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Abstract—Model compensation methods for noise-robust
speech recognition have shown good performance. Predictive
linear transformations can approximate these methods to bal-
ance computational complexity and compensation accuracy. This
paper examines both of these approaches from a variational per-
spective. Using a matched-pair approximation at the component
level yields a number of standard forms of model compensation
and predictive linear transformations. However, a tighter bound
can be obtained by using variational approximations at the
state level. Both model-based and predictive linear transform
schemes can be implemented in this framework. Preliminary
results show that the tighter bound obtained from the state-
level variational approach can yield improved performance over
standard schemes.

I. INTRODUCTION

One way of making speech recognisers more robust to noise

is model compensation. Rather than enhancing the incom-

ing observations, model compensation techniques modify the

HMM’s state-conditional distributions so they model the speech

in the target environment. Because the interaction between

speech and noise is non-linear, the corrupted-speech distri-

bution has no closed form. In particular, even if the speech

and noise distributions are Gaussian, the corrupted speech is

not. However, the majority of schemes assume the corrupted

speech Gaussian-distributed. Additionally, despite correlation

changes, the covariance matrices are normally diagonalised.

Thus, improvements from different ways of computing the

same form of distribution are limited (see e.g. [1]).

Two approaches that remove the Gaussian assumption have

been proposed. The “Algonquin” algorithm [2] still uses a

Gaussian approximation, but tuned for each clean speech com-

ponent and observation vector. Thus, the effective distribution

over observation vectors is non-Gaussian. Another approach

[3] uses a non-parametric distribution, by approximating the

integral in the corrupted-speech likelihood expression with

a sampling scheme. However, both these approaches require

extensive computation for each incoming feature vector. Thus,

for most situations they are impractical.

The aim of this work is to find forms of fast likelihood com-

putation that approximate these non-Gaussian distributions. In

this work, the framework of predictive methods is applied to

this problem. Predictive methods approximate a complicated

model with a simpler form by minimising the KL divergence

between them [4]. How this applies to noise-robust speech

recognition can be seen in Fig. 1. The left graphical model
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Fig. 1. The noise-corrupted speech p (left), with components k, speech x,
noise n, corrupted speech y; its approximation q (right) with components m.

represents noise-corrupted speech. The speech is governed by

a hidden Markov model, with states θt. Associated with each

state is a mixture of Gaussians with component indicator kt
and Gaussian component distributions generating speech vec-

tors xt. The independently and identically distributed noise nt

corrupts the speech, resulting in noise-corrupted speech yt.

The right graphical model in Fig. 1 approximates the

corrupted speech distribution. The Markov model p(θt−1|θt),
which governs the clean speech, is assumed unchanged. Many

compensation methods map each component k of the predicted

distribution onto one component m of the approximation and

marginalise out only x and n. This is not a problem if the

marginalisation is exact; however, usually each component

is approximated with a Gaussian [5], [1], [6], [7]. This

matched-pair approximation to the KL divergence neglects the

potential for a mixture of Gaussians to represent a mixture

of non-Gaussian distributions. To approximate a whole state-

conditional distribution at once, this paper will sever the

hard link between components in the left- and right-hand

models. Instead, a variational approach can assign part of the

probability mass of component k in the left-hand model to any

component m in the right-hand model. This tightens an upper

bound on the KL divergence. Within this variational frame-

work, other forms of mixture models can also be estimated.

