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Abstract—In this paper we describe how the model-based noise
robustness algorithm for previously unseen noise conditions,
Dynamic Noise Adaptation (DNA), can be made robust to
matched data, without the need to do any system re-training.
The approach is to do online model selection and averaging
between two DNA models of noise: one that is tracking the
evolving state of the background noise, and one clamped to
the null mis-match hypothesis. The approach, which we call
DNA with (matched) condition detection (DNA-CD), improves
the performance of a commerical-grade speech recognizer that
utilizes feature-space Maximum Mutual Information (fMMI),
boosted MMI (bMMI), and feature-space Maximum Likelihood
Linear Regression (fMLLR) compensation by 15% relative at
signal-to-noise ratios (SNRs) below 10 dB, and over 8% relative
overall.
Index Terms: Dynamic Noise Adaptation (DNA), Noise Ro-
bustness, Model Adaptation, fMLLR, fMMI, Spectral Subtrac-
tion, Algonquin.

I. INTRODUCTION

Dynamic noise adaptation (DNA) [1], [2] is a model-based
technique for improving automatic speech recognition (ASR)
performance in noise [1], [2], [3]. DNA is designed to com-
pensate for mis-match between training and testing conditions,
and significantly outperforms the ETSI AFE on the Aurora II
and DNA+Aurora II tasks. Recently, DNA has been shown
to improve the performance of even commercial-grade ASR
systems trained on large amounts of data [3]. However, new
investigations with yet more data and yet stronger baseline
systems have revealed that DNA can sometimes harm perfor-
mance.
DNA as described in previous publications does not degrade
performance in mis-match scenarios, but rather when the
current noise conditions are well characterized by the acoustic
model in the back-end (and the surrogate speech model in
DNA). Such issues can be mitagated by applying the model-
based approach to the recognizer itself, and training acoustic
models of speech that recover a “canonical” representation
of speech, together with a noise model, which could be
adapted [4], [5], [6]. However, this paradigm is not yet fully
mature (even simple dimensionality reduction techniques like
LDA complicate matters), and these systems are not yet truly
commerical grade.
In this paper we demonstrate that it is possible to automatically
and reliably detect when mis-match noise modeling is not
beneficial. Our approach is to do online Bayesian model

averaging to regularize the influence that mis-match noise
modeling has on the output speech feature estimate. Results
demonstrate that the technique improves the Sentence Error
Rate (SER) of a state-of-the-art embedded speech recognizer
that utilizes commerical-grade feature-space Maximum Mutual
Information (fMMI), boosted MMI (bMMI), and feature-space
Maximum Likelihood Linear Regression (fMLLR) compensa-
tion by 15% relative at signal-to-noise ratios (SNRs) below
10 dB, and over 8% relative overall.

II. THE DNA MODEL

The DNA model was recently presented in detail in [3]. Here
we briefly review DNA so that we can adequately describe
DNA with condition detection (DNA-CD).
The DNA model consists of a speech model, noise model,
channel model, and interaction model, which describes how
these acoustic entities combine to generate the observed
speech.

A. Interaction Model

The interaction between speech x, noise n and channel effects
h is modeled in time domain as

y(t) = h(t) ∗ x(t) + n(t), (1)

where ∗ denotes linear convolution. In the frequency domain
we obtain

|Y|2 = |H|2|X|2 + |N|2 + 2|H||X||N| cos θ

= |H|2|X|2 + |N|2 + ε, (2)

where |X| and θx represent the magnitude and phase spectrum
of x(t), and θ = θx + θh − θn. Ignoring the phase term ε and
assuming that the channel response |H| is constant over each
Mel frequency band, in the log Mel spectral domain we have

y ≈ f(x+ h, n) = log(exp(x+ h) + exp(n)) (3)

where y represents the log Mel transform of |Y|2. As in pre-
vious publications, we model the error of this approximation
as zero mean and Gaussian distributed:

p(y|x+ h, n) = N (y; f(x+ h, n), ψ2). (4)

B. Speech Model

As in [3], we model speech by a band-quantized gaussian mix-
ture model (BQ-GMM) [7], which is a constrained, diagonal
covariance GMM. BQGMMs have B� S shared Gaussians
per feature, where S is the number of acoustic components,
and so can be evaluated very efficiently.
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C. Noise Model

