
AN HIERARCHICAL EXEMPLAR-BASED
SPARSE MODEL OF SPEECH, WITH AN

APPLICATION TO ASR

Jort F. Gemmeke, Hugo Van hamme

Department ESAT, Katholieke Universiteit Leuven, Belgium
{jort.gemmeke,hugo.vanhamme}@esat.kuleuven.be

Abstract—We propose a hierarchical exemplar-based model of
speech, as well as a new algorithm, to efficiently find sparse linear
combinations of exemplars in dictionaries containing hundreds
of thousands exemplars. We use a variant of hierarchical agglom-
erative clustering to find a hierarchy connecting all exemplars,
so that each exemplar is a parent to two child nodes. We use
a modified version of a multiplicative-updates based algorithm
to find sparse representations starting from a small active set
of exemplars from the dictionary. Namely, on each iteration
we replace exemplars that have an increasing weight by their
child-nodes. We illustrate the properties of the proposed method
by investigating computational effort, accuracy of the eventual
sparse representation and speech recognition accuracy on a digit
recognition task.

Index Terms—sparse representations, exemplars, hierarchy

I. INTRODUCTION

For the last 20 years Automatic Speech Recognition (ASR)
has been dominated by pattern recognition techniques based
on Hidden Markov Models (HMMs) [1], employing Gaus-
sian Mixture Models (GMMs) to model the acoustics. While
GMMs allow for fast model training and scoring, training sam-
ples are pooled together for parameter estimation, resulting in
a potential loss of the information that exists within individual
training samples. A second issue with the use of GMMs is that
their accuracy suffers when there is not sufficient training data
to estimate all model parameters. Accordingly, there has been
an increasing interest in the past decade in exemplar-based
methods as a possible way to replace or augment GMM-based
methods of speech processing [1], [2].

Exemplars (also known as templates or episodes) are records
of detail of actual speech signals that encode idiosyncrasies
such as the speaker and possibly even the context in which
an utterance was produced. Recent advances in computing
power, storage and the development of algorithms that can
find structure in extremely large collections of observations,
are now making exemplar-based approaches computationally
feasible. Traditionally, exemplars have been used in combi-
nation with established techniques such as Dynamic Time
Warping (DTW) [3], [4], Nearest Neighbour (NN or k-NN)
classification [5] and Support Vector Machine (SVM) clas-
sification [6]. More recently, developments in fields such as
Sparse Representations (SRs) and Compressed Sensing (CS)
have revealed that speech may be effectively represented as
sparse linear combinations of exemplars [7], [8], by finding
the smallest number of exemplars in a very large collection of

exemplars (a dictionary) that jointly approximate the observed
speech token.

In recent work it has been shown the exemplar-based sparse
representation model can be used for speech classification
and recognition [9], [10]. Enforcing of sparsity in the linear
combination of exemplars prevents overfitting [10] and enables
applications in source separation and noise robustness, since
noisy speech can be expressed as a sparse linear combination
of noise and speech exemplars [8]. The fact that exemplars
are combined linearly in SR-based ASR leads to a reduction
in modelling error compared to NN using similarly sized
dictionaries. Unfortunately, the computational cost of finding a
sparse linear combination is much larger. Typically, exemplar-
based sparse representation methods employ only hundreds to
thousands of exemplars, rather than the hundreds of thousands
or even millions of exemplars employed in DTW systems [2].

In this paper, we propose a hierarchical exemplar-based
model of speech, as well as a new algorithm, to efficiently
find sparse linear combinations of exemplars in dictionaries
containing hundreds of thousands exemplars. First, we use
a variant of hierarchical agglomerative clustering to find a
hierarchy connecting all exemplars, so that each exemplar is a
parent to two child nodes. Then, we use a modified version of a
multiplicative-updates based algorithm[11], [12] to find sparse
representations starting from a small active set of exemplars
from the dictionary. Namely, on each iteration we replace
exemplars that have an increasing weight by their child-
nodes. We illustrate the properties of the proposed method by
investigating computational effort, accuracy of the eventual
sparse representation and speech recognition accuracy on a
noise robust ASR task, AURORA-2.

