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Abstract—Parallel Model Combination (PMC) is widely used
as a technique to compensate Gaussian parameters of a clean
speech model for noisy speech recognition. The basic principle of
PMC uses a log normal approximation to transform statistics of
the data distribution between the cepstral domain and the linear
spectral domain. Typically, further approximations are needed
to compensate the dynamic parameters separately. In this paper,
Trajectory PMC (TPMC) is proposed to compensate both the
static and dynamic parameters. TPMC uses the explicit relation-
ships between the static and dynamic features to transform the
static and dynamic parameters into a sequence (trajectory) of
static parameters, so that the log normal approximation can be
applied. Experimental results on WSJCAM0 database corrupted
with additive babble noise reveals that the proposed TPMC
method gives promising improvements over PMC and VTS.

Index Terms—Parallel Model Combination, Trajectroy HMM,
Noise Robustness

I. INTRODUCTION

Hidden Markov Model (HMM) [1] is widely used as a

statistical model of the acoustic patterns for speech recogni-

tion. Typically, Gaussian Mixture Models (GMMs) are used

to represent the distribution of the acoustic features for each

HMM state. Mel Frequency Cepstral Coefficient (MFCC) [2]

is commonly used as acoustic features, with which acoustic

models are trained. Therefore, the mean vector and covariance

matrix of each Gaussian component correspond to the statistics

of the acoustic feature distribution in the cepstral domain.

In order to achieve good performance with statistical mod-

els, such as the HMMs, it is important to have a matched

condition between the acoustic data used to estimate the

model parameters and the acoustic data to be observed during

recognition. Any mismatch in acoustic conditions will lead to

performance degradation, the severity of which depends on

the degree of mismatch. One of the most common sources

of acoustic mismatch is the presence of environmental noise.

In practice, the type of noise present during recognition is

not known a priori. Therefore, it is not practical to train an

acoustic model for each noise condition. Existing methods

for improving the performance of noisy speech recognition

include Parallel Model Combination (PMC) [3] and Vector

Taylor Series (VTS) [4].

Standard PMC technique uses log normal approximation to

transform the statistics between the cepstral and linear spectral

domains, such that the statistics of the clean speech model and

the noise model can be combined easily in the linear spectral

domain. However, log normal approximation cannot be applied

directly to dynamic parameters without further approximations

(e.g. continuous-time approximation [3] and data-driven ap-

proximation [5]). This paper proposes an extension to standard

PMC which offers a unified compensation scheme for both

the static and dynamic parameters. The proposed method is

referred to as Trajectory PMC (TPMC). TPMC uses the ex-

plicit relationships between the static and dynamic features to

transform the distribution in the observed (static and dynamic)

space into an equivalent distribution in the cepstral trajectory

domain. Since the statistics in the cepstral trajectory domain

involves only the static parameters (including the temporal

correlations), log normal approximation can be applied directly

to compensate both the static and dynamic parameters in a

unified manner.

The remaining of this paper is organised as follows. Sec-

tion II introduces the related work, including PMC and VTS.

Section III describes the trajectory HMM formulation. Sec-

tion IV presents the formulation for the proposed TPMC

method. Section V discusses the properties of TPMC. Finally,

experimental results are given in Section VI.

II. RELATED WORK

Model compensation techniques are widely used to adapt

acoustic models trained on clean data to a new acoustic envi-

ronment. Two state-of-the-art model-based noise compensation

methods will be described in the following, using MFCC as

the acoustic features.

A. Parallel Model Combination (PMC)

Parallel Model Combination (PMC) [3] uses the log normal
approximation to transform the statistics of the speech data

between the cepstral and linear spectral domains such that

the statistics of the clean model and the noise model can be

easily combined to yield the noisy speech model. Let C and

C−1 be the DCT and inverse DCT matrices respectively. The
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conversion formula from cepstral to linear spectral domains

for the mean and covariance statistics are given by [6]:

μ = exp
(

C−1μ(c) +
1
2

diag−1
(
C−1Σ(c)C−�

))
(1)