DNA models noise in the Mel spectrum as a Gaussian process.
Noise is separated into evolving and transient components,
which facilitates robust tracking of the noise level during
inference.
The dynamically evolving component of this noise—the noise
level—is assumed to be changing slowly relative to the frame
rate, and is modeled as follows:

p(lf,0) = N
(
lf,0;βf , ω

2
f,0

)
, (5)

p(lf,τ |lf,τ−1) = N
(
lf,τ ; lf,τ−1, γ

2
f

)
, (6)

where lf,τ is a random variable representing the noise level
in frequency band f and frame τ . Note that it is assumed that
the noise evolves independently at each frequency band. The
transient component of the noise process at each frequency
band is modeled as zero-mean and Gaussian:

p(nf,τ |lf,τ ) = N
(
nf,τ ; lf,τ , φ

2
f

)
. (7)

D. Channel Model

In this work channel distortion, h, as in [3], is modeled as a
parameter which is stochastically adapted, as described in [8]:

p(hf,τ ) = δ(hf,τ − ĥf(τ)), (8)

where ĥf (τ) is the current estimate of the channel in frequency
bin f at frame τ .

III. INFERENCE

We evaluate the DNA model in sequential fashion, as described
in [3]. For a GMM speech model with |s|=K components,
and an utterance with T frames, the exact noise posterior for a
given frame τ is a KT component GMM, so approximations
need to be made to make inference tractable. As in previous
work, here the noise posterior at each frame, given all previous
frames, is approximated as Gaussian:

p(lf,τ+1|y0:τ ) ≈N (lf,τ+1;βf,τ+1, ω
2
f,τ+1), (9)

We use a variation of Algonquin [9] to iteratively estimate the
conditional posterior of the noise level and speech for each
speech Gaussian, as in [3]. Algonquin iteratively linearizes
the interaction function (3) in (4) given a context-dependent
expansion point, usually taken as the current estimates of the
speech and noise. For a given Gaussian a:

p(y|x, n, h) ≈ N (y;αa(x+ h) + (1− αa)n+ ba, ψ
2), (10)

αa =
δf

δx

∣∣∣∣
x̂a,ĥa,n̂a

=
|Ĥa|2|X̂a|2

|Ĥa|2|X̂a|2 + |N̂a|2
, (11)

ba = f(x̂a + ĥa, n̂a)− αa(x̂a + ĥa − n̂a)− n̂a. (12)

Given αa, the posterior distribution of x and n is Gaussian.
Once the final estimate of αa has been determined, the
posterior distribution of l can be determined by integrating
out the speech and transient noise to get a Gaussian posterior
likelihood for l, and then combining it with the current noise
level prior. This is more efficient than unnecessarily computing
the joint posterior of x, n, and l.

The approximate Minimum Mean Square Error (MMSE) es-
timate of the Mel speech features for frame τ under DNA
is:

x̂f,τ = E[xf,τ |y0:τ ] =
∑

sτ

p(sτ |y0:τ )E[xf,τ |y0:τ , sτ ] . (13)

These features are passed to the backend for recognition.

IV. MATCHED CONDITION DETECTION

To detect matched conditions, we introduce a Null Mis-match
(NM) model to compete with the current DNA model. The NM
model is a degenerate DNA model that contains no explicit
noise model, and shares it’s speech and channel model with
DNA. Note that noise may still be implicitly represented in the
NM model. When the test conditions are well matched, explicit
noise modeling is redudant, and can hurt ASR performance.
Let MDNA and MNM denote the current estimates of the DNA
model and NM model, respectively. The posterior probability
of the DNA model, for a given frame of data is given by:

p(MDNA |yτ ) =
1

1 + exp(−αf(yτ ))
, (14)

where

f(yτ ) = g(yτ ) + c, (15)

with

g(yτ ) = log
p(yτ |MDNA)

p(yτ |MNM)
, c = log

p(MDNA)

p(MNM)
, (16)