II. SPARSE EXEMPLAR-BASED REPRESENTATIONS OF

SPEECH

In our exemplar-based approach to ASR, speech signals are
represented by their spectro-temporal distribution of acous-
tic energy, a spectrogram. The exemplar-based approaches
proposed in this paper operate in the MEL-scale magnitude
spectrogram domain, with the term magnitude referring to the
square root of energy in a time-frequency coordinate.

The magnitude spectrogram describing a clean speech signal
is a B×T dimensional matrix S (with B frequency bands and
T time frames). To simplify the notation, the columns of this
matrix are stacked into a single vector s of length E = B ·T .

101978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

We assume that an arbitrary speech spectrogram s can
be expressed as a linear, non-negative combination of clean
speech exemplars asj , with j = 1, . . . , J denoting the ex-
emplar index. These exemplars are magnitude spectrograms
describing segments of speech signals extracted from a training
database and are stacked in same way as was done to obtain
s. The superscript s denotes ‘speech’; later in the paper we
will be using the superscript n for noise. We write:

s ≈
J∑

j=1

asjx
s
j = Asxs subject to xs ≥ 0 (1)

with xs
j being the non-negative weight or activation of each

exemplar. The J exemplars as1, as2, . . . ,a
s
J are grouped into

a speech exemplar dictionary As as As = [as1 as2 . . .a
s
J] and

the activations are stacked into xs, a J-dimensional activation
vector.

Previous research has shown that xs can be very sparse
[13]. That is, only a few non-zero entries suffice to represent
s with sufficient accuracy. In order to obtain xs, we minimise
the cost function:

d(s,Asxs) + λ||xs||1 subject to x ≥ 0 (2)

with distance function d and the second term a sparsity
inducing L1 norm of the activation vector controlled by λ.
As a distance measure d we use the generalised Kullback-
Leibler (KL) divergence. In previous work [8], a variant of Lee
and Seungs iterative Non-negative matrix factorisation (NMF)
algorithm [11] was used to obtain sparse representations:

xs
i+1 ← xs

i . ∗ (AsT(s./(Asxs
i)))./(A

sT1+ λ). (3)

with .∗ and ./ denoting element-wise multiplication and divi-
sion, respectively. The sparse representation xs

i is indexed by
iteration counter i ∈ [1, I]. The vector 1 is an all-one vector
of length E. On the first iteration, xs is initialised to unity.

III. THE HIERARCHICAL EXEMPLAR-BASED SPARSE

SPEECH MODEL

A. Speech model

In this paper, we propose to accelerate the task of obtaining
xs by imposing a hierarchical structure on the exemplars. The
details of finding such a hierarchical structure are given in
the next Section. For now, it suffices to say we hierarchically
cluster all speech exemplars in the dictionary so that each
exemplar is either a leaf node, or is a parent of two exemplars.

There has been some recent work on finding sparse repre-
sentations using hierarchically structured dictionaries (cf. [14]
and the references therein). In such work, however, a hierarchy
is imposed on the sparsity pattern of the representation, in
order to obtain more accurate sparse representations. In this
paper we use a hierarchical structure to more efficiently obtain
the sparse representation.

B. Splitting Multiplicative Updates Algorithm

In order to use the hierarchy to efficiently find sparse repre-
sentations using large dictionaries, we exploit two properties
of the approach described in Section II: First, the fact that (3)
is an iterative method and second, the fact that only a few of
the exemplars will have non-zero weight. The multiplicative
update rule (3) is modified so the dictionary that is used in
each iteration can change:

xs
i+1 ← xs

i . ∗ (As
i
T(s./(As

ix
s
i)))./(A

s
i
T1+ λ). (4)

The procedure is as follows. We start with an initial
speech dictionary As

0 that is determined by taking the top
J0 � J exemplars as determined by the hierarchy. Then, (4)
is applied with this initial dictionary As

0 and initial sparse
representation xs

0 to obtain the sparse representation xs
1. We

search for exemplars that are active by determining the change
in exemplar activation as Δxs = xs

1 − xs
0. If for a certain

exemplar it holds that Δxs > 0, and it is not a leaf node itself,
its child exemplars are added from the dictionary As to the
dictionary As

0. Both the added exemplars get a weight 0.5∗xs
1,

after which the parent exemplar is removed. After processing
all activate exemplars in this fashion, the dictionary As

1 is
obtained. This procedure is repeated on every subsequent
iteration.