This paper will introduce a new form of predictive CMLLR,

which transforms clean speech Gaussians with shared linear

transformations. This yields optimal linear transformations for

modelling the non-linear effects of the noise.
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II. THE INFLUENCE OF NOISE ON SPEECH

To make speech recognisers robust to noise, a model of

how the noise influences the signal is required. Both noise

and speech vectors are usually composed of Mel-frequency

cepstral coefficients (MFCCs) and deltas and delta-deltas. The

relation between the MFCC vectors of the speech xs, additive

noise ns, and convolutional (channel) noise hs (which is

usually assumed fixed, and not shown in Fig. 1), and the

corrupted speech ys, called the mismatch function, is [8], [9]

ys = f(xs,ns,hs,α) � Clog
(

exp
(
C−1(xs + hs)

)
+ exp

(
C−1ns

)
+ 2α ◦ exp

(
1
2C

−1
(
xs + hs + ns

)))
. (1)

Here, log(·), exp(·), and ◦ denote element-wise logarithm,

exponentiation, and multiplication. C is the truncated DCT ma-

trix and C−1 its pseudo-inverse. α is the phase factor, which

arises from the interaction between the phase of the speech and

noise signal. Since the phase information is discarded to arrive

at MFCCs, the effect of this interaction, represented by α, is

random even if xs,ns,hs are fixed. In this work, as in [3],

α is modelled with an independent and identically distributed

truncated Gaussian with variances computed according to [10].

Speech recognisers append dynamic (delta and delta-delta)

features to the MFCC feature vector. These are computed from

a window of per-time slice, static, features. For exposition,

assume a window ±1 and only first-order dynamics. The

observation vector yt is then computed as

yt =

[
0 I 0
− I

2 0 I
2

]⎡⎣yt−1

yt

yt+1

⎤
⎦ � Dye

t, (2)

where ye
t is the extended feature vector comprised of the statics

in a window [7]. To compute the corrupted speech vector

with statics and dynamics from a window of speech and noise

vectors, the mismatch function is applied to each time slice:

yt = D

⎡
⎣ f(xs

t−1,n
s
t−1,h

s,αt−1)
f(xs

t,n
s
t,h

s,αt)
f(xs

t+1,n
s
t+1,h

s,αt+1)

⎤
⎦ � Df e(xe

t,n
e
t,h

e,αe
t),

(3)

where extended vectors xe,ne,he, and αe are defined simi-

larly to ye. Given distributions over xe,ne,αe and a setting

for he, it is now possible to write the distribution of y as an

integral with a Dirac delta δ·:

p(y) =

∫∫∫
δDf e(xe

t,n
e
t,h

e,αe
t)
(y) p(αe)dαep(ne)dnep(xe)dxe.

(4)

However, because of the non-linearity of the mismatch func-

tion, this integral has no closed form. In particular, even if the

distributions over xe,ne,αe are Gaussian, p(y) is not. It is a

common approximation to linearise the mismatch function so

p(y) drops out as Gaussian [11], [5], [7], but this paper will

avoid this. Given a value for y and distributions for xe,ne,he,

and αe, it is possible to approximate the value of the density

in the limit exactly with a Monte Carlo approach [3], but this

technique is too slow to be used in a speech recogniser.

Though the distribution p(y) has no closed form, it is

straightforward to draw samples y(s) from it. This first draws

samples xe(s),ne(s),αe(s) from their respective distributions.

(3) can then be applied to yield a corrupted speech sample:

y(s) = Df e
(
xe(s),ne(s),he,αe(s)

)
. (5)

The advantage of representing the distribution p(y) by a set

of samples is that it does not assume any properties of the

distribution. Section IV will estimate a form appropriate for

decoding directly from this Monte Carlo approximation.

Drawing a corrupted-speech sample for a component k
requires the component’s extended clean speech distribution.

This distribution can be found by modifying the last iteration

of Baum–Welch so it does not apply the projection to statics

and dynamics as it gathers statistics for training the speech

recogniser’s Gaussians [7]. The parameters of p(nt) are often

estimated on the data to be recognised using a linearisation of

the mismatch function. However, see [12] for a strategy for

estimating the noise model without applying this linearisation.

To remove the influence of the algorithm for noise model

estimation, here the noise distribution will be assumed known.

III. PREDICTIVE METHODS

For practical speech recognition, it is often important to find

approximations that are fast for decoding. Model compensa-

tion for noise robustness is a good example: it approximates

the predicted corrupted speech with parametric distributions.