and α = 1. This is simply Bayes’ rule for a binary random
variable, with states MDNA, and MNM, respectively. α can
be tuned to control how “sharp” the posterior estimate is.
f(yτ ) consists of two terms. The first, g(yτ ), is simply the
log likelihood ratio of the two models. c is a bias term equal
to the log of the prior ratio of the models.
A shortcoming of (14) is that the relative complexity of the
models that are competing to explain the data is not directly
taken into account. When deciding what model best represents
the observed test features, it makes sense to penalize model
complexity. In this case, one model is actually contained
within the other. If the NM model can explain the data as
well as the DNA model, clearly the NM model should have
higher posterior probability, because it has less parameters.
The idea that we should trade simplicity only for explanatory
power is a fundamental principle of science: Occam’s razor.
This suggests that the probability of the DNA model should
be zero if the NM model can explain the data as well, and
indeed, this strategy was the most effective.
The updated equation (14) estimates a frame-level model-
posterior for the DNA model.In this work we approximate the
model posterior for frame τ given all previous data frames
y0:τ as:

p(MDNA |y0:τ ) = γp(MDNA|y0:τ−1) +

(1 − γ)p(MNM|yτ ), γ ∈ (0, 1) (17)

The speech estimate for frame τ is then given by:

E[xt|y0:τ ] = p(MDNA |y0:τ )EMDNA
[x|y0:τ ]

+(1− p(MDNA|y0:τ ))EMNM
[x|y0:τ ] (18)
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Note that in contrast with [1], the state of the DNA noise
model is not affected by the current posterior probability of
the competing model. In [1], a competing noise GMM was
introduced to make DNA more robust to abrupt changes in the
noise level. When a “reset” condition was triggered by a high
noise GMM probability, the evolving noise model in DNA
would be re-initialized. Here, the NM model competes with
DNA only for influence in the reconstructed speech estimate.

V. EXPERIMENTS

In [3] we investigated how DNA interacts with Spectral
Subtraction (SS), fMLLR and fMMI, using a commerical-
grade speech recognizer, trained on large amounts of data.
DNA was able to improve SS and fMLLR on ML systems,
but had negligible effect on the fMMI-enabled systems. Here
we test DNA using yet more data, using a yet better back-end
recognition system. We demonstrate that DNA with condition
detection (DNA-CD) significantly improves recognition recog-
nition performance in all tested scenarios & conditions.

A. Corpora

Experiments were conducted on real data recorded to char-
acterize in-car recognition scenarios. For this purpose, we
utilize two proprietary databases, D1 and D2, recorded in two
different in-car domains, which include training and testing
sets. Our database D1 is identical to the one used in [3].
Audio data is US English in-car speech recorded in various
noise conditions (0, 30 and 60 mph), and sampled at 16kHz.
A training subset (train1) is composed of 786 hours of speech,
with 10k speakers for a total of 800K utterances. A test
subset (test1) contains a total of 206k words in 39k utterances
from 128 held-out speakers. There are 47 tasks covering four
domains (navigation, command & control, digits & dialing,
radio) in 7 various US regional accents.
The D2 database is also US English in-car speech but contains
a higher percentage of high SNR data. It is recorded by close-
talk and far-talk microphones, sampled at 16kHz. The training
data (train2) is 2500 hours of speech uttered by thousands of
speakers. Prompts cover command & control, spelling, digits,
destinations and continuous speech. The test set (test2) is 167k
sentences with digits, spelling, command & control, names and
destinations. Training and testing conditions are well matched.
For D1, our reference acoustic model is a state-of-the-art 10k
Gaussian with 865 context-dependent (CD) states. We use a set
of 91 phonemes modeled by three-state hidden Markov models
(HMM). fMMI uses a secondary acoustic model with 512
Gaussians, with an inner and outer context of 17 and 9 frames
respectively. Once trained, acoustic models are quantized [10].
For D2, the reference acoustic model is a quantized 30k
Gaussian model with 1200 CD states. We use 164 three-state
phoneme models; digits are modeled separately. Similarly to
models for D1, we have online fMLLR, and fMMI transforms
with the same inner and outer contexts. Acoustic models are
trained under maximum likelihood and then under boosted
MMI (bMMI) criterion. For both D1 and D2, the recognition
runs using our IBM embedded recognizer. Decoding is done

D1 D2
SER (%) WER (%) SER (%) WER (%)

fMMI+bMMI 3.77 1.34 11.82 5.36
fMMI+bMMI+fMLLR (baseline) 3.00 1.08 11.44 5.17
baseline + SS 2.79 1.00 11.38 5.15
baseline + DNA 2.89 0.99 11.59 5.19
baseline + DNA-CD 2.73 0.93 10.72 4.74

TABLE I
WERS AND SERS COMPARING SPECTRAL SUBTRACTION, DNA, AND

DNA WITH MATCHED CONDITION DETECTION (DNA-CD) ON THE D1
AND D2 TEST DATABASES.

in a single pass using static graphs pre-compiled from task-
specific word grammars.