Since the the exemplar weights are sparse, only a limited
number of exemplars will be active. This restrains the growth
and eventual size of the active dictionary. Of course, different
criteria for determining which exemplars are active can be
defined.

C. Merging and pruning

Although not experimented with in this paper, we would
like to point out that the proposed speech model and algorithm
support two methods to constrain the size of the growing active
dictionary: merging exemplars and pruning exemplars.

The merging method works by first finding inactive exem-
plars. Criteria for whether an exemplar is inactive could be a
negative Δxs, a small absolute weight xs, or a combination
of both. In order to merge two exemplars, it is necessary for
both children of a parent node to be in the active dictionary,
and both should be inactive. If this criterion is met, the two
child nodes can be replaced by their parent node, which gets
a weight equal to the sum of the weight of the child nodes.
The merging and the splitting procedure are symmetric: for
example if at a later iteration a previously merged exemplar
obtains a Δxs > 0, it will be split again to restore the previous
situation.

A possible downside of the merging method is that it may
be difficult to have both child nodes inactive at once in the
active dictionary, leading to only few merging actions in each
iterations. An alternative is pruning: exemplars that are inactive
can be removed from the active dictionary. The pruning can
act on any node, be it a parent node or leaf node, but is
irreversible: unlike in the merging operation, the child nodes
of a node that has been pruned are not accessible any more in
later iterations.

102

A

B

C

D

E

F

(a) Data points

B C D EA F

BC DE

DEF

BCDEF

ABCDEF

(b) HAC

B C D EA F

Bc De

Df

Bd

Ab

(c) HACAM

Fig. 1: Graphical representation of Hierarchical Agglomerative Clustering Around Medoids (HACAM). Figure (a) shows six
datapoints in a two-dimensional space. Figure (b) shows the cluster tree resulting from Hierarchical Agglomerative Clustering
(HAC). Figure (c) shows the cluster tree resulting from HACAM: in HACAM the parent node is one of the child nodes (the
left node by default).

IV. HIERARCHICAL CLUSTERING OF EXEMPLARS

The exemplar-based speech model proposed above requires
a hierarchical structure of the exemplar dictionary. To obtain
such a hierarchy, we use a data-driven clustering method that is
a variant of hierarchical agglomerative clustering (HAC) [15].
In HAC one iteratively merges the two closest exemplars until
all exemplars are clustered. The difference with conventional
HAC is that after merging two exemplars, we represent the
parent node by one of the child nodes, rather than by the mean
of the two exemplars. Rather than calculating which child
node should be the representative node, we default to always
use node with the lowest index in the dictionary (which is an
arbitrary but consistent choice). We will refer to this approach,
which is reminiscent of K-medoid clustering, as hierarchical
agglomerative clustering around medoids (HACAM). A graph-
ical example of HACAM is given in Figure 1.

The use of HACAM to obtain a hierarchical description
of speech has the following benefits over other clustering
techniques, such as HAC or divisive clustering:

• In this paper, every exemplar is associated with a label
that describes the underlying speech class. HACAM,
however, is data driven, and thus requires no knowledge
of the labels associated with exemplars. This allows the
method to be used also for tasks in which knowing
the associated labels is not necessary, such as source
separation.

• Using HACAM makes the splitting algorithm presented
in Section III more efficient: As one of the child nodes
is the parent node, for each active exemplar only one
additional exemplar needs to be added.

• Since HACAM is medoid based, each parent node in the
hierarchy is still an exemplar with its associated label.
If instead the mean of two child nodes were used to
represent the parent node, it is unclear what its associated
label should be.

• The use of exemplars as medoids ensures no additional
memory is required to store parent nodes.

• The use of medoids is more computationally efficient than

standard HAC, as all distances only need to be calcu-
lated once. Accordingly, the computational complexity is
O (

J2
)
.

• The use of agglomerative clustering ensures that as you
go down in the tree, the distances between the child
nodes will decrease. Although there is no guarantee
that added exemplars are beneficial to reducing the cost
function, it ensures that adding new exemplars to the
active dictionary has a smaller impact on the cost function
in later iterations, which makes the algorithm more stable.
Note that if we would have represented the parent node as
the mean of the two child nodes, it can be easily shown
that the cost function is non-increasing in the splitting
procedure.

