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Abstract—In this paper we propose a new feature normaliza-
tion based on Factor Analysis (FA) for the problem of acoustic
variability in Automatic Speech Recognition (ASR). The FA
paradigm was previously used in the field of ASR, in order to
model the usefull information: the HMM state dependent acoustic
information. In this paper, we propose to use the FA paradigm to
model the useless information (speaker- or channel-variability) in
order to remove it from acoustic data frames. The transformed
training data frames are then used to train new HMM models
using the standard training algorithm. The transformation is also
applied to the test data before the decoding process. With this
approach we obtain, on french broadcast news, an absolute WER
reduction of 1.3%.

I. INTRODUCTION

The goal of Automatic Speech Recognition (ASR) is to

extract the linguistic information from a given speech signal

recording. However, the speech signal includes not only the

linguistic information, but also some disturbing information

[1]. The disturbing information covers a large panel of variabil-

ities such as speaker variability (vocal tract length [2], speaker

spontaneity [3]...), recording conditions (background noise

[4], microphone setup and transmission channel). The speech

signal we observe is then composed of useful information (the

linguistic information) but also useless information, named

here the session variability. The variability of the channel,

speaker and environment are one of the most important factors

affecting the performance of the ASR. We need to find a way

to model this useless information in order to remove it.

Previously, a number of methods for reducing these variabil-

ity effects were proposed in the feature domain. Cepstral Mean

Subtraction (CMS) [5] is applied to remove linear channel

variability. An extension of this approach is proposed and

involved normalizing the distribution of single cepstral features

(over some specific window length) by subtracting their mean

and dividing by their standard deviation. RASTA processing

has been shown to improve the recognition performance in

presence of convolutional distortions and additive noise [6].

Another interesting normalization to counter speaker variabil-

ity and that affects the features is the Vocal Tract Length

Normalization (VTLN) [2]. VTLN attempts to normalize

speech representation by removing the differences caused by

the variance in the length of the speaker’s vocal tract.

Recently a Factor Analysis (FA) approach was applied in the

speaker recognition domain to model the session variability as

additive component [7]. The basic idea behind this approach

is that the session component is located in low-dimensional

acoustic subspace. In this manner the FA paradigm allows a

balance between the amount of parameters to be estimated and

the amount of training data. In fact the session component is

decomposed into two parts : 1- the session variability subspace

basis (consisting to estimate large number of parameters) but

estimated on the whole training data, 2- and the session

coordinates in this subspace (a small number of factors) which

are estimated on a single recording.

Some authors have proposed to apply the FA paradigm in

ASR system. These investigations were carried out on the

accurate modeling of useful information (Subspace Gaussian

Mixture Model (SGMM) [8], [10] and Canonical State Models

(CSM) [9]), but not on the nuisance variability modeling. We

propose, in this paper, the use of FA paradigm to model the

session variability component and hence to remove it directly

from the speech data frames. Another contribution of this

paper is to extend the FA paradigm in order to deal with

multiple variabilities in the speech signal.

The paper is organized as follows: in the next section, we

explain how to model the variability effect within the FA

paradigm. In Section 3, we propose an extended FA paradigm

that deals with multiple variability. Results are reported and

commented in Section 4. Finally, we conclude and we present

some perspectives in Section 5.

II. SESSION VARIABILITY MODELING

The speech signal conveys not only linguistic information

but also useless information. This useless information can be

of very different nature and can be related to environment-

variability (background noise...), speaker-variability (gender,

age, emotion...), channel-variability (microphone...)... This

useless informations is present in the speech signal and affects

the Hidden Markov Models (HMM) of an ASR systems. In

order to model only linguistic information in the HMM, a

solution could be to remove the useless information from the

speech data frames.

The Factor Analysis (FA) paradigm gives the possibility to

model useless information (in a subspace of low dimension R)

in order to remove it from the speech data frames. Let G be a

set of Gaussians structuring the acoustic space of the speech

signal (we will call this normalization acoustic model). Let m
be the supervector obtained by the concatenation of all means

in G. Let i the useful information to be modeled and h be
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the session information (that represents speaker- or channel-

variability). By using the FA paradigm, the supervector mi,h

(random variable) can be decomposed into three different

components:

mi,h = m+Dyi + Uxh (1)

Here m is the supervector composed of the Gaussian means

coming from set G. The set of Gaussians G is trained on

a large amount of data containing useful and useless infor-

mation. m is a vector of dimension MD, where M is the

number of Gaussian in the GMM G and D the dimension of

acoustic space. yi models the useful information, it’s a vector

of dimension MD. It can correspond to the linguistic content

of a given recording, to a phoneme or to an HMM state.