This paper will present a framework for methods that minimise

the Kullback-Leibler (KL) divergence between the predicted

distribution p and its approximation q.

The KL divergence is suitable for two reasons. First, it

is a well-understood measure of divergence between two

distributions that is minimised when the distributions are

equal. Second, minimising the KL divergence is equivalent to

maximising the expected log-likelihood under the predicted

distribution. Many known algorithms that maximise the log-

likelihood on data can be turned into predictive variants.

The objective of predictive methods is to find the dis-

tribution q that minimises the KL divergence to predicted

distribution p. An HMM speech recogniser consists of a distri-

bution p(Θ) over hidden variables Θ = {θt}, where θt are the

HMM states in Fig. 1, and a distribution pΘ(Y) over observed

variables Y = {yt} given state sequence Θ. If both p and q
are HMMs, they therefore factorise as

p(Θ,Y) = p(Θ)pΘ(Y); q(Θ,Y) = q(Θ)qΘ(Y). (6)

This paper will not change the state transition model, so that

q(Θ) := p(Θ). The optimal approximation q then is

q∗ := argmin
q

KL(p‖q)

= argmin
q

∑
Θ

∫
p(Θ)pΘ(Y) log

(
p(Θ)pΘ(Y)

q(Θ)qΘ(Y)

)
dY

= argmin
q

∑
Θ

p(Θ)

∫
pΘ(Y) log

(
pΘ(Y)

qΘ(Y)

)
dY
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= argmin
q

∑
Θ

p(Θ)KL(pΘ‖qΘ) . (7)

In HMMs, pΘ(Y) and qΘ(Y) represent the output distributions.

Since these factorise per time, the optimal setting of q can be

expressed in terms of the per-state KL divergence:

q∗ := argmin
q

∑
θ

p(θ)KL(pθ‖qθ) (8a)

Here, p(θ) is the prior distribution for state θ. The maximum-

likelihood estimate of p(θ) is proportional to the occupancy

of state θ on the training data.
The KL divergence can be defined in terms of the cross-

entropy H(pθ‖qθ) = − ∫ pθ(y) log qθ(y)dy and the entropy

H(pθ) = H(pθ‖pθ):
KL(pθ‖qθ) � H(pθ‖qθ)−H(pθ). (8b)

When minimising the KL divergence with respect to q, the

entropy H(pθ) is constant, so that in (8a) only the cross-

entropy needs to be minimised:

q∗ := argmin
q

∑
θ

p(θ)H(pθ‖qθ) . (8c)

In speech recognition, the state-conditional distributions pθ
and qθ are normally mixtures of Gaussians. Their weights, the

component priors, will be written πk and ωm:

pθ(y) =
∑
k∈Ωθ

πkpk(y) ; qθ(y) =
∑

m∈Ωθ

ωmqm(y) . (9)

The key insight that motivates this paper is that unless it is

possible to set qm exactly equal to pk, the KL divergence

between these mixtures, in (8c), can usually not be analytically

minimised exactly. Section IV will introduce a variational

upper bound to perform the minimisation. Initially, though,

a simpler and commonly-used bound will be considered: the

matched-pair bound [13], which relates each component k
in pθ to a component in qθ, in this case m = k:∑

θ

p(θ)H(pθ‖qθ) = −
∑
θ

p(θ)

∫
pθ(y) log qθ(y)dy

= −
∑
θ

p(θ)
∑
k∈Ωθ

πk

∫
pk(y) log

( ∑
m∈Ωθ

ωmqm(y)

)
dy

≤ −
∑
θ

p(θ)
∑
k∈Ωθ

πk

∫
pk(y) log(ωkqk(y))dy

=
∑
θ

∑
k∈Ωθ

p(k)
(H(pk‖qk)− log(ωk)

)
, (10a)

where the component priors p(k) � p(θ)πk. The minimisation

in (8c) then becomes

q∗ := argmin
q

∑
θ

∑
k∈Ωθ

p(θ)πk

(H(pk‖qk)− log(ωk)
)
. (10b)

The optimal setting for the mixture weights is ω∗
k := πk. How

to minimise the weighted cross-entropies H(pk‖qk) depends

on the parametrisation of qk. The following will consider two

parametrisations: model compensation, which estimates each

Gaussian parameter separately; and linear transformations that

are shared between clean speech Gaussians.