• Agglomerative clustering results in a unique hierarchy.
Many divisive clustering approaches, on the other hand,
yield hierarchies that depend on the initialisation in the
k-means or k-median clustering used in each step.

V. EXEMPLAR BASED NOISE ROBUST ASR

As a test case for the proposed hierarchical exemplar-based
sparse speech model, we use the obtained sparse representa-
tions for noise robust speech recognition as described in [8].
In this approach, we model noise spectrograms as a linear
combination of noise exemplars ank, with k = 1, . . . ,K being
the noise exemplar index. Representing the spectrogram of
noisy speech by a vector y, this leads to:

y ≈ s+ n (5)

≈
J∑

j=1

asjx
s
j +

K∑
k=1

ankx
n
k (6)

= [AsAn]

[
xs

xn

]
s.t. xs,xn ≥ 0 (7)

= Ax s.t. x ≥ 0 (8)

with xn the sparse representation of noise. The matrix A, the
concatenated dictionary [AsAn] with the speech and noise

103

exemplars as its columns, has dimensionality E × D, where
D = J+K. The sparse representation x is found by applying
update rule (3) or (4), by substituting the speech-specific
variables with their counterparts x and A.

Each exemplar in the speech part of the dictionary As is
labelled using HMM-state labels obtained from a conventional
MFCC-based decoder. Using a frame-by-frame state descrip-
tion of the training data used to construct the dictionary,
we associate each exemplar asj with a label matrix Lj , of
dimensions Q × T , with Q the total number of states in the
system. The matrix Lj is a binary matrix containing for each
frame τ ∈ [1, T] a single non-zero value for the corresponding
active state. For each observed speech frame, we now calculate
an unnormalised posterior probability vector as:

L =

J∑
j=1

Ljx
s
j (9)

Subsequently, for each observed speech segment a state
probability matrix is constructed by concatenating the unscaled
posterior probability vectors. In order to decode utterances of
arbitrary lengths, we adopt a sliding time window approach as
in [8]. In this approach, we represent a noisy utterance as a
number of fixed-size, overlapping speech segments. For each
observed noisy speech segment, we calculate a state probabil-
ity matrix as described above. Finally, we obtain a posterior
probability matrix for the entire utterance by averaging the
posterior probability estimates of the frames of all the windows
that overlap, taking into account the exact temporal positions
of the frames.

VI. EXPERIMENTS

A. Experimental setup

For our experiments we used material from test set ‘A’ of
the AURORA-2 corpus. Test set A comprises 1 clean and 24
noisy subsets, containing four noise types (subway, car, babble,
exhibition hall) in six SNR bins. Each subset contains 1001
utterances with one to seven digits ‘0-9’ or ‘oh’. For testing
we used the same random, representative subset of 10% of the
utterances (i.e. 400 utterances per SNR level) used in [16].

In the experiments, the results of the four noise types
are averaged. Acoustic feature vectors consisted of MEL
frequency magnitude spectrograms, spanning B = 23 bands
with a frame length of 25 ms and a frame shift of 10 ms. We
used exemplars spanning 300 ms, thus T = 30 frames.

The noise dictionary consisted of K = 4000 exemplars ran-
domly extracted from the noise sources underlying the noisy
speech in the multi-condition training set of AURORA-2. The
noise dictionary was kept fixed throughout all experiments:
only the speech dictionary was hierarchically represented. The
speech dictionary As was constructed by sliding a window
over the speech spectrograms in the clean training set in
AURORA-2 and extracting every third exemplar (window po-
sition). The speech dictionary had size J = 408 066. Prior to
clustering with HACAM, the log was taken of the magnitude
features and the dimensionality reduced to 100 by doing
multiplication with a random matrix of dimensions 690×100.
HACAM employed the Euclidean distance.

