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Abstract— Articulatory Phonology models speech as spatio-
temporal constellation of constricting events (e.g. raising tongue 
tip, narrowing lips etc.), known as articulatory gestures. These 
gestures are associated with distinct organs (lips, tongue tip, 
tongue body, velum and glottis) along the vocal tract. In this 
paper we present a Dynamic Bayesian Network based speech 
recognition architecture that models the articulatory gestures as 
hidden variables and uses them for speech recognition. Using the 
proposed architecture we performed: (a) word recognition 
experiments on the noisy data of Aurora-2 and (b) phone 
recognition experiments on the University of Wisconsin X-ray 
microbeam database. Our results indicate that the use of gestural 
information helps to improve the performance of the recognition 
system compared to the system using acoustic information only. 

I. INTRODUCTION 
Conventional automatic speech recognition (ASR) systems 

suffer from acoustic variabilities in speech. Such variabilities 
can be due to background noises, speaker differences, 
differences in recording devices etc. Studies [1-11] have 
shown that articulatory information can potentially improve 
the performance of a speech recognition system and increase 
its robustness against noise contamination and speaker 
variation.  

The motivation behind the use of articulatory information 
in speech recognition is to model coarticulation and reduction 
in a more systematic way. Coarticulation has been described 
in several ways, including the spreading of features from one 
segment to another [12], influence on one phone by its 
neighbouring phones, overlapping of gestures and so on [13, 
14]. Articulatory Phonology argues that human speech can be 
decomposed into a constellation of vocal-tract constriction 
gestures. Gestures are defined at discrete constriction organs 
(lips, tongue tip, tongue body, velum and glottis) as discrete 
invariant action units. We intend to use the articulatory 
gestures to model speech for ASR. 

Constriction at each organ is represented as its 
corresponding geometric features of the shape of the vocal 
tract tube, i.e., tract variables: the constriction degree and 
location (Table 1), of which geometric definition is described 
in Fig 1. Note that velum and glottis are defined by the 
constriction degree alone since their locations are fixed. 
TTCD and TBCD define the degree of constriction for tongue 
tip and tongue body and are measured in millimeters 

representing the aperture created for such constriction. TBCL 
and TTCL specify the location of the tongue tip and tongue 
body with respect to a given reference (F in Figure 1) and are 
measured in degrees. LP and LA are the protrusion and the 
aperture of the lips and are measured in millimeters. GLO and 
VEL are abstract measures that specify whether the glottis and 
velum are open/close, hence distinguishing for 
voiceless/voiced and nasal/oral sounds.  

 

TABLE I 
CONSTRICTION ORGAN, VOCAL TRACT VARIABLES 

 

Constriction organ Tract variables 

Lips Lip aperture (LA) 
Lip protrusion (LP) 

Tongue tip 
 

Tongue tip constriction degree (TTCD) 
Tongue tip constriction location (TTCL) 

Tongue body Tongue body constriction degree (TBCD) 
Tongue body constriction location (TBCL) 

Velum Velum (VEL) 
Glottis Glottis (GLO) 

 

 
Fig. 1. Vocal tract variables at 5 distinct constriction organs, tongue ball 
center (C), and floor (F) [16, 17] 
 

Fig 2 displays a set of gestures for the utterance “miss you” 
(named as a gestural score), which are represented as colored 
boxes. Their corresponding time-varying physical realizations 
are shown as smooth curves, called vocal tract constriction 
time functions or TVs. Note that a TV (more details in [15]) 
does not stand for a tract variable itself but its time function 
output, i.e. its temporal trajectory. 

To be able to use the gestures as ASR units, they somehow 
need to be recognized from the speech signal. Additionally, 
we have observed that the accuracy of gesture recognition 
improves with prior knowledge of TVs [18], indicating the 
necessity of estimating TVs from the acoustic signal before 
performing the gesture based ASR.  
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In [18] we presented a Hidden Markov Model (HMM) 
based ASR architecture with Mel-Frequency Cepstral 
coefficients (MFCCs), estimated TVs and recognized gestures 

 
Fig. 2. Gestural activations for the utterance “miss you”. Active gesture 
regions are marked by rectangular solid (colored) blocks. Smooth curves 
represent the corresponding TVs. 
 

as input and obtained a 27.98% relative improvement over the 
MFCC-HMM baseline system for the noisy digit recognition 
task (clean condition training) of Aurora-2 [19]. Such an 
architecture required explicit recognition of articulatory 
gestures from the speech signal.  