A. Estimating Model Parameters

A straightforward method for optimising the cross-entropy

in (10b) is to estimate the parameters of qk directly. This

can be done for each component k separately. Speech recog-

niser components are usually Gaussians, with parameters

N (μk,Σk), which can be found with

μk := Epk
{y} ; Σk := Epk

{
yyT

}− μkμ
T
k . (11)

This is what model compensation methods approximate. A

popular approach is to linearise the influence of the noise

in (3), so that the noise-corrupted speech distribution drops

out as Gaussian. This is called vector Taylor series (VTS)

compensation [11], [5], [9], [7].

To obtain a more accurate estimate, a Monte Carlo approach

will be used, called extended DPMC [14], [15]. For each com-

ponent, S samples y(s) are drawn as discussed in section II.

The expectations in (11) are then approximated with

Epk
{y} � 1

S

∑
s

y(s); Epk

{
yyT

} � 1

S

∑
s

y(s)y(s)T. (12)

In the limit as the number of samples goes to infinity, extended

DPMC yields the optimal Gaussian-for-Gaussian compensa-

tion. However, the corrupted speech distribution for one clean

speech Gaussian is not Gaussian-distributed.

B. Estimating Linear Transformations

An approach that requires fewer parameters to be esti-

mated is to constrain the approximate distribution q to a

transformed clean speech model set. CMLLR [16] (constrained

maximum-likelihood linear regression) is a well-known adap-

tation method that applies one affine transformation to all

Gaussian components in a base class. CMLLR is normally

estimated on adaptation data with expectation–maximisation.

For its predictive variant, predictive CMLLR (PCMLLR) [17],

[18], [19], the statistics from adaptation data are replaced

by predicted statistics. Good results have been obtained by

deriving these statistics from joint uncertainty decoding and

from vocal tract length normalisation.

CMLLR applies the same linear transformation to each

Gaussian in one base class. This is equivalent to applying the

inverse transformation to the feature vector. By constraining

Gaussians in one base class to share the same transformed

feature vector, decoding with CMLLR becomes fast. For clean

speech component k with pk = N (μxk,Σxk), in base class c,
transformation {A(c),b(c)} is applied as

qk(y) �
∣∣A(c)

∣∣ · N (A(c)y + b(c); μxk, Σxk

)
. (13)

Since A(c) can be full, CMLLR allows modelling of feature

correlations even when the Gaussian covariances are diagonal

with minimal impact on decoding speed.

The original, adaptive, version of CMLLR can be written as

minimising a KL divergence to the complete data distribution

derived from an empirical distribution representing the adap-

tation data. There is no space here for the derivation, but [20]

gives the details. The only change from adaptive and predictive
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CMLLR is the form of the statistics; the algorithm to estimate

the transformations from these statistics remains the same. As

an example, one of the statistics consists of matrices G(ci) for

each base class c and each dimension i. Expressed in terms

of distribution p,

G(ci) �
∑

k∈Ω(c)

p(k)
1

σ2
k,i

Epk

{[
yyT y
yT 1

]}
, (14)

where p(k) is the component prior, and Epk
{·} denotes the

expectation under pk. It is straightforward to recover the orig-

inal expression in [16] from this by substituting the distribution

over the complete data for p.
G(ci) can be computed with any method that yields compo-

nent-dependent first- and second-order statistics in (11). This

paper will use the Monte Carlo estimates in (12) (with, for

efficiency, the expected number of samples per component

equal to its prior; see [12] for details). However, the first-

and second-order statistics still make it impossible to model

non-Gaussian effects in the distribution pk. To do that, the next

section will introduce an approach to estimating q per state.