TABLE I: Computational effort in seconds spent on finding
a single sparse representation, for various speech dictionary
sizes. Note that the complete (speech + noise) dictionary size
is J + 4000.

hierarchical Speech dictionary size J
dictionary 2000 4000 8000 16000 32000 64000

6.87 1.76 2.30 3.36 5.55 9.92 18.40

In our experiments with the hierarchical speech dictionary,
we used an initial speech dictionary of J0 = 2000 exemplars,
with the exemplars determined by taking the top J0 exemplars
as determined by the hierarchy. We applied 600 iterations of
the multiplicative update rule (4), and used a sparsity value
of λ = 0.65 for speech exemplars and λ = 0 for noise
exemplars (cf. [8]). In addition to the experiments with the
splitting multiplicative update rule (4), we did experiments in
which the dictionary was kept fixed (using update rule (3)).
For these experiments we used several ‘initial’ dictionary sizes,
J0 ∈ {2000, 4000, 8000, 16000, 32000, 64000},

All algorithms were implemented in MATLAB, and utilized
a GPU for acceleration using the Jacket [17] toolbox. The
splitting multiplicative update algorithm was made efficient by
using lookup tables which list the parent and child nodes of
each exemplar at each point in the hierarchy. The machine used
for the experiments was a Quad core Q6600 2.4 GHz, with 8
GB of RAM. It was equipped with a 1GB GTX460 GPU
and operated under Windows 7, 64-bit with Matlab2010b.
Implementation details of the speech decoding system can be
found in [8]; In brief, digits were described by 16 states with
an additional 3-state silence word, resulting in a 179 dimen-
sional state-space. Each frame in each exemplars was labelled
with an HMM-state as determined by forced alignment with
a conventional HMM/MFCC-based recognizer.

In the experiments, only two SNR values, −5 dB as well
as clean speech, are shown for brevity and since the focus of
this paper is on the influence of the dictionary. For the same
reason, we restrict ourselves to results on test set A, although
this represents a best-case scenario as there is an overlap
between the noise types in the noise dictionary and the noise
types in the noisy speech. Experimental results in [8], [18],
however, have also demonstrated good results on mismatched
noise types.

B. Number of added exemplars and value of the cost function

To illustrate some properties of the proposed hierarchical
approach, we gather statistics of finding a sparse representation
on the single clean speech utterance “FCT OOO9989A”,
which is represented by 248 sparse representations (corre-
sponding to the positions of the sliding window). In Figure 2a
we show the average number of exemplars that are added in
each iteration. We only show the first 100 iterations, as after
that only in some sparse representations exemplars were added
in later iterations (up 25 at once, and up to 140 in total over
the remaining 500 iterations). We can observe in Figure 2a that
the average number of exemplars in this utterance is ≈ 11000.
Incidentally, this average is representative for all utterances in
the testset.

We can observe that most exemplars get added in the first
≈ 30 iterations, and almost all exemplars get added the first

104

0 20 40 60 80 100
0

250

500

750

1000

A
d
d
e
d
 e

x
e
m

p
la

rs

Iterations
0 20 40 60 80 100

0

4000

8000

12000

16000

T
o
ta

l
e
x
e
m

p
la

rs

(a) Exemplar counts

100 200 300 400 500 600
4

10

25

50

Iterations

Lo
g

C
os

t f
un

ct
io

n
va

lu
e

2000
4000

10000
16000
32000
64000

(b) Cost function

Fig. 2: Results of running the proposed algorithm for 600 iterations on a single utterance containing clean speech (258 sparse
representations). Figure (a) shows the average number of speech exemplars added in each iteration (dashed lined), as well as
the added number of speech exemplars plus and minus one standard deviation (dash-dotted lines). Also, the total number of
speech exemplars in the dictionary is shown (solid line). Only the first 100 iterations are shown, as hardly any exemplars were
added after that. Figure (b) shows the average value of the cost function (2) in each iteration, for the proposed method (solid
line) as well various fixed dictionary sizes (dashed lines). The numbers right of the lines indicate the speech dictionary size
for fixed dictionaries. Note that the y-axis is displayed on a log scale.

100 iterations. This is due to two effects: many exemplars
have a positive weight change between iterations in the first
few iterations (the solution is not very sparse yet) and the
complete cluster tree is exhausted after only a limited number
of levels. Investigation of the cluster structure reveals that even
the deepest tree has only 113 branches. As stated above, it can
still happen in some cases that exemplars can become active
even after many iterations, but this is a rare occurrence.