The choice of Dynamic Bayesian Network (DBN) as a 
backend in this paper was motivated by the fact that (a) 
gestures can be treated as hidden variables, eliminating the 
necessity of explicit recognition of articulatory gestures as a 
separate prior step and (b) they can model simultaneous time 
evolution and their temporal inter-dependency of multiple 
random variables. We proposed a gesture-based Dynamic 
Bayesian Network (G-DBN) architecture in [20], which 
employed MFCCs and estimated TVs as observations and 
obtained a 28.62% relative improvement over the MFCC-
HMM baseline system for Aurora-2 word recognition task. 
However, in [20] the number of states/word had to be 
restricted to eight due to the complexity of the conditional 
probability tables (CPTs) tying the gesture variables with the 
word states. In this paper we present a reformulation of the 
DBN architecture, where the words (or phones) instead of the 
word states (or phone states) are functionally tied to the 
gesture variables. With the new DBN architecture (we name it 
as G-DBN II), we were able to train and evaluate 16 
states/word models and hence compare it with some state-of-
the-art systems.  

To ascertain the generalizability of the G-DBN II 
architecture, we built context independent monophone models 
based on the architecture, using a part of the University of 
Wisconsin X-ray microbeam database (XRMB) [22] for 
training. We observed consistent improvement in phone error 
rates in both clean and noise-added conditions, which 
indicates that the articulatory representation not only improves 
noise robustness in ASR systems but also provides additional 
details to distinguish one phone from another compared to the 
acoustic-alone systems.   

The organization of the paper is as follows: Section 2 
provides a brief description of the data used in this paper, 
section 3 describes the gesture based DBN architecture 
proposed in this paper, followed by experiments and results in 
Section 4 and conclusions with future directions in Section 5. 

II. THE DATA 
The noisy word recognition tests were performed on the 

Aurora-2 database, which consists of connected digits spoken 
by 55 male and 55 female American English speakers, 
sampled at 8 kHz. The training set consists of 8440 clean 
utterances. Test sets A and B were used in the experiments 
reported here, where each of those sets have four subparts 
representing four different real-world noises (section A: 
subway, babble, car and exhibition; section B: restaurant, 
street, airport and train-station) at seven different signal-to-
noise ratios (SNRs): clean, 20dB, 15dB, 10dB, 5dB, 0dB and -
5dB. Training in clean and testing in a noisy condition is used 
in all the experiments reported in here. 

The XRMB speech production database [22] used in this 
study contains naturally spoken utterances both as isolated 
sentences and short paragraphs. The speech data were 
recorded from 47 different American English speakers (22 
females and 25 males), where each speaker completed at most 
56 tasks, each of which can either be read speech containing a 
series of digits, TIMIT sentences, or even as large as reading 
of an entire paragraph from a book. The sampling rate for the 
acoustic signals is 21.74 kHz. The data comes in three forms: 
text data consisting of the orthographic transcripts of the 
spoken utterances, digitized waveforms of the recorded speech 
and simultaneous X-ray trajectory data of articulator 
movements obtained from transducers (pellets) placed on the 
articulators. The trajectory data were recorded for the 
individual articulators, upper lip, lower lip, tongue tip, tongue 
blade, tongue dorsum, tongue root, lower front tooth 
(mandible incisor) and lower back tooth (mandible molar). 
The XRMB dataset was split into (a) 2000 utterances for 
training, containing speakers 11 to 54 and (b) 467 utterances 
for testing containing speakers 55 to 63. Note that speakers 1 
to 11, 17, 22, 23 38, 47 and 50 did not exist in the XRMB 
database that was used in our experiment. The training and 
testing data split in XRMB are shown in Table II. The test set 
was contaminated with five different additive noises (subway, 
car, babble, restaurant noise borrowed from Aurora-2 and 
speech-shaped noise borrowed from speech-separation 
challenge 2006 dataset [32]). Noises were added at 4 different 
SNR levels, 20dB, 10dB, 5dB and 0dB. The addition of noise 
to the test set was done intentionally to perform phone 
recognition experiments with noisy acoustic data using 
acoustic models trained on clean speech. 