Ux is the session variability component. U is composed by

the eigenvectors of the session variability. xh are the session

factors, it’s a vector of dimension R. Both yi and xh are

assumed to be normally distributed among N(0, I). D is a

diagonal matrix (a MD ×MD matrix) so that DDt is the

a priori covariance matrix of the useful component. U is a

rectangular matrix (a MD × R matrix) so that UU t is the

a priori covariance matrix of the session component random

vector.

As shown in Equation 1, the success of FA modeling

depends mainly on the assumption that the nuisance variability

is located in a subspace of low dimension (dimension R) and

on assumption that the session effect is additive.

In order to have a balance between the modeling precision

and the amount of the data leading to accurate parameters

estimation, we have chosen i to be a context-independent

phoneme. In fact, if we take i as being a part of a phoneme,

for example HMM state, for several states we can not have a

sufficient number of frames to estimate the session factors

xh. In this section we will consider the speaker and the

channel variabilities as a session. By taking i as a context-

independent phoneme, the model of Equation 1 can be written

more explicitely as follows:

mphoneme,session = m+Dyphoneme + Uxsession (2)

The U matrix is global and common to all phonemes. It is

estimated by using a large corpus of phonemes produced by

several speakers and under a variety of acoustic conditions. In

this manner we can isolate the session variability (speaker and

channel). It is important to note that the model of Equation 2

is not used for speech recognition, but only to compensate

speech data frames. The compensated data frames can then be

used for training or testing an ASR.

A. Discussion about the normalization acoustic model G

FA parameter estimation (fully described in [11]) are based

on the following zeroth and first order statistics:

N (h,s)
g =

∑

t∈(h,s)

γg(t) ; X(h,s)
g =

∑

t∈(h,s)

γg(t) · t (3)

where g is a subscript of a Gaussian in G. γg(t) is the a
posteriori probability of Gaussian g given the cepstral vector

of observation t. We can see that the accuracy of the FA param-

eter estimation is mainly based on the a posteriori probabilities

γg(t). The estimation of these probabilities depend on the used

acoustic model and the associated decoding procedure. Maybe,

more robust manner to obtain theses probabilities could be

to use a complete ASR. In fact, by using an ASR, we not

only use acoustic information, but also linguistic information

contained in the lexical and the language models. In this case

the supervector m of Equation 1 is the concatenation of all

Gaussian means contained in the HMM : G is the set of all

the Gaussians in the HMM. In this preliminary study we have

used a GMM-UBM instead of an HMM. Which probably tends

to less accurate a posteriori probability estimations. In this

case the mean supervector is the concatenation of all Gaussian

means contained in the GMM-UBM (G is composed by the

Gaussians in the UBM). This GMM-UBM is trained by using

data coming from a large number of speakers and different

channel sources.

B. Estimating the session-variability subspace

The U matrix is a global parameter. It is estimated using a

large amount of data containing session variability. The matrix

is iteratively estimated using the Expectation Maximization

(EM) algorithm. Each step, xsession (session factors) are

estimated, then yphoneme is estimated for each phoneme (using

the new x) and finally U is estimated globally, based on

these xsession and yphoneme. Since xsession and yphoneme

also depend on U , the process is iterated. The step by step

algorithm is described in [11].

C. ASR acoustic model training

Each utterance in the training corpus is first normalized with

respect to the session variability using the following equation:

t̂ = t−
M∑

g=1

γg(t) · {U · xutterance}[g] (4)

where M is the number of Gaussian components in the

UBM, γg(t) is the a posteriori probability of Gaussian g given

by frame t. These probabilities are estimated by using the

UBM. And U ·xutterance is the session variability component

estimated on the utterance recording. It’s a supervector with

M×D components. {U ·xutterance}[g] is the gth D component

bloc vector of U · xutterance.