In Figure 2b can observe the average value of the cost
function (2) in each iteration. We have taken the average
over all feature dimensions and all sparse representations in
the utterance. We can observe the proposed algorithm starts
out with a much larger value of the cost function than most
dictionary sizes (equal, in fact, to J0 = 2000, but converges to
lower values, approaching the function value of J0 = 64000
after 600 iterations. The fact that the value of the cost function
shows a stable decrease (even when inspecting individual
sparse representations rather than averages), shows that the
added exemplars do, in fact, contribute to the reduction of the
function value. After all, if arbitrary exemplars were added
with the weight 0.5 ∗ xs, it is unlikely the cost function value
would decrease.

Finally, it we can observe that whereas the function values
of the fixed dictionaries have pretty much converged after
300 iterations, the proposed method converges slower. This
must be due to the fact that, as noted above, even after more
than 300 iterations exemplars still get added to the dictionary
occasionally. Incidentally, it should be noted that although the
cost function may seem to have converged, the solutions may
still become sparser with more iterations - in earlier work this
was shown to improve performance [18].

C. Computational Effort
To roughly characterise the computational effort required

by the proposed algorithm, we investigate running times for
finding sparse representations. The running time for a fixed

dictionary is completely determined by the dictionary size,
feature dimension and the number of iterations. When using a
hierarchical dictionary, there is an additional cost involved for
bookkeeping and adding new exemplars. In Table I, we display
the average time for finding a single sparse representation,
averaged over 10 repeated runs using the same utterance used
in Section VI-B. In this timing experiment, we limit the
number of iterations to 150 as after that, only few exemplars
get added when using the hierarchical dictionary approach.

In Table I we can observe that the running time of the
proposed algorithm is between the running times of fixed
dictionaries J0 = 16000 and J0 = 32000. Since we observed
in Figure 2a that the average number of exemplars in this
utterance is ≈ 11000, we can estimate that the running time
almost doubled the first 150 iterations when compared to using
a fixed dictionary. Profiling showed that most of the additional
cost was due to finding which exemplars were active, rather
than the process of adding the new exemplars. It is likely
that finding of active exemplars can be further optimized, for
example by not considering exemplars that are already a leaf
node. Off course, regardless of such optimisations, the impact
of adding the extra exemplars reduces as more iterations are
used.

Finally, it should be noted that in modern computer architec-
tures it is more efficient to find multiple sparse representations
at once using matrix operations. This would require some
modification of the proposed hierarchical approach, however,
as in these approaches a single dictionary is shared between
all sparse representations. Accordingly, one should split ex-
emplars whenever a exemplar becomes active in any sparse
representations. Implementation of such an approach is left as
future work.

D. Speech recognition accuracy
The exemplar-based noise robust ASR system described

in [16] relies on finding a linear combination of speech and

105

TABLE II: Recognition accuracies for various dictionary sizes.

SNR [dB]
hierarchical Fixed speech dictionary size J
dictionary 2000 4000 8000 16000 32000 64000

clean 97.0 77.9 83.7 89.9 92.3 95.0 96.3
-5 53.4 43.5 48.9 52.6 53.9 54.8 57.9

noise exemplars to provide noise robustness. While achieving
impressive recognition accuracies on noisy speech, the method
suffered on clean speech in comparison to conventional ASR
methods. It was suggested that this could be due to, among
other things, the fact only a few thousand speech exemplars
were used.

In this experiment we explore the recognition on clean and
noisy speech with the proposed approach, as well as with the
fixed speech dictionaries used in the previous experiments.
In Table II we can observe that the use of the hierarchical
dictionary results in a clean speech accuracy of 97.0%, which
is higher than the performance of J0 = 64000, with accuracy
of 96.3%. On noisy speech, the proposed method achieves
53.4% at SNR -5 dB., which situates it between the fixed
dictionary sizes J0 = 8000 and J0 = 16000.

From the recognition results we can conclude that the
proposed method is promising, as it achieves recognition
accuracies that are higher than much larger (fixed) dictionaries
at a much lower computational cost. In fact, an additional
experiment (not shown) showed that this is a performance
comparable to what is achieved with a dictionary of size
J0 = 128000, which results in 97.1% accuracy. At the same
time, it is somewhat disappointing that the proposed method
does not manage to perform better in noisy speech. However,
there is likely to be a subtle interplay between the used value
of the sparsity constraint and the number of added exemplars,
an aspect that has not been explored. Also, the size of the
initial dictionary, J0 = 2000, is not a variable that has been
explored exhaustively.