B. DNA Models

The acoustic models used for DNA are trained using
speech/noise segmentation coming from a forced-alignment,
which is also used for SNR estimation. For each training
set (D1 and D2), a DNA speech model was built on all
SNR conditions in the training data. DNA speech models
are diagonal covariance GMMs, internally represented as BQ-
GMMs for speed and storage efficiency. Both DNA models
use 256 Gaussians to model speech and 16 Gaussians to model
silence in the training data.

C. Recognition Setup

Experiments were conducted using the IBM embedded speech
recognizer. Front-end includes a speech end-pointing mod-
ule that is used to drive spectral subtraction and also turn
off the engine in silence parts. Features are 13-dimensional
mel-frequency cepstra with deltas and double deltas, mean-
normalized, and transformed using LDA, MLLT, fMMI and
fMLLR transforms, finally forming a 40-dimensional vector.
A hierarchical acoustic scorer produces likelihoods for a de-
coder using static graphs pre-compiled from constrained task-
specific word grammars. The recognition run continuously in
one pass, all adaptive transforms work in on-line adaptation
mode. DNA (or DNA-CD) is placed in the frontend, after
the production of the log Mel feature (and after spectral
subtraction if present), and before the conversion to cepstra.
DNA/DNA-CD is reset at each utterance. For more details,
consult [3].

VI. EXPERIMENTAL RESULTS

We provide the following experimental results for both the D1
and D2 domains:

• Baseline vs. SS, DNA, DNA-CD.
• SNR-dependent results for SS, DNA and DNA-CD.
• DNA-CD results in close and far talk conditions.

A. Overall evaluation

Table I gives overall SERs and WERs for SS, DNA and DNA-
CD on databases D1 and D2, using our best embedded ASR
system configuration, which utilizes fMMI, a bMMI-trained
back-end acoustic model, and stochastic fMLLR. Examining
the results, we can see that for dataset D1, both SS and DNA
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outperform the baseline, and perform comparably. On dataset
D2, SS sightly outperforms the baseline, but DNA degrades
overall performance. For both dataset D1 and D2, DNA-CD
outperforms both SS and DNA significantly.

B. Performance as a function of SNR

Figure 1 and Figure 2 show the WER and SER as a function
of SNR for test datasets D1 and D2 respectively. DNA-CD
improves performance in all conditions, and especially at low
SNRs (below 15dB).
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Fig. 1. WER as a function of SNR on test dataset D1. All results were
generated using a commercial-grade ASR system that utilizes fMMI, bMMI,
and fMLLR.
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Fig. 2. SER as a function of SNR on test dataset D2. All results were
generated using a commercial-grade ASR system that utilizes fMMI, bMMI,
and fMLLR.

C. Condition Detection and Channel Noise

DNA-CD significantly improves DNA performance for low
SNR conditions. Table II reveals how DNA-CD handles far-
talk and close-talk microphones on test dataset D2. In far-talk

Close-talk Far-talk
SER (%) WER (%) SER (%) WER (%)

fMMI+bMMI+fMLLR (baseline) 6.02 2.57 13.99 6.36
baseline + SS 6.27 2.69 13.79 6.27
baseline + DNA 6.12 2.57 14.16 6.38
baseline + DNA-CD 5.90 2.49 12.98 5.76

TABLE II
RECOGNITION PERFORMANCE AS A FUNCTION OF DENOISING

ALGORITHM ON CLOSE-TALKING AND FAR-TALKING MICROPHONE DATA
(DATABASE D2).

conditions, DNA-CD improves DNA and SS significantly. For
close-talk data, a more moderate improvement is observed, but
importantly, DNA-CD does not degrade performance in these
less noisy conditions, which are better matched to the acoustic
back-end by virtue of the availability of training data in this
SNR range.

VII. CONCLUSIONS

In this paper, a simple model averaging/selection approach
for making online mis-match noise models robust to matched
conditions was presented, and applied to DNA. The resulting
DNA-CD algorithm improves the performance of our best
commercial-grade recognition engines substantially, and can
be applied to any ASR pipeline based on Mel Features,
regardless of what noise conditions the back-end system has
been exposed to, without causing degradation in matched
conditions.
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