After normalizing all utterances using Equation 4, HMMs

for ASR are trained using the normalized speech data frames.

Theoretically, for each utterance we must estimate the session

variability component on each phoneme and normalize it with

the specific session variability component. In practice, this is

not feasible because each phoneme in an utterance contain too

few frames. So we estimate the session variability component

globally on the utterance and normalize the features.
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III. MODELING MULTIPLE SESSION VARIABILITY

In previous section, in Equation 2, U matrix models a

specific kind of session variability (speaker- or channel-

variability). But the variabilities in ASR are multiple [1].

We propose a modified version of FA in order to deal with

multiple-variability effects. We extend the FA paradigm, for

that each matrix can model a specific variability. Here, the

matrix U models speaker-variability and the matrix V models

channel-variability. The modified FA version is written:

mobserved = mubm +Dyphoneme + Uxspeaker + V zchannel
(5)

where, as previously, m is a mean supervector, y is the

part which is specific to the context-independent phoneme,

weighted by D. But in this section Ux is the speaker-

variability component and V z is the channel variability com-

ponent.

Previously, an estimate of U matrix is obtained from one

corpus where all session contain a specific variability. Here,

an estimate of each matrix is obtained from a different corpus,

that allows to estimate the matrix U and V on specific vari-

ability. The U matrix is estimated on the speaker-variability

corpus, where each session represent phoneme-speaker. And

the V matrix is estimated on the channel variability corpus,

where each session represents phoneme-channel pair.

In Speaker Verification (SV), the authors propose a frame-

work [12] similar to the Equation 5. The framework called

Joint Factor Analysis (JFA) model on the same corpus, two

session variability refer as speaker and channel factors. How-

ever, the framwork that we propose it’s a variant of JFA. The

session variability are estimated iteratively and we propose to

modelise the session variability on two different corpus. This

will allow to extend the framework to other variability.

A. Estimating speaker- and channel-variability spaces

The matrices U and V are common to all phonemes, they

are jointly optimized. The estimation procedure is presented

in Algorithm 1. In the first step, the U matrix is optimized on

the data speaker corpus. The xspeaker and zchannel vectors are

estimated, then yphoneme is estimated for each phoneme (using

the new x and z) and finally U is estimated globally, based on

these x, z and y. In a second step, the V matrix is optimized

on the data channel corpus. The xspeaker and zchannel vectors

are estimated, then yphoneme is estimated for each phoneme

(using the new x and z) and finally V is estimated globally,

based on these x, z and y.

The center statistics are calculated to take into account U
and V matrices:

Algorithm 1: Estimation algorithm for U and V

For each phoneme s and session h: ys ← 0, x(h,s) ← 0,

z(h,s) ← 0;

U ← random (U is initialized randomly);

V ← random (V is initialized randomly);

Estimate statistics: Ns, N (h,s), Xs, X(h,s) on speaker

variability corpus;

Estimate statistics: Ms, M (h,s), Zs, Z(h,s) on channel

variability corpus;

for i = 1 to nb iterations do
for all h and s of the speaker variability corpus do

Center statistics: Z
(h,s)

;

Center statistics: X
(h,s)

;

Estimate L−1
(h,s) and B(h,s);

Estimate z(h,s);
Estimate x(h,s);

Center statistics: Z
s
;

Center statistics: X
s
;

Estimate ys;
end
Estimate matrix U ;

for all h and s of the channel variability corpus do
Center statistics: Z

(h,s)
;

Center statistics: X
(h,s)

;

Estimate P−1
(h,s) and Q(h,s);

Estimate z(h,s);
Estimate x(h,s);

Center statistics: Z
s
;

Center statistics: X
s
;

Estimate ys;
end
Estimate matrix V ;

end

X
s

g = Xs
g −

∑

h∈s

N (h,s)
g · {m+ Ux(h,s) + V z(h,s)}g

X
(h,s)

g = X(h,s)
g − N (h,s)

g · {m+Dys + V zs}g
Z

s

g = Zs
g −

∑

h∈s

M (h,s)
g · {m+ Ux(h,s) + V z(h,s)}g

Z
(h,s)

g = Z(h,s)
g − M (h,s)

g · {m+Dys + Uxs}g

(6)

where Ns, N (h,s), Xs, X(h,s) are the zeroth- and first-order

statistics, calculated on the speaker variability corpus and Ms,

M (h,s), Zs, Z(h,s) are the zeroth- and first-order statistics,

calculated from channel variability corpus.