Σ = M
(
exp

(
C−1Σ(c)C−�

)
− 1

)
M (2)

where diag−1(·) denotes the operation of extracting the diag-

onal elements of a matrix as a column vector and M is a di-

agonal matrix such that μ = diag−1(M). The corresponding

conversion formula from linear spectral to cepstral domains

are given by:

μ(c) = C

(
log(μ) − 1

2
log

(
diag−1(V ) + 1

))
(3)

Σ(c) = C (log (V + 1)) C� (4)

where V = M−1ΣM−1. Based on the assumption that

speech and noise are independent and additive in the linear

spectral domain, the corrupted-speech parameters in the same

domain are:

μ̂ = g · μ + μ̃ and Σ̂ = g2 · Σ + Σ̃

where g is a gain matching term introduced to account for

level differences between the clean and the noisy speeches1.

Unfortunately, the above log normal approximation cannot

be directly applied to dynamic parameters without further

approximations such as continuous-time approximation [3]

and Data-driven PMC (DPMC) [5].

B. Vector Taylor Series (VTS)
Vector Taylor Series (VTS) [4] is another model-based

noise compensation technique widely used for noisy speech

recognition. This method uses Taylor series expansion to

approximate the nonlinear function describing the cepstral

features of the noisy data, ĉ, given the cepstral features of

the clean data, c, and the noise data, c̃:

ĉ = c + C log
(

g + e

“
C−1

(c̃−c)
”)

(5)

The VTS formulae for compensating both the static and

dynamic parameters are given in [4], using the first-order

approximation.

III. TRAJECTORY HMM FORMULATION

Trajectory HMM reformulates the standard HMM by impos-

ing the explicit relationships between the static and dynamic

parameters [7]. Trajectory HMM has been widely used to

generate speech parameters for HMM-based speech synthe-

sis [8]. In the standard HMM formulation, the likelihood of

the HMM model, with parameters Λ, observing an observation

sequence, o = [o�
1 , . . . ,o�

T ]� given the state sequence,

q = {q1, q2, . . . , qT }, is given by:

P (o|q, Λ) =
T∏

t=1

N (ot|μqt
,Σqt

) = N (o|μ(o)
q ,Σ(o)

q ) (6)

1Parameters of the noise model and the noise-corrupted speech model are
capped with˜andˆrespectively

where μqt
and Σqt

are the 3M × 1 mean vector and the

3M × 3M covariance matrix associated with state qt and

μ(o)
q = [μ�

q1
, . . . ,μ�

qT
]�, Σ(o)

q = diag[Σq1 , . . . ,ΣqT
]

(μ(o)
q ,Σ(o)

q ) represents the statistics in the observation trajec-

tory domain2. However, the observation parameters are related

to the static cepstral coefficients as ot = [c�t , Δc�t , Δ2c�t ]�.

The explicit relationships between the static and dynamic

parameters can be conveniently expressed in the following

matrix notation:

o = Wc (7)

where c = [c�1 , . . . , c�N ]� is the sequence of static coefficients

and W is a window matrix of size 3MT×MN . Here, T is the

number of vectors in the observation trajectory space; while

N is the number of vectors in the cepstral trajectory space3.

We should note that in [7], N is constrained to be equal to

T ; whereas, in our approach, they could be flexibly chosen to

satisfy certain properties, which we will detail in Section V.

By imposing the constraint in Eq. (7), Eq. (6) could be

rewritten as a function of c:

P (W c|q, Λ) = N (o|μ(o)
q ,Σ(o)

q ) = Kq · N (c|μ(c)
q ,Σ(c)

q )

Kq is a normalisation constant independent of c; whereas μ
(c)
q

and Σ(c)
q are a mean vector, and a covariance matrix in the

cepstral trajectory domain:

μ(c)
q = Σ(c)

q W�Σ(o)
q

−1
μ(o)

q (8)

Σ(c)
q =

(
W�Σ(o)

q

−1
W

)−1

(9)

Eq. (8) and Eq. (9) form the basis for the conversion of

the statistics from the observation trajectory domain to the

cepstral trajectory domain. This transform plays a crucial part

in the formulation of the proposed Trajectory PMC method,

which will be described in detail in the following section.