 

TABLE II 
DETAILS OF THE TRAIN & TEST DATA OF XRMB 

 

 Train Test 
Number of utterances 2000 467 
Number of speakers 38 9 

Total number of words 59222 14026 
Number of unique words 468 372 

Number of hours 7.17 1.62 
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Aurora-2 and XRMB do not come with gestural annotation. 
The annotation was performed by (a) time aligning the phones 
using the Penn Phonetics Lab Forced Aligner [23] followed 
by (b) an iterative analysis-by-synthesis time-warping 
procedure proposed in [24]. In the analysis-by-synthesis time-
warping procedure, Haskins Laboratories Task Dynamics and 
Application (TADA) model [25] is used to create a prototype 
gestural score given an utterance, which in turn is adapted to 
the target utterance using a phone-landmark based iterative 
time-warping procedure (more details in [24]). Note, that the 
gestural annotation was performed only for the training sets of 
Aurora-2 and XRMB databases. 

III. THE GESTURE BASED DBN ARCHITECTURE 
The G-DBN architecture models the gestural activations (i.e. 
whether a gesture at a given constriction site is active or not) 
as discrete binary random variables that were observed during 
training and hidden during testing. The initial version of the 
G-DBN was presented in [20]. Compared to HMMs, DBNs 
have the flexibility to realize multiple hidden variables at a 
given time, which enables the DBN to model articulatory 
gestures as individual state variables, one for each articulatory 
gesture. DBN can also explicitly model the interdependencies 
amongst the gestures and can simultaneously perform gesture 
recognition and word recognition, eliminating the necessity to 
perform gesture recognition as a prior separate step before 
word recognition. For our DBN implementation we used the 
Graphical Models Tool-Kit (GMTK) [25], where conditional 
probability tables (CPT) are used to describe the probability 
distributions of the discrete random variables (RVs) given 
their parents, and Gaussian mixture models (GMMs) are used 
to define the probability distributions of the continuous RVs. 

In a typical HMM based ASR setup, word recognition is 
performed using maximum a posteriori probability 
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where o is the observation variable and P(wi) is the language 
model that can be ignored for an isolated word recognition 
task where all the words w are equally probable. Hence we are 
left with P(o|wi) which can be further simplified as 
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where s is the hidden state in the model. In this setup the 
likelihood of the acoustic observation given the model is 
calculated in terms of the emission probabilities P(oi|si) and 
the transition probabilities P(si|si-1). Use of articulatory 
information introduces another RV a and then (2) can be 
reformulated as 
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DBNs can model both (a) the causal relationship between the 
articulators and the acoustic observations P(o|s,a,w) and (b) 
the dependency of articulators on the current phonetic state 
and previous articulators P(ai|ai-1,si).  

Tying each individual gestural state with a word or phone 
state can potentially result in large CPTs, which can 
significantly slow down the DBN to the extent of not being 
able to test it. To address this issue we slightly modified 
equation (3) as follows 
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Equation (4) is based on the assumption that the gestural states 
and the word states (or phone states) are individual entities 
tied directly to the word (or phone) RVs. This is represented 
by the graphical model shown in Fig 3. We name the DBN 
architecture obtained from equation (4) as the G-DBN II 
architecture.  

The G-DBN II consists of four discrete hidden RVs (W, P, 
S and T), two continuous observable RVs (O1 and O2) and N 
partly-observable and partly-hidden RVs (A1 to AN). The 
prologue and the epilogue in Fig. 3 denote the initial and the 
final frame(s) and the center represents the intermediate 
frames, which are unrolled in time to match the duration of a 
given utterance. For word (or phone) model, S represents the 
word (or phone) state, W represents the word (or phone) RV, 
P represents the word (or phone) position RV and T represents 
the word (or phone) transition RV. Note that in G-DBN II the 
word (or phone) state (S) is a functional parent of the 
observation O1, which in turn is functionally linked to the 
word (or phone) RV (W) through the word (or phone) position 
RV (P). The gestural states (RVs A1 to AN) are now functional 
parents of observation O2 and they in turn are functionally tied 
directly with the word (or phone) RV (W) instead of the word 
(or phone) states (S), which is the main difference between G-
DBN in [20] and G-DBN II presented here. Another important 
modification in the G-DBN II architecture is the temporal 
contextualization of the observation set O2, which is a 
consequence of our observation from [18], where we saw that 
temporal contextualization of the acoustic observations helped 
to improve the gesture recognition performance. 
In the G-DBN II shown in Fig. 3, square/circular nodes 
represent discrete/continuous RVs, and shaded/unshaded 
nodes represent observed/hidden RVs. The continuous 
observed RV O1 is the acoustic observation in the form of 
MFCCs (39D: 13 cepstral coefficients and their s and 2s). 
In all the experiments reported here, the MFCCs were 
computed using an analysis window of 10 ms and a frame rate 
of 5 ms. The other continuous observed RV O2 consists of 
only the cepstral coefficients of O1 (ignoring the s and 2s) 
with time contextualization. The 13D cepstral coefficients 
were mean subtracted and variance normalized and 
concatenated with 8D estimated TVs (obtained from a neural 
network based TV estimator, discussed in section IV), then 
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contextualized by stacking cepstral coefficients from nine 
frames (selecting every 4th frame) where the 5th frame is 
centered at the current time instant. The resulting 
contextualized acoustic feature vector had a dimensionality of 
189 (=9x21) which constitutes the second observation set O2. 