VII. CONCLUSIONS AND FUTURE WORK

Based on the experimental results, we conclude that the
proposed hierarchical exemplar-based speech model is promis-
ing starting point for future research. On clean speech, the
method delivered a higher performance than the largest (fixed)
exemplar dictionaries we tested, and also yielded a reduction
in running time compared to large dictionaries.

Moreover, many avenues exist for future improvements. A
very straightforward method would be to further increase the
number of iterations, although this would also mean a relative
increase in computational cost as when using fixed dictionar-
ies, a lower number of iterations suffices. A more promising
approach might be to add multiple exemplars at once for
each active exemplar. This can be achieved for example by
using ternary hierarchies or by descending into the hierarchy
multiple levels at once. The corresponding accelerated growth
of the dictionary could be reduced in several ways. First,
there are the merging and splitting operations suggested in
Section III-C. Also, the initial growth of the active dictionary
can be reduced by adopting a ‘burn-in’ period in which no
exemplars are added, or by modifying the criterion of which
exemplars are active by only selecting exemplars that have a
relative large weight as well as having an increasing weight.

Future work will consist of implementing the suggestions
listed above, as well as exploration of different hierarchical
clustering schemes.

ACKNOWLEDGMENT

The research of Jort F. Gemmeke was funded by IWT-SBO
project ALADIN contract 100049.

REFERENCES

[1] H. Bourlard, H. Hermansky, and N. Morgan, “Towards increasing speech
recognition error rates,” Speech Communication, vol. 18, pp. 205–231,
1996.

[2] M. D. Wachter, M. Matton, K. Demuynck, P. Wambacq, R. Cools, and
D. Van Compernolle, “Template based continuous speech recognition,”
IEEE Transactions on Audio, Speech and Language Processing, vol. 15,
pp. 1377–1390, 2007.

[3] H. Sakoe and S. Chiba, “A dynamic programming approach to contin-
uous speech recognition,” in 7th ICA, 1971, p. 20 C13.

[4] C. Myers and L. Rabiner, “A level building dynamic time warping
algorithm for connected word recognition,” Acoustics, Speech and Signal
Processing, IEEE Transactions on, vol. 29, no. 2, pp. 284 – 297, 1981.

[5] T. Deselaers, G. Heigold, and H. Ney, “Speech recognition with state-
based nearest neighbour classifiers,” in Proc. INTERSPEECH, 2007, pp.
2093–2096.

[6] P. Clarkson and P. J. Moreno, “On the use of support vector machines
for phonemic classification,” in Proc. ICASSP, 1999, pp. 585–588.

[7] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, February
2009.

[8] J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-based
sparse representations for noise robust automatic speech recognition,”
accepted for publication in IEEE Transactions on Audio, Speech and
Language processing, 2011.

[9] J. F. Gemmeke, L. ten Bosch, L.Boves, and B. Cranen, “Using sparse
representations for exemplar based continuous digit recognition,” in
Proc. EUSIPCO, Glasgow, Scotland, August 24–28 2009, pp. 1755–
1759.

[10] T. N. Sainath, A. Carmi, D. Kanevsky, and B. Ramabhadran, “Bayesian
compressive sensing for phonetic classification,” in Proc. ICASSP, 2010,
pp. 4370–4373.

[11] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in Neural Information Processing Systems
13, April 2001, pp. 556–562.

[12] F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, “Multiplicative updates for
nonnegative quadratic programming,” Neural Computation, vol. 19, pp.
2004–2031, 2007.

[13] J. F. Gemmeke, H. Van hamme, B. Cranen, and L. Boves, “Compressive
sensing for missing data imputation in noise robust speech recognition,”
IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp.
272–287, 2010.

[14] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods
for sparse hierarchical dictionary learning,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10), 2010, pp.
487–494.

[15] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Intro-
duction to Cluster Analysis. Wiley, 1990.

[16] J. F. Gemmeke and T. Virtanen, “Noise robust exemplar-based connected
digit recognition,” in Proc. ICASSP, 2010.

[17] “Accelereyes Jacket,” Online: http://www.accelereyes.com/, 2010.
[18] J. F. Gemmeke, A. Hurmalainen, T. Virtanen, and Y. Sun, “Toward a

practical implementation of exemplar-based noise robust ASR,” in Proc.
EUSIPCO, 2011, pp. 1490–1494.

106