IV. TRAJECTORY PMC

Trajectory PMC (TPMC) is proposed as an extension to

PMC so that both the static and dynamic parameters can be

compensated using the log normal approximation in a unified

manner. TPMC eliminates the need to deal with dynamic

parameters explicitly by transforming the observation statistics

into the cepstral trajectory statistics. As such, the dynamic

feature information is implicitly encoded within the cepstral

trajectory space. The overall TPMC compensation algorithm

is depicted in Fig. 1. There are three major steps involved: (A)

transformation of statistics from the observation space to the

cepstral trajectory space (forward trajectory); (B) combination

of clean and noise statistics in the cepstral trajectory domain;

and (C) transformation of statistics from the cepstral trajectory

space to the observation space (backward trajectory). These

steps will be described in the following sections.

2Subscript q is used to indicate a trajectory domain, which represents a
concatenation of a sequence of vectors.

3We will use the superscript (o) to represent features in the observation
space as opposed to those in the trajectory space indicated by (c).
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Fig. 1. A schematic diagram illustrating the Trajectory PMC process.

A. Forward Trajectory

The forward trajectory step transforms the observation

statistics, (μ(o),Σ(o)), into the cepstral trajectory statistics,

(μ(c)
q ,Σ(c)

q ). First, the statistics in the observation trajectory

space, (μ(o)
q ,Σ(o)

q ), are needed. Since TPMC is applied per

Gaussian components, these statistics are obtained by assum-

ing a constant statistics within each component, leading to

duplicating the observation statistics T times:

μ(o)
q = Sqμ

(o), Σ(o)
q =

[
diag

(
Sqφ

(o)
)]−1

(10)

where φ(o) is the diagonal vector of the matrix Σ(o)−1
and

Sq = [ 1 . . . 1︸ ︷︷ ︸
T times

]� ⊗ I3M (11)

where ⊗ denotes the Kronecker product operator.

Next, Eq. (8) and (9) can be applied to obtain the required

statistics in the cepstral trajectory domain, (μ(c)
q ,Σ(c)

q ):

μ(c)
q = Σ(c)

q W� diag
(
Sqφ

(o)
)

Sqμ
(o) (12)

Σ(c)
q =

(
W� diag

(
Sqφ

(o)
)

W
)−1

(13)

Note that the process of generating the cepstral trajectory

mean, μ
(c)
q , from the observation parameters is the same as

synthesising a sequence of cepstral parameters for speech

synthesis [8]. Also, synthesising data using trajectory HMM

formulation for noise speech recognition has been applied to

Support Vector Machines for noisy robust speech recogni-

tion [9]. However, TPMC uses the trajectory HMM formu-

lation for statistic transformation in a rather different way.

B. Parallel Model Combination in Trajectory Domain

Applying the forward trajectory step over the two modalities

– speech and noise – yields two sets of statistics in the cepstral

trajectory domain: (μ(c)
q ,Σ(c)

q ) and (μ̃(c)
q , Σ̃

(c)

q ). Since these

statistics correspond to only the static cepstral features, the

log normal approximation approach employed in the standard

PMC method, as described in Section II-A, can be applied to

combine these cepstral trajectory statistics. Eq. (2) through (4)

still hold for trajectory-based PMC, except that all the statistics

in those equations correspond to the trajectory space (i.e. with

subscript q) and the transformation matrices between the cep-

stral and log-spectral domains, C and C−1, are replaced by Q
and Q−1, respectively to account for the trajectory expansion.

The trajectory version of the transformation matrices are given

by:

Q = IN ⊗ C and Q−1 = IN ⊗ C−1

C. Backward Trajectory

After going through the forward trajectory and PMC pro-

cesses, we obtain the corrupted-speech model (μ̂(c)
q , Σ̂

(c)

q ) in

the cepstral trajectory space. However, statistics in the obser-

vation domain, (μ̂(o), Σ̂
(o)

), are needed in order to construct

the noisy speech model. This imposes a constant statistics
constraint in the observation trajectory domain, which is an

intermediate space between the cepstral trajectory and observa-

tion domains (see Fig. 1). Should there be no such constraint,

given the linear relationship of Eq. (7), (μ̂(o)
q , Σ̂

(o)

q ) can be

obtained easily as:

μ̂(o)
q = Wμ̂(c)

q , Σ̂
(o)

q = W Σ̂
(c)

q W� (14)

However, due to the constant statistics constraint in the obser-

vation space (c.f. Eq. (10)), it may not be possible to obtain

an estimate of (μ̂(o), Σ̂
(o)

) that exactly represents (μ̂(c)
q , Σ̂

(c)

q )

or (μ̂(o)
q , Σ̂

(o)

q ). Therefore, (μ̂(o), Σ̂
(o)

) are estimated such

that applying the forward trajectory to them yields the closest

approximation to the distribution in the trajectory domains. In

this work, the Kullback-Leibler (KL) divergence is employed

to measure the distance between two distributions. The KL

divergence between the “target” distribution (μt,Σt) and the

“estimated” one (μe,Σe) is given by:

DKL(t, e) =
1
2

[
Tr

(
Σ−1

e Σt

)
+ log

|Σe|
|Σt| − N+

+ (μe − μt)
�Σ−1

e (μe − μt)
]

(15)

Depending on the domain in which the optimisation takes

place, we have the corresponding methods detailed below.

1) Observation Trajectory Space KL (OT-KL): The target
statistics, (μ̂(o)

q , Σ̂
(o)

q ), can be obtained by applying Eq. (14)

to (μ̂(c)
q , Σ̂

(c)

q ). The constrained statistics to be estimated in

the observation trajectory space, (μ̄(o)
q , Σ̄(o)

q ), can be obtained

using Eq. (10):

μ̄(o)
q = Sqμ̂

(o), Σ̄(o)
q =

(
diag

(
Sqφ̂

(o)
))−1

Hence, substituting Eq. (10), and Eq. (14) into Eq. (15) yields

the KL divergence fOT -KL as a function of μ̂(o) and φ̂
(o)

. Its

partial derivatives are given by:

∂fOT -KL

∂μ̂(o)
= S�

q diag
(
Sqφ̂

(o)
) (

Sqμ̂
(o) − Wμ̂(c)

q

)
∂fOT -KL

∂φ̂
(o)

=
1
2
S�

q diag−1
(
W Σ̂

(c)

q W�+vvT
)
− T

2
ω(o)
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where v =
(
Sqμ̂

(o) − Wμ̂(c)
q

)
, and ω̂(o) = diag−1

(
Σ̂

(o)
)

.

Hence, minimising fOT -KL with respect to μ̂(o) gives:

μ̂(o) =
1
T

S�
q μ̂(o)

q (16)

ω̂(o) =
1
T

S�
q diag−1

(
Σ̂

(o)

q + vv�
)

(17)

Note that the optimum estimation of the mean, μ̂(o), is in

fact the average of the T mean vectors in the observation

trajectory space. Also, in practice, v ≈ 0. Hence, the optimum

solution for ω̂(o) is similarly the average of the variances in

the observation trajectory space4.

One main issues with the above estimation is that the

resulting backward trajectory does not exactly reverse the

forward trajectory step when W is not invertible (more

details in Section V). This is mainly because the OT-KL

ignores the temporal correlations between observation vectors

in the observation trajectory space. In an attempt to suppress

the irreversibility issue, an alternative estimation method is

proposed. Suppose the covariance matrix Σ̂
(o)

q is decomposed

into T ×T sub-blocks, {Σ̂(o)

ij }T
i,j=1, where Σ̂

(o)

ij is a sub-block

matrix of size 3M × 3M at position (i, j). The optimal ω(o)

given by Eq. (17) is essentially equal to 1
T

∑T
i diag−1(Σ̂

(o)

ii ).
Since this computation of ω(o) only involves the diagonal sub-

block matrices of Σ̂
(o)

q , we refer to as the OT-KL-Diag method.

While the above computation is theoretically justified as

minimising the KL divergence, it discards the temporal infor-

mation, i.e. off-diagonal sub-block matrices of the covariance

matrix Σ̂
(o)

q . To overcome that, we suggest an alternative, OT-

KL-Full, which considers all sub-block matrices of Σ̂
(o)

q , in

computing ω(o)= 1
T

∑T
i,j diag−1(Σ̂

(o)

ij ). We argue empirically

in Section V that such approximation yields better perfor-

mance.