 

 
Fig. 3 G-DBN II graphical model for a word 

 

We modelled 6 articulatory gestures as hidden RVs in the 
G-DBN II architecture, so N (the subscript of A) in Fig. 3 is 6. 
Also note that the gesture RVs represent the gestural 
activations; i.e., whether the gesture is active or not, and hence 
are binary RVs. The gesture RVs do not have degree/location 
of constriction information, which was done deliberately to 
reduce the cardinality of the RVs in the DBN, in order to 
prevent large CPTs. Models with large CPTs were found to be 
intractable and very slow to train. Even if such models were 
trained after getting a good triangulation, they failed to 
generate any hypothesis during the test runs due to the model 
complexity. Since the TVs were used as a set of observation 
and the TVs by themselves contain coarse target specific 
information about the gestures, it can be expected that the 
system has gestural target information to some extent. Both G-
DBN and G-DBN II use 6 gesture RVs: GLO, VEL, LA, LP, 
TT and TB. Note that the gestural activations for TTCL and 
TTCD are identical, hence were replaced by a single RV TT 
(tongue tip) and the same was true for TBCL and TBCD, 
which were replaced by TB (tongue body).  

IV. EXPERIMENTS AND RESULTS 

A. The TV Estimator 
Our prior study [18] has shown that articulatory gestures can 
be recognized with a higher accuracy if the knowledge of TVs 
is used in addition to the acoustic parameters (MFCCs) as 
opposed to using the acoustic parameters alone. However in a 
typical ASR setup, the only available observable is the 
acoustic signal, which is parameterized as acoustic features. 
This indicates the necessity to estimate the TVs from the 
acoustic features. We have performed an exhaustive study 
using synthetic speech in [15] and observed that a feed-
forward ANN can be used to estimate the TV trajectories from 
acoustic features.  

The TV estimator was trained and optimized using the 
acoustic signals and TVs from speaker 12 of XRMB database. 
The groundtruth TVs were obtained from the annotated 
gestural scores, using the Haskins Laboratories’ TADA [25] 

synthesizer. 76.8% of the data were used to train the TV 
estimator, 10.7% was used as a validation set and the rest was 
used for testing. The TV estimator takes in speech waveform 
sampled at 8KHz. The acoustic signal is parameterized as 13D 
MFCCs. The acoustic features and the TV trajectories were z-
normalized (with std. dev. = 0.25). The resulting acoustic 
coefficients were scaled such that their dynamic range was 
confined within [-0.95, +0.95]. The acoustic features were 
created by stacking the scaled and normalized acoustic 
coefficients from nine frames (selecting every other frame), 
where the 5th frame is centered at the current time instant. The 
resulting contextualized acoustic feature vector had a 
dimensionality of 117 (= 9 13). Table III presents the 
correlation scores (Pearson’s product-moment coefficient: 
PPMC) obtained between the estimated and the groundtruth 
TVs for the test set. 

The TV estimator is a 4-hidden layer feed-forward ANN 
using tanh-sigmoid activation function with 117 input nodes 
and 8 outputs nodes (corresponding to 8 TVs shown in Table 
I). The number of hidden layers was restricted to 4 in order to 
reduce the training time as well as the network complexity. 
Indeed, no appreciable improvement of performance was 
observed with further addition of hidden layers. The ANN was 
trained for up to 4000 iterations and the number of neurons in 
each hidden layer of the ANN was optimized using the 
validation set, where the optimal number of neurons in each of 
the four hidden layer was found to be 225, 150, 225 and 25. 
Note that we have also explored other cepstral features, such 
as RASTA-PLP, PLPCC, acoustic phonetic features etc [26, 
27] in addition to MFCCs and none of them strongly 
outperformed the MFCCs.  