Let L(h,s) and P(h,s) be a R × R dimensional matrix and

B(h,s) and Q(h,s) a vector for dimension R, defined by:
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B(h,s) =
∑

g∈UBM

UT
g · Σ−1

g ·Xh,s
g

L(h,s) = I +
∑

g∈UBM

N (h,s)
g · UT

g · Σ−1
g · Ug

Q(h,s) =
∑

g∈UBM

V T
g · Σ−1

g · Zh,s
g

P(h,s) = I +
∑

g∈UBM

M (h,s)
g · V T

g · Σ−1
g · Vg

(7)

where Σg is the covariance matrix of the gth UBM compo-

nent. By using L(h,s), B(h,s), P(h,s) and Q(h,s) we can obtain

xh,s, zh,s and ys from the following equations :

zh,s = P−1
(h,s) ·Q(h,s)

xh,s = L−1
(h,s) ·B(h,s)

ys =
τ

τ +Ng
·DgΣ

−1
g ·Xh,s

g

(8)

where Dg = (1/
√
τ)Σ

1/2
g (τ is set to 14.0 in our experi-

ments).

Finally the U and V matrix can be estimated row by row,

with U i
g and V i

g being the ith row of Ug and Vg; thus :

U i
g = L(g)−1 · Ri(g)

V i
g = P(g)−1 · Qi(g)

(9)

where where L(g), Ri(g), P(g) and Qi(g) are given by:

L(g) =
∑

s

∑

h∈s

N (h,s)
g · (L−1

(h,s) + x(h,s)xT(h,s))

Ri(g) =
∑

s

∑

h∈s

X
(h,s)

g [i] · x(h,s)

P(g) =
∑

s

∑

h∈s

M (h,s)
g · (P−1

(h,s) + x(h,s)xT(h,s))

Qi(g) =
∑

s

∑

h∈s

Z
(h,s)

g [i] · x(h,s)

(10)

B. ASR acoustic model training on multiple variability

Once the U and V matrices are obtained, features are

normalized in order to remove speaker and channel effects

on this features. As previously, the adaptation of each vector

is obtained by subtracting from the observation feature the

speaker- and channel-variability component:

t̂ = t−
M∑

g=1

γg(t) · ({U · xutterance}[g] + {V · zutterance}[g])
(11)

where U · xutterance and V · zutterance are the channel

components estimated on the recording. The latent variable

xutterance, zutterance are estimated following the Algorithm

1 and setting the U and V matrix.

As previously, after normalizing all utterances using Equa-

tion 11, HMMs for speech recognition are trained by using

the normalized speech data frames.

IV. SYSTEM DESCRIPTION AND RESULTS

A. Speeral

For this test, we used the LIA broadcast news ASR system,

SPEERAL [13]. This system is based on an A* decoder using

state-dependent HMM for acoustic modeling. The baseline

Language Model (LM) is a 65k word broadcast news 3-

gram, estimated on 200M words from the French newspaper

”Le Monde” and from the ESTER broadcast news training

corpus of about 1M words. The system uses context-dependent

models trained on the 90 hours of ESTER transcribed data.

State tying is performed by a decision tree algorithm, using

acoustic context related questions.

B. System and Corpus

The speech transcription process is composed of two passes:

1) The first pass (PASS-1) uses the acoustic model corre-

sponding to the gender and the bandwidth detected by

the segmentation process, and using a trigram language

model.

2) The second pass (PASS-2) applies a MLLR transforma-

tion by speaker or by segment, and uses the same trigram

language models as the first pass.

The performance of the system is evaluated on the ESTER

evaluation corpus. The data was extracted from French radio

broadcast news. It is composed of 18 audio files, with a total

duration of 10h.

C. ASR acoustic model training

The acoustic model was learned on a training corpus where

all data frames are normalised by Equations 4 or 11. The

normalization is also applied to test data frames to be decoded.