2) Cepstral Trajectory Space KL (CT-KL): Minimising the

KL divergence in the observation trajectory space ignores

the explicit relationships between the static and dynamic

parameters. An alternative solution obtains (μ̂(o), Σ̂
(o)

) by

minimising fCT -KL, the KL divergence in the cepstral tra-

jectory space. The constrained statistics to be estimated in the

cepstral trajectory space, (μ̄(c)
q , Σ̄(c)

q ), can be obtained using

the forward trajectory transformation given in Eq. (12) and

(13). The resulting KL divergence function is given as:

fCT -KL =
1
2

Tr
(
Σ̄(c)

q

−1
Σ̂

(c)

q

)
− f

(
μ̂(o), φ̂

(o)
)

(18)

where f(μ̂(o), φ̂
(o)

) differs by only a constant from the

log-likehood function log p(c|q, Λ) in [7] (Eq. 44) with

(c, cq,P q, μq) being substituted by (μ̂(c)
q , μ̄

(c)
q , Σ̄(c)

q , μ̂(o)).
Hence, the partial derivatives of fCT -KL are as follows:

∂fCT -KL

∂μ̂(o)
= S�

q diag
(
Sqφ̂

(o)
)

W
(
μ̂(c)

q − μ̄(c)
q

)
(19)

4We use Σ̂
(o)

, φ̂
(o)

, and ω̂(o) interchangeably.

∂fCT -KL

φ̂
(o)

=
1
2
S�

q diag−1
[
2μ̂(o)(μ̂(c)

q − μ̄(c)
q )�W�

+2W Σ̂
(c)

q W�+W

(
μ̄(c)

q μ̄
(c)
q

�−μ̂(c)
q μ̂(c)

q

�
)

W�
]

(20)

Equating Eq. (19) to 0 results in linear equations, which

yields closed-form solutions for μ̂(o) when φ̂
(o)

is known:

S�
q W Σ̄(c)

q W�SqΣ̂
(o)−1

μ̂(o) = S�
q Wμ̂(c)

q (21)

As fCT -KL is not a quadratic function of φ̂
(o)

, the optimal

value is found by using a gradient method with the partial

derivative from Eq. (20) given a fixed μ̂(o). The OT-KL-Full

method is used for initialisation.

V. PROPERTIES OF TRAJECTORY PMC

In this section, several properties of the TPMC method will

be discussed. First, the matrix W , which encodes the explicit

relationships between the static and dynamic parameters, will

be examined. As previously mentioned, the size of the matrix

W is 3MT × MN , where T and N denote the lengths
of the trajectory in the observation and cepstral domains,

respectively. In the original work of trajectory HMM [7],

the trajectory length in the observation and cepstral domains

are chosen to be the same (N =T ) where the first and last

2δ columns5 of W are truncated. In this work, we consider

N=(T + 4δ). This allows for the flexibility of making W a

square matrix (and invertible) when T = 2δ, which simplifies

the forward trajectory formulae (Eq. (13) and (12)) as:

μ(c)
q = W−1Sqμ

(o) (22)

Σ(c)
q =

[
W� diag

(
Sqφ

(o)
)

W
]−1

(23)

When W is square, a reversible backward trajectory that

optimises the KL divergence in both the observation and

cepstral trajectory domains leads to the solution given by

Eq. (16) and Eq. (17)6. Another interesting property of

TPMC when W is square is that the compensation of the

static parameters is identical to that of the standard PMC.

However, when N is larger than T + 4δ, OT-KL estimation

does not yield a reversible statistic transformation. Fig. 2 (left)

shows the average KL divergence between the original and

compensated models with no noise. A zero KL divergence

indicates reversibility. It was found that for OT-KL-Diag

estimation, the compensated model quickly diverges from the

original model as N increases, most notably for the static

and delta parameters. On the other hand, OT-KL-Full yields

perfect reconstruction of the static parameters for different N .

The divergence is smaller for the delta parameters but much

larger than OT-KL-Diag for the delta-delta parameters. The

non-reversibility property of OT-KL estimation is attributed to

the fact that features in the observation space are assumed to

be uncorrelated. On the other hand, the CT-KL estimation uses

5δ is the window length on each side of the current frame when computing
dynamic parameters. We use δ=1 for both delta and delta-delta computation.