TABLE III 
PPMC FOR THE ESTIMATED TVS 

GLO VEL LA LP TBCL TBCD TTCL TTCD
0.853 0.854 0.801 0.834 0.860 0.851 0.807 0.801

B. G-DBN and G-DBN II 
Both the G-DBN and G-DBN II architectures were tested on 
Aurora-2 database, using MFCC features and cepstral features 
from the ETSI-advanced [21] frontend. With G-DBN we 
trained and tested only 8 states/word models because of the 
complexities mentioned earlier. We trained a total of 11 whole 
word models (zero to nine and oh) and 2 models for ‘sil’ and 
‘sp’; where ‘sil’ had 3 states and ‘sp’ had one state. The 
maximum number of mixtures allowed per state was four with 
vanishing of mixture-coefficients allowed for weak mixtures. 

The ETSI-advanced frontend has been proposed for the 
Distributed Speech Recognition (DSR) setup. ETSI-advanced 
frontend uses MFCCs, where the speech signal is sampled at 8 
kHz, analyzed in blocks of 200 samples with an overlap of 
60%, pre-emphasized with a factor of 0.9, and Hamming 
windowed for FFT-computation. It uses a power spectrum 
estimate before performing the filterbank integration and has a 
built-in noise reduction module. The advanced frontend uses 
the cepstral coefficients C1 to C12 and the weighted 
combination of the frame-wise log-energy measure and the C0 
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coefficient, resulting in a 13D feature vector. The final ETSI 
advanced feature consists of this 13D feature vector along 
with their  and the 2 coefficients, yielding a 39D feature 
vector. Table IV presents the results obtained from the G-
DBN and HMM backend using MFCC and ETSI-advanced as 
frontend on Aurora-2. Note that with G-DBN we could train 8 
states/word model whereas the MFCC-HMM model had 16 
states/word.  

With G-DBN II we were able to train and test 16 
state/word models. The maximum number of mixtures/state 
used was four with vanishing of mixture-coefficients allowed 
for weak mixtures. The results from the G-DBN II are shown 
in Table IV, compared to some state-of-the art results on 
Aurora-2 reported in the literature. 

The MFCC+TV+Gesture-posterior system in Table IV is 
from our prior gesture-based HMM system [18], which uses 
artificial neural network to estimate TV-trajectories and 
gesture posteriors and feed the resultant along with the 
MFCCs to a left-to-right HMM word recognizer as input. 
Note that the TV estimator and gesture recognizers used in [18] 
were trained using a synthetic speech database; hence the 
models were not as accurate. The SME and SME+MVN 
results are borrowed from [28]. The MVA frontend processing 
was performed using the approach laid out in [29] (with 
ARMA order of 3) and the ETSI-advanced frontend was 
obtained from the ETSI portal [30]. For both of them, the 
word recognition experiments were carried out in house. The 
results from maximum likelihood linear regression (MLLR1 
and MLLR2) and feature compensation (FC) are borrowed 
from [31]. Note that [31] does not report -5dB SNR results; 
hence that column is kept empty. Table IV shows that for both 
noisy cases, the ETSI-advanced provided the best word 
recognition accuracy when used with the G-DBN II frontend.  

 

TABLE IV 
AURORA-2 WORD RECOGNITION ACCURACIES FROM THE PROPOSED 

APPROACH V/S SOME STATE-OF-THE-ART RESULTS 
 

  Clean 0-20dB -5dB   

H
M

M

MFCC 99.12   58.02 6.99 
MFCC+TV+Gesture posteriors [18] 98.56 73.49 16.36 
Soft Margin Estimation (SME) [28] 99.64 67.44 11.70 

SME + Mean and Variance 
Normalization (MVN) [28] 

99.68 86.01 24.9 

Mean, Variance Normalization and 
ARMA filtering (MVA) [29] 

99.18 83.75 24.72 

MLLR1 [31] 97.35 77.95 - 
MLLR2 [31] 98.95 76.76 - 

Feature Compensation (FC) [31] 99.00 83.50 - 
ETSI-advanced [21] 99.09 86.13 27.68 

G
-

D
BN

 MFCC 98.52 78.77 17.42 

ETSI-advanced [21] 98.51 80.92 21.40 

G
-D

BN
 

II

MFCC 99.27 84.00 26.56 

ETSI-advanced [21] 99.19 86.41 29.64 

 

At clean, however, SME+MVN showed the best result. 
Both MFCCs and ETSI-advanced frontend showed a relative 

performance improvement of 37.76% and 0.63% respectively 
over the HMM backend when they are used with G-DBN II 
backend. 