For all these results the rank of U and V matrices is fixed to

60. The GMM-UBM used in the FA approach is composed of

600 Gaussians.

D. ASR acoustic model training on a specific variability

In a first step, we compare the results of our baseline with

the systems training on a specific variability. Norm-speaker
and Norm-channel are the systems where acoustic models are

trained on a specific variability using Equation 2.

TABLE I
RESULTS IN % WER ON ESTER CORPUS DEALING WITH SPECIFIC

VARIABILITIES

PASS-1 PASS-2

Baseline 29.6 27.5
Norm-speaker 28.5 26.9
Norm-channel 28.6 26.7

Table I shows the results obtained on ESTER corpus. In

PASS-1, we observe that baseline obtained a Word Error
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Rate (WER) of 29.6% and that Norm-speaker and Norm-
channel obtained a WER of 28.5% and 28.6% respectively (an

absolute WER improvements respectively of 1.1% and 1.0%).

In PASS-2, we obtained an absolute WER for Norm-channel

and Norm-speaker respectively of 0.8% and 0.6%. If the gains

are less important than in PASS-1, this may be due to the

MLLR adaptation. Indeed, the MLLR technique adapt acoustic

model to a particular speaker in capturing general relationships

between the original model and the current speaker or new

acoustic environment. The new speaker dependent models

allow to reduce the intra-speaker-variability.

E. ASR acoustic model training on multiple variabilities

Table II shows the results using the extended FA paradigm.

Norm-speaker-channel is the system whose acoustic models

are train on a multiple variability using Equation 5. Compared

to our baseline, Norm-speaker-channel system obtained in

PASS-2, an absolute WER gain of 1.3%. In previous section

the best system (Norm-channel) obtained in PASS-2 an abso-

lute WER improvement of 0.8%.

These results confirm that the extended FA paradigm must

model different nuisance variability and remove it in the acous-

tic space. In these experiments we limit to the speaker and

channel variability. But it could be possible in this extended

FA paradigm to remove other nuisance variability.

TABLE II
RESULTS IN % WER ON ESTER CORPUS DEALING WITH MULTIPLE

VARIABILITIES

PASS-1 PASS-2

Baseline 29.6 27.5
Norm-speaker-channel 28.0 26.2

In Table III, we observe the Norm-speaker-channel system

robustness by evaluating sentences. We have sorted the sen-

tences of the baseline system into 11 ranges of WER. Each

sentence of the Norm-speaker-channel system is put in the

same range as the sentence of the baseline. The difference

between the two systems is mainly based on the normalization

of the data frames. This Table allows to compare sentences

according to their difficult acoustic conditions.

TABLE III
RESULTS FOR EACH % WER RANGE

WER Range % Baseline Norm-spk-cha Absolute WER reduction

0-5 0.35 2.46 -2.11
5-10 7.19 8.52 -1.33
10-15 12.73 13.44 -0.70
15-20 17.60 18.36 -0.75
20-25 21.52 20.91 0.61
25-30 26.71 25.80 0.91
30-35 32.18 29.79 2.39
35-40 37.01 35.79 1.22
40-45 41.85 39.45 2.39
45-50 46.36 44.00 2.36

50-100 68.28 62.54 5.74

We can observe, for the 0-10 range, that WER between

Norm-speaker-channel and Baseline is increased. We obtain

on the 0-5 range an absolute WER increase of 2.11%. On the

20%-100% range, we observe some gains on Norm-speaker-
channel systems. This gain is particularly important on the

50%-100% range (an absolute WER reduction of 5.74%).

More over, if we observe on ESTER corpus, an absolute WER

reduction of 1.3%. The normalization is mainly interesting

on sentences with difficult acoustic conditions. However, on

sentence with a low WER the normalization gives no im-

provement. The reason may be that the speaker- and channel-

variabilities are mainly concentrated on sentences with high

WER.

V. CONCLUSION

In this work, we proposed a framework of feature normal-

ization based on the FA paradigm. We also presented an exten-

sion to deal with multiple and different types of variabilities.

This extension can be used for other variabilities which can

be studied in the future. In this preliminary study, we have

used a GMM-UBM instead of HMM for the normalization of

acoustic model G. We try in next work to see if replacing the

model, by an HMM, may improve performance.
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