IV. PREDICTIVE VARIATIONAL METHODS

Minimising the KL divergences between states, instead of

their components, makes it possible to approximate the non-

Gaussian shape of p. In speech recognition, qθ is normally

a mixture of components qm, as in (9). This section will

first introduce a variational approach to estimating this mix-

ture model. To model the non-Gaussian shape of pθ, each

component in qθ must be able to represent a specific part

of the acoustic space associated with a component in pθ.

Therefore, pθ is replaced with a Monte Carlo approximation,

and responsibilities are assigned per sample. Then, two forms

of parametrisation of qθ will be discussed. The first, variational

extended DPMC, estimates the components’ weights, means,

and covariances. The other, variational PCMLLR, only esti-

mates the parameters of linear transformations shared between

multiple clean speech Gaussians across states.
As in section III, p is replaced with a Monte Carlo

version by drawing joint samples
(
θ(s),y(s)

)
from p(θ,y).

Section IV-A will discuss the sampling process in more detail.

The joint samples are used to at the same time approximate

the sum and the integral over the term in square brackets:∑
θ

p(θ)H(pθ‖qθ) = −
∑
θ

p(θ)

∫
pθ(y)

[
log qθ(y)

]
dy

� −
∑
s

log qθ(s)

(
y(s)

)
(15a)

Since the qθ are mixture models, this expression cannot

be minimised analytically. However, similar to expectation–

maximisation, it is possible to minimise a variational upper

bound as a proxy for optimising (15a) itself. This introduces an

additional set of parameters whose optimisation is interleaved

with the optimisation of q. These parameters r
(s)
m ≥ 0 can be

seen as assigning a fractional responsibility for sample s to

component m. By ensuring that for each sample s the respon-

sibilities are normalised,
∑

m r
(s)
m = 1, Jensen’s inequality can

be used (in (15b)) to find an upper bound F to the weighted

cross-entropy in (8c). Substituting (9) into (15a), and inserting

variational parameters r
(s)
m ,

−
∑
s

log qθ(s)

(
y(s)

)
= −

∑
s

log

( ∑
m∈Ω

θ(s)

r(s)m

ωmqm
(
y(s)

)
r
(s)
m

)

≤ −
∑
s

∑
m∈Ω

θ(s)

r(s)m log

(
ωmqm

(
y(s)

)
r
(s)
m

)
(15b)

= −
∑
s

∑
m∈Ω

θ(s)

r(s)m

(
log qm

(
y(s)

)
+ log

ωm

r
(s)
m

)

� F(p, q, r). (15c)

The minimisation of F interleaves optimising r, the collection

of r
(s)
m , and q. The responsibilities for each sample can be set

to their optimum with r
(s)
m ∝ πmqm

(
y(s)

)
. How to optimise

the distribution q depends on its form. Sections IV-B and IV-C

will discuss two possible forms.

A. Sampling from a Mixture Model

Consider the case where the predicted distribution pθ for

each state is a mixture model. To draw a sample from p, a

sample θ(s) from the state prior p(θ) is drawn, and then a cor-

responding component k(s) with probability πk. Section II has

discussed how to draw sample y(s) from the distribution pk(s) .

The resulting joint sample (θ(s),y(s)) can contribute to the

estimation of any or all components of qθ: there is no explicit

link to the component of pθ from which the sample was drawn.

An important consequence of this is that the components

of qθ are free to move to represent samples drawn from other

components in the same state pθ. This allows the non-Gaussian

shape of pk to be modelled.

Section III has derived a matched-pair bound to the vari-

ational approximation discussed in this section. It assigned

the responsibility for each sample to the component of qθ
matching the component of pθ. The variational bound becomes

equal to the matched-pair bound when r
(s)
m in (15b) is set to 1

for m = k(s) and to 0 otherwise. This upper bound will be

used as an initialisation for the variational minimisation.

