNR is known as well. In addition, because the technique

is unsupervised, it can be applied to Set B. In this case, even

though the noises in these utterances were not seen in training,

we can still find the CMLLR transform that best matches

that environment using the GMM. In addition, because the

determining the environment cluster identity only requires the

initial silence of the utterance, the appropriate transform can

be applied in first-pass decoding.

B. Factored adaptation in unknown environments

Because the goal of this work is to find speaker transforms

that can be reused across different environments we next

performed a series of experiments to determine how traditional

adaptation methods and those proposed in this work can

perform in this context. We first evaluated the performance

of CMLLR when speaker transforms estimated using the test

data from environment N1 in Set A (subway) are applied

to the test data from environments N2-N4 in both Set A

(car, babble, exhibition hall) and Set B (street, airport, train

station). All speaker transforms were estimated in an unsuper-

vised manner. As shown in Table II, this approach provides

only a minimal improvement over the CMN baseline, as the

transforms estimated are adapting to both the speaker and the

subway noise environment. These transforms are sub-optimal

when applied to other environments. The table next shows

the performance obtained using only the CMLLR environ-

ment transforms estimated using the unsupervised clustering

approach described in the previous experiment. As the table

indicates, more significant improvements are obtained even

when the noise environments are different from those used

to train the transforms. Note that these results differ from

those shown in Table I because we have excluded the results

from environment N1 in order to be compatible with the other

results in this table.
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TABLE II
WER FOR SET A AND SET B USING DIFFERENT ADAPTATION STRATEGIES.

Set A Set B
N2-N4 N2-N4

Baseline CMN 7.91 7.52
CMLLR 7.86 7.28
CMLLR (environment) 6.82 7.23
Factored CMLLR 6.39 6.55

Finally, we evaluated the performance of the proposed

factored adaptation approach. For each test utterance from

environment N1 in Set A, the best environment transform

was determined by finding the appropriate cluster using a 32-

mixture environment GMM. Once the appropriate environment

transform had been applied to each utterances from a given

speaker, the speaker transform was then estimated. These

speaker transforms were then used in conjunction with the

appropriate environment transforms to decode the test data

from the other environments. As shown in Table II, the

proposed factored adaptation method results is a significant

improvement in performance over the other methods. In partic-

ular, an 18% and 10% relative improvement over conventional

CMLLR speaker adaptation was obtained on Set A and Set

B, respectively. This demonstrates that the factored adaptation

approach can provide a significant benefit in scenarios where

the users may operate from a wide range of environments,

even those unseen in the training data.

As stated in Section V, one benefit of using CMLLR

transforms as the basis of factored adaptation is that per-

forming adaptive training is straightforward and efficient as

the features need to simply be transformed appropriately prior

to conventional HMM training. A final series of experiments

was performed to evaluate the effect of adaptive training on

factored adaptation. The previous set of experiments com-

paring CMLLR and factored adaptation were repeated using

adaptively trained models in both cases. The results for Set A

and Set B are shown in Tables III and IV. Comparing these

results to those in Table II, it is clear that adaptive training

improves the performance of all methods and the relative im-

provements of factored adaptation over conventional CMLLR

are maintained. These tables also show the results obtained

using VTS adaptation in conjunction with Noise Adaptive

Training [3]. This approach is representative of state-of-the-

art performance in environmental adaptation. It is interesting

to observe that a single linear feature transform, computed

using factored adaptation can approach, and in some cases

exceed, the performance of VTS adaptation, a much more

complex algorithm that adapts the means and variances of

every Gaussian in the HMM individually for every utterance.

VII. CONCLUSION

In this paper, we have proposed a method called factored

adaptation which can jointly compensate for speaker and

environmental variability using CMLLR adaptation. By using

this algorithm in combination with appropriate selection of

the adaptation data, separate transforms for the speaker and

TABLE III
WER ON SET A USING ADAPTIVE TRAINING WHEN SPEAKER

TRANSFORMS ESTIMATED FROM ENVIRONMENT N1 IN SET A ARE

APPLIED TO ENVIRONMENTS N2–N4. THE PERFORMANCE OF NAT-VTS
IS SHOWN FOR COMPARISON.

Set A Baseline CMLLR F-CMLLR VTS
N2–N4 CMN + SAT + SEAT + NAT

Clean 0.52 0.34 0.32 0.38
20 dB 0.85 0.60 0.52 0.76
15 dB 1.30 0.97 0.79 1.10
10 dB 2.62 2.05 1.77 2.46
5 dB 7.51 6.86 5.51 6.39
0 dB 27.25 27.13 22.47 21.12
-5 dB 67.67 67.56 64.12 57.77
Avg 7.91 7.52 6.21 6.37

TABLE IV
WER ON SET B USING ADAPTIVE TRAINING WHEN SPEAKER

TRANSFORMS ESTIMATED FROM ENVIRONMENT N1 IN SET A ARE

APPLIED TO ENVIRONMENTS N2–N4. THE PERFORMANCE OF NAT-VTS
IS SHOWN FOR COMPARISON.

Set B Baseline CMLLR F-CMLLR VTS
N2–N4 CMN + SAT + SEAT + NAT

Clean 0.52 0.34 0.32 0.38
20 dB 0.84 0.53 0.62 0.67
15 dB 1.38 0.90 0.93 0.99
10 dB 2.77 2.12 2.13 2.04
5 dB 7.31 6.34 6.06 6.02
0 dB 25.30 24.94 21.65 18.78
-5 dB 66.01 65.95 63.22 53.83
Avg 7.52 6.97 6.28 5.70

the environment can be estimated. Furthermore we have pro-

posed a method for environment clustering which enables this

approach to be used in scenarios in which the environment

is unknown. Through a series of experiments, we have shown

that factored adaptation enables the speaker transforms learned

in one environment to be effectively applied to speech from

the same user in different environments, resulting in a rel-

ative improvement over conventional CMLLR adaptation of

18% on environments seen in training and 10% on unseen

environments. We have also shown how this method can be

incorporated into an adaptive training strategy which gener-

ates further improvements in performance. In the future, we

plan to further develop this approach by estimating multiple

transforms using regression classes.
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