6In this case, v = 0 in Eq. (17).
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Fig. 2. Left: Reversibility comparison w.r.t. KL divergence for the static, delta
and delta-delta parameters with increasing N . Right: Convergence comparison
of KL divergence with increasing optimisation iterations for different N .

the trajectory HMM estimation approach [7], which imposes

the explicit relationships between the static and dynamic

parameters. Hence, the optimum CT-KL estimates will yield a

reversible compensation when there is no noise. Fig. 2 (right)

shows the convergence of the overall KL divergence between

the original and compensated models for N=7, 8, 9, 10 with

increasing optimisation iterations for the CT-KL estimation.
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Fig. 3. KL divergences of different compensated single-component models
w.r.t “reference” noisy speech models for different SNRs and feature parts.

When noise is present, as the signal-to-noise ratios (SNRs)

decrease, reversibility might not be as crucial as for high

SNRs. To verify that, we compare in Fig. 3 the performance of

different compensation methods (VTS and DPMC are added

for completeness) across different settings. As anticipated, OT-

KL with N =8 rivals the CT-KL when SNRs are low, e.g. 0dB

and 10dB; whereas, CT-KL only yields superior performance

with SNR= 20dB. When N = 6, the OT-KL method fails to

compensate the delta-delta parameters, which we believe is

partly due to the short trajectory length in the observation

domain, i.e. T =2. VTS method, while demonstrates very good

performance for static features, does not compensate very well

for other feature parts, especially when SNRs are low. DPMC,

on the other hand, yields good performance at low SNRs, but

fail to perform consistently across different feature parts.

VI. EXPERIMENTS

Experiments were conducted using the WSJCAM0 [10]

corpus. The training data consists of 9889 utterances giving a

total of 18.3 hours of data. The evaluation set is made up of

the combination of the si_dt5a and si_dt5b development

datasets. There are a total of 1.4 hours of test data. Both the

training and test data were artificially corrupted by additive

babble noise from the NOISEX database [11] to generate noisy

speech data at signal-to-noise (SNR) ratios of 20dB, 10dB and

0dB. The noise data used to corrupt the training data were

also used to estimate the noise model, which in this work, is

a single Gaussian distribution.

All the acoustic models used in the subsequent experiments

were decision-tree state clustered triphone HMM models,

with approximately 4000 distinct states. These models were

trained on 39-dimensional features comprising 13 static MFCC

coefficients (including the C0 term) together with the first

and second order dynamic parameters. Firstly, clean speech

models were trained on the original speech data provided

by the WSJCAM0 corpus. In addition, noisy speech mod-

els were also trained on the artificially corrupted speech

data at various SNRs to obtain a set of “reference” noisy

speech models and assess the “upper bound” performance.

The noisy speech models were trained by first performing

Single Pass Retraining (SPR) [12] so that the initial state

alignments were obtained using a clean model on speech

speech data. These models were subsequently trained with

three additional Baum-Welch iterations. The Word Error Rate

TABLE I
WER (%) PERFORMANCE OF BASELINE MODELS

No. of
Model

WER (%)
Components Clean 20dB 10dB 0dB

1
Clean 17.21 27.30 57.40 95.28

Noisy (SPR) – 19.32 29.64 55.83
Noisy (BW) – 17.83 27.77 54.06

16
Clean 8.49 17.84 50.59 93.65

Noisy (SPR) – 9.48 17.59 44.11
Noisy (BW) – 9.47 16.67 44.12

(WER) performance of various models under different SNR

conditions are summarised in Table I. Two sets of models

with 1 and 16 Gaussian components per state were evaluated.

In general, the WER performance degrades as SNR decreases.

The relative WER reduction achieved by the SPR-trained noisy

speech models over the clean speech models were 29.2%–

48.4% for 1-component systems and 46.9%–65.2% for 16-

component systems. With additional Baum-Welch retraining,

further relative WER reduction of 5.2%–7.7% were observed

except for the 16-component systems at SNR of 20dB and

0dB where the performance difference is very small.