B. Estimating Model Parameters

As in section III-A, it is possible to estimate the model

parameters directly. This has been called “extended iterative

DPMC” [14], [20], but here it will be called “variational

eDPMC”. It is possible to optimise each state-conditional distri-

bution qθ separately. The update to the parameters of qθ that

optimises (15c) is the same as in expectation–maximisation

for mixtures of Gaussians. The component weights are found

from the summed responsibilities as

ωm ∝
∑
s

r(s)m . (16a)

The mean for each component is set to

μm :=
1∑
s r

(s)
m

∑
s

r(s)m y(s), (16b)
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and similarly for the covariance. As in standard expectation–

maximisation, this allows components to move to model the

shape of the distribution, irrespective of which components the

samples were originally drawn from.

C. Estimating Linear Transformations

It is also possible to apply predictive CMLLR in the varia-

tional Monte Carlo framework. The only parameters that are

estimated are then those of a set of linear transformations that

are applied to the Gaussians. Unlike in variational eDPMC, the

original clean speech Gaussians are retained.

Note that, as in (13), different components for one state-

conditional mixture can be transformed differently if they

are in different base classes. However, since a variational

approach is used, the optimisation can move Gaussians in the

original model and re-use them to model parts of space that are

generated by different Gaussians. This has the counter-intuitive

effect that linear transformations of Gaussians allow modelling

of the non-Gaussian shape of a distribution predicted from

essentially the same Gaussians.

The predicted distribution pk in (14) is approximated with

Monte Carlo. There is no space here for the derivation, but

see [20] for details. As in (15a), the joint samples approximate

both the sum and the integral in the expectation:

G(ci) �
∑
s

∑
m∈Ω(c)

r(s)m

1

σ2
m,i

[
y(s)y(s)T y(s)

y(s)T 1

]
. (17)

Given these statistics for one base class c, the CMLLR algo-

rithm iteratively finds transformation {A(c),b(c)} that yields

a local minimum for the variational upper bound in (15c).

However, gathering the statistics cannot be performed per

base class, since a sample drawn from state θ(s) can contribute

to any of the components of that state, which can be in any

base class. This implies that it is impossible to guarantee

that each G(ci) is estimated on enough samples: the mass

of samples drawn from a component in one base class can

be assigned to components of another base class. However,

this re-assignment is exactly the purpose of the variational

scheme. Allowing components to be transformed to model part

of the probability mass from other base classes removes the

restriction that the noise-corrupted speech for one clean speech

Gaussian is modelled by a Gaussian.

To partly mitigate the potential problem that some base

classes are trained on too little data, an equal number of

samples can be drawn from each base class, and they then

be weighted. Additionally, to reduce the variance of the

statistics, it is allowable to sample states and components using

systematic sampling. See [12] for details and the proof.

V. EXPERIMENTS

To illustrate the limitations of the matched-bound approx-

imation, the variational predictive methods described in this

paper are tested on the 1000-word-vocabulary Resource Man-

agement corpus [21]. This task contains 109 training speakers

reading 3990 sentences, a total of 3.8 hours of data. All results

are averaged over three of the four available test sets, Feb 89,

Oct 89, and Feb 91 (Sep 92 is not used), a total of 30 test

speakers and 900 utterances. Operations Room noise from the

NOISEX-92 database [22] is artificially added at 20 and 14 dB.

For a fair comparison, the influence of the noise estimation

algorithm should be eliminated. Therefore, a full-covariance

Gaussian noise model is extracted directly from the noise

audio. (A method that could estimate a noise model for Monte

Carlo PCMLLR is proposed in [12].) Because a noise model

also implicitly compensates for speaker differences, word error

rates will be slightly higher than in [7].

State-clustered triphone models with six components per

mixture are built using the HTK RM recipe [23]. The number of

components is about 9500. The extended speech statistics are

striped as in [7]. The language model is a word-pair grammar.

Table I contains word error rates for model compensation.

“VTS” is a standard scheme. It linearises the mismatch function

and applies the continuous-time approximation, which makes

off-diagonal elements of the covariance matrix unreliable [7],

so the covariance matrices are (as is usual) diagonalised.