To analyse how the proposed G-DBN II architecture 
performs for a phonetically more diverse dataset than Aurora-
2, we performed phone recognition experiments on the 
XRMB dataset. The forced alignment data for XRMB from 
the Penn Phonetics Lab Forced Aligner contained around 64 
distinct phones. Even though the forced aligner uses CMU 
pronunciation dictionary with vowel lexical stress, the stress 
information was ignored in our experiments, which resulted in 
39 distinct phonemes and a symbol ‘sp’ for speech pause. The 
training and testing set consists of 5.12 million frames (  7.17 
hours) and 1.16 million frames (  1.62 hours). The phone 
models were trained with clean data and evaluated with clean 
testing data and their noisy counterparts.  

 The G-DBN II model was modified for this experiment to 
have 3 state/phone (with two dummy states) context free 
monophone models. Each state was allowed to have up to 4 
mixtures per state, with vanishing of weak mixtures allowed. 
Along with the G-DBN II based monophone model, two more 
DBN based context free monophone models were trained 
which had the identical setup as the G-DBN II model but only 
lacked the gesture RVs. The first model used only the 39D 
MFCCs as the acoustic observation (DBN-MFCC monophone 
model). The second model used the 39D MFCCs along with 
the 8D TV trajectories as input (DBN-MFCC-TV monophone 
model). The performance of the models was obtained by 
comparing the phone state sequences inferred by Viterbi 
decoding to the alignments from the Penn forced aligner. The 
phone error rates (PER) were obtained using the HTK toolkit 
and the results are shown in Table V. 

Note that the DBN-MFCC and DBN-MFCC-TV 
monophone models are theoretically similar to HMM 
monophone models due to the lack of any gestural RV with 
temporal dependency. The G-DBN II model demonstrated a 
13.9% and 2.5% absolute reduction in PER at clean and noisy 
conditions. These reductions demonstrate that articulatory 
gestures not only contain sufficient details that help to 
distinguish one phonetic category from another but also such 
representations are robust to noise. Also note that the gestural 
RVs in the G-DBN II architecture takes in contextualized 
MFCCs as input which may also be a significant contributor 
to the robustness of the monophone models. Table V shows 
that simply appending the TVs to the MFCCs helped to bring 
down the error rate of the monophone DBN models by 2% for 
noisy conditions. This result is consistent to our previous 
observations [33], in which the TVs have always 
demonstrated noise robustness in word recognition tasks.  

TABLE V 
XRMB PHONE ERROR RATES 

  PER (%) 
Clean 0-20dB 

DBN MFCC  51.33 78.87 
MFCC+TV 51.45 76.16 

G-DBN II MFCC 37.57 73.63 
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V. CONCLUSION 
We presented an articulatory gesture based DBN architecture 
that models the gestures as discrete hidden random variables. 
Acoustic observations in the form of MFCCs, estimated TVs, 
and their contextualized counterpart were used as input. Our 
results show that the proposed architecture significantly 
improves the recognition performance over traditional MFCC-
HMM system both in word recognition and phone recognition 
experiments. For word recognition experiments, the ETSI-
advanced frontend showed the best recognition accuracy with 
our G-DBN II word recognizer and its performance was found 
to be the best amongst some of the state-of-the-art noise-
robust techniques shown in Table IV.  

Gestures by definition are multi-channel discrete features 
and the DBN architecture is ideal for modeling articulatory 
gestures. DBNs by virtue of their generic modeling capability 
can simultaneously model gestures, their temporal 
dependency and the acoustic model. Unfortunately the 
challenge in using a DBN is its degree of freedom, which may 
make a model overly complex and tediously slow if not 
impossible to decode. Hence, using simple graphical 
structures and efficient triangulations are crucial to designing 
and testing a DBN.  

The phone recognition results validate that the proposed 
system can be generalized to a large vocabulary database. 
Unfortunately, the XRMB and Aurora-2 are the only 
databases that we have been able to gesturally annotate so far 
[24]. An important future direction would be to annotate large 
vocabulary speech databases such as the Wall Street Journal 
or Switchboard, so that the proposed technique could be 
explored on them. Also note that typically a gestural span is 
much larger than phone duration; hence phones may not be 
the best sub-word units for a gesture based speech recognizer. 
Syllable or demi-syllable models will be explored in future 
studies. 
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