First, the effect of the trajectory length of the cepstral

trajectory domain, N , was investigated. Table II shows the

WER performance comparison for TPMC models with N
ranging from 6 to 10. As previously mentioned in Section V,

the OT-KL estimation method for TPMC is reversible only

when W is invertible (i.e. when N=6). Therefore, TPMC with
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TABLE II
WER (%) PERFORMANCE OF 1-COMPONENT TPMC MODELS USING

OT-KL-FULL ESTIMATION WITH DIFFERENT TRAJECTORY LENGTH, N

SNR (dB)
WER (%)

6 7 8 9 10

20 21.61 22.14 23.83 26.38 29.60
10 39.67 37.71 37.51 40.45 45.01
0 71.57 68.67 66.70 67.75 71.17

TABLE III
WER (%) PERFORMANCE OF 1-COMPONENT TPMC MODELS USING

DIFFERENT BACKWARD TRAJECTORY ESTIMATION METHODS

N Method
WER (%)

20dB 10dB 0dB

8
OT-KL-Full 23.83 37.51 66.70

CT-KL 22.27 36.86 66.44

10
OT-KL-Full 29.60 45.01 71.17

CT-KL 23.55 36.58 64.93

smaller N gave better performance in low noise conditions.

With lower SNRs, N =8 was found to yield the best WER

performance. Next, the parameter estimation methods for the

TPMC reverse process are compared in Table III. In general,

CT-KL estimation method outperforms OT-KL-Full since the

relationships between the static and dynamic parameters are

properly imposed, but at the expense of higher computational

costs due to the gradient optimisation for the variance parame-

ters. Furthermore, using the OT-KL-Full estimation with N=8
gave only marginally inferior performance compared to the

best performing systems. Therefore, subsequent analyses will

be based on this model.

TABLE IV
WER (%) PERFORMANCE COMPARISON OF 16-COMPONENT SYSTEMS

USING VARIOUS NOISE COMPENSATION SCHEMES

Model
WER (%)

20dB 10dB 0dB

PMC 11.76 29.53 73.25
VTS 11.26 20.25 51.57

DPMC
17.32 28.42 58.90

(10.68) (19.10) (49.86)
TPMC 10.84 19.68 50.20

Finally, Table IV compares the WER performance of the

proposed TPMC method with VTS, PMC and DPMC. Only

the static parameters were compensated for PMC. DPMC

models were trained by simulating an average of 500 noisy

data samples per Gaussian component. In general, VTS out-

performs PMC across different SNR conditions. The perfor-

mance gain increases as SNR value drops because dynamic

parameters were not compensated for PMC. Two sets of results

were reported for DPMC. The top row refers to the results

where DPMC models were estimated with fixed component

alignments, i.e. data were simulated per Gaussian components.

In this case, DPMC performed significantly worse than the

other methods. However, if the data were simulated at the

state level, allowing component alignments to be optimised,

DPMC achieved the lowest WER (shown in parentheses).

The proposed TPMC approach consistently outperformed both

PMC and VTS across various SNR conditions. The perfor-

mance of TPMC is also very competitive (only slightly worse)

when compared to DPMC with component realignment. Nev-

ertheless, it is worth pointing out that the proposed TPMC

method is more efficient than DPMC since it does not involve

synthesising noisy data and reestimation. Furthermore, TPMC

is applied to each individual Gaussian components indepen-

dently. Hence, there was no compensation for the component

weights. Therefore, one possible extension for TPMC as a

future work is to incorporate the compensation for Gaussian

weight parameters.

VII. CONCLUSIONS

This paper has presented an extension to the standard

Parallel Model Combination (PMC) technique that offers a

solution to compensate both the static and dynamic parameters

in a unified manner. The proposed method is called Trajectory

PMC (TPMC) as it is motivated by the trajectory HMM

formulation. The explicit relationships between the static and

dynamic features are used to derive the statistics in the cepstral
trajectory domain such that log normal approximation can

be applied. The proposed TPMC method was found to yield

consistently better performance compared to the standard PMC

and VTS methods, both in terms of the Kullback-Leibler

divergence and word error rate evaluations.
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