Extended DPMC (eDPMC), discussed in section III-A, esti-

mates means and covariances for each component separately

using Monte Carlo. As the number of samples goes to infinity

(at 100 000 samples, performance has converged) it yields the

optimal Gaussian-for-Gaussian compensation. Compared to

VTS, eDPMC removes the linearisation of the mismatch func-

tion and the continuous-time approximation (see [7]), and thus

yields improved performance. Removing the diagonalisation

for eDPMC is especially useful at lower signal-to-noise ratios,

when the noise affects feature correlations most. At 14 dB, it

yields another 15 % relative increase in performance.

The above results still assume that one clean speech Gaus-

sian generates Gaussian-distributed corrupted speech. The

bottom row of Table I shows the effect of removing this

constraint. Variational eDPMC uses the variational approach

from section IV, which allows corrupted-speech samples to be

re-assigned to different components. Because probability mass

can be moved to different components, the state-conditional

mixture distribution is able to model the non-linear effects of

the interaction of the speech and noise. This yields a 10 %

relative reduction in word error rate compared to the optimal

Gaussian-for-Gaussian compensation.

Table II shows the same contrasts, but estimating only

the parameters of linear transformations, by applying predic-

tive CMLLR. As discussed in section III-B, non-variational

PCMLLR can be trained from different forms of statistics. The

word error rates in the first row use statistics from a VTS-

compensated model. The combination of the approximations in

VTS and PCMLLR leads to reduced performance. The numbers

in the second row are from CMLLR essentially trained from

full-covariance eDPMC statistics, with 10 000 samples per base

class. Though the clean speech samples can be drawn off-line,

collecting the statistics in (17) is still costly. However, for the

16 base class system, the word error rate is the same with

5000 samples per base class, which makes the total number

of samples 80 000. The complexity of this is invariant to the

number of components, so for larger systems this operating

129



TABLE I
WORD ERROR RATES FOR MODEL COMPENSATION.

Method Optimisation Shape 20 dB 14 dB
VTS per component diag 8.6 17.4

eDPMC
per component

diag 7.5 14.9
full 7.4 13.3

variational full 6.9 12.0

TABLE II
WORD ERROR RATES FOR PREDICTIVE CMLLR.

Base classes
16 1024 16 1024

Statistics 20 dB 14 dB
VTS 10.9 10.0 23.8 20.9
eDPMC 9.2 8.1 19.3 16.4
Variational 8.7 7.9 19.6 15.1

point could yield a reasonable trade-off. With 1024 base

classes, PCMLLR with eDPMC does perform better than VTS.

Though the full transformation matrix of PCMLLR implicitly

performs some compensation for correlation changes, it cannot

model the non-Gaussian shape of the distributions.

The bottom row in Table II shows results for variational

PCMLLR, which applies a variational approach to estimating

linear transformations per base class. It allows the transforma-

tions to move components in space to model the non-Gaussian

distribution of the corrupted speech. At 20 dB, around 26 %

of the probability mass of the samples goes to different

components; at 14 dB, 37 %. At 16 base classes this does

not consistently yield benefits, but with 128 or more, and

especially at lower signal-to-noise ratios, word error rates

improve compared to non-variational PCMLLR. This ability

to model the non-Gaussian aspect of the corrupted-speech

distribution with just linear transformations of clean speech

Gaussians shows the power of the variational approach.

VI. CONCLUSION

This paper has viewed model compensation for noise-

robustness and predictive linear transformations from a varia-

tional perspective. These methods can be seen as minimising

an upper bound on the divergence between the corrupted

speech and the model for decoding. It is possible to find a

tighter bound by considering the divergence between states

rather than between components. When applied to eDPMC

and predictive CMLLR, this yields reductions in the word

error rate. It is possible to model the non-linear impact of

the noise with just linear transformations of Gaussians. The

variational predictive framework should allow a wide range of

schemes to be developed. These could, for example, address

the computational cost of the schemes proposed here.
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