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Abstract—Lightly supervised acoustic model (AM) training has
seen a tremendous amount of interest over the past decade.
It promises significant cost-savings by relying on only small
amounts of accurately transcribed speech and large amounts
of imperfectly (loosely) transcribed speech. The latter can often
times be acquired from existing sources, without additional cost.
We identify corporate videos as one such source. After reviewing
the state of the art in lightly supervised AM training, we
describe our efforts on exploiting 977 hours of loosely transcribed
corporate videos for AM training. We report strong reductions in
word error rate of up to 19.4% over our baseline. We also report
initial results for a simple, yet effective scheme to identify a subset
of lightly supervised training labels that are more important to
the training process.

Index Terms—lightly supervised acoustic model training, au-
tomatic speech recognition, LVCSR

I. INTRODUCTION

Video is expected to account for 90 percent of all internet

traffic by 2013. With ever growing archives of video data, the

need for solutions that make videos searchable and browsable

becomes more and more urgent. This is especially true

within corporate settings. The lack of high-quality automatic

solutions for this task often times prompts a manual labeling

of the most important corporate videos, despite the attached

high costs. Over time, considerable amounts of labeled

videos can accumulate, forming an ideal resource for lightly

supervised acoustic model (AM) training. This paper gives

an overview on the state-of-the-art in lightly supervised AM

training and describes our efforts on AM training with 977

hours of loosely transcribed Cisco corporate videos. The

main challenges faced include highly disfluent speech in the

loosely transcribed corpus and a strong data mismatch to our

baseline supervised training corpus.

The reminder of this paper is organized as follows. In

section II we explain and review techniques used for lightly

supervised AM training. Section III present our experimental

setup. A detailed description of our experiments, along with

their results, is given in section IV. We first validate and tune

the used lightly supervised training techniques on our devel-

opment set and then apply the techniques on the full training

corpus of loosely transcribed videos. Finally, in section V, we

conclude with a short summary and discussion of our results.

II. LIGHTLY SUPERVISED AM TRAINING

Acoustic model training requires large amounts of highly

accurate transcriptions that include speech disfluencies (e.g.

fillers, word fragments), markers for non-speech events (e.g.

noise, breath), and segment level timing information. Creating

highly accurate transcriptions is costly and time-consuming.

For this reason, lightly supervised acoustic model training

has received a considerable amount of attention over the last

decade. In lightly supervised AM training, accurate training

labels are automatically obtained from imperfect, manual

transcriptions, often referred to as loose transcriptions. The

first publications on lightly supervised AM training [1], [2],

[3], [4], [5], [6] use closed captions of broadcast news (BN) as

loose transcriptions. More recent works on lightly supervised

AM training consider parliamentary sessions, e.g. European

Parliament Plenary Sessions [7] or Japanese Congress

meetings [8], together with their proceedings/meeting minutes

as loosely transcribed training corpora.

The general approach, first proposed by [1], is to decode

the loosely transcribed corpus with an initial ASR system

and then to select the parts for training where automatic and

loose transcriptions agree. The basic idea is that the selected

parts are very likely to be accurate transcriptions. In [2], [3]

the approach of filtering automatic transcriptions of BN with

closed-captions is compared to an approach where the initial

ASR system is simply biased towards the closed-captions,

by including them in the language model. The authors of

[2], [3] report that, given their setup, comparable results can

be achieved with both approaches and that a combination

leads to additional improvements. This stands in contrast

to results reported in [6], where a filtering of automatically

transcribed BN data leads to a degradation in transcriptions

performance of the final recognition system. The conflicting

results can be explained by the fact that the authors of [2],

[3] consider a scenario where only very limited amounts

of supervised training labels are available for the initial

AM, leading to a high word error rate of more than 30%

for the unfiltered ASR hypotheses. The authors of [6],

however, use a very strong initial, biased ASR system that

provides hypotheses with a WER below 10%. In particular,
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it should be noted that the unfiltered ASR hypotheses used

in [6] for training have a lower WER than the closed-captions.

In summary, lightly supervised AM training relies on

ASR hypotheses as training labels. The hypotheses can

provide information that is typically missing from the loose

transcriptions: non-speech event markers, fillers and timing

information. As AM training is very sensitive to erroneous

training labels, it is important to [a] automatically transcribe

the training corpus as accurately as possible, and [b] exclude

erroneous hypotheses from training. Point [b] gains more

importance the more corrupted the ASR hypotheses are.

To achieve point [a], researchers make use of ASR systems

that are overfitted to the task of decoding the training corpus

correctly. Biasing the LM with the loose transcriptions is

an effective tool for this. As proposed in [5], small, biased

language models specific to sub-sets of the training corpus

should ideally be created. In the context of closed-captions,

individual broadcast news shows can for example constitute

appropriate sub-sets. Applying small, very specific language

models not only improves transcription quality, but also

speeds up recognition by constraining the search space.

However, as noted in [5], it is important to not bias the ASR

system too strongly towards the loose transcriptions. After

all, the recognizer is supposed to confirm correct parts in

the loose transcriptions, and not repeat any erroneous parts.

Most commonly, multiple iterations of decoding the training

corpus and re-training the AM with filtered ASR hypotheses

are applied. The idea here is that a re-trained AM should

yield more accurate transcriptions when being re-applied to

the training corpus, in turn leading to more training data for

the next training iteration.

Point [b], removing erroneous hypotheses, is achieved by

filtering based on the loose transcriptions. For this, the word

alignment between ASR output and loose transcription is

computed, in the same manner as it is done for word error rate

computation. Typically, only those regions where automatic

transcription and loose transcription fully agree1 are retained

for training, with a constraint on the minimum segment size.

Filtering has repeatedly been shown to beneficial, even though

it can result in excluding large amounts of training data. For

example, in the context of closed-captions, numbers for the

amount of training data excluded via filtering range between

20–50% [5], [3]. However, the amount of filtering needs to be

carefully tuned, as its benefits strongly depend on the quality

of the ASR hypotheses and the loose transcriptions. While it

is very important to not train on erroneous hypotheses, it is

noted in [4] that providing correct training labels for exactly

those parts where the ASR system makes recognition errors

may be particular valuable. To provide training labels for such

regions, [4] proposes to filter the n-best hypotheses (presented

in form of confusion networks) instead of just considering the

1Apart from non-speech event markers and fillers.

1-best hypotheses during filtering.

III. EXPERIMENTAL SETUP

A. Speech Corpora

The baseline acoustic model training corpus comprises 54

hours of carefully transcribed speech data, mostly from studio

quality Cisco Television broadcasts. This speech data can be

characterized as high-quality, with almost exclusively clean

speech and high signal-to-noise ratios. Furthermore, it should

be noted that we have access to the uncompressed speech

signal. This stands in contrast to our loosely transcribed

training corpus, where we only have access to audio that

suffers from lossy compression via Advanced Audio Coding,

at various bit-rates. The videos found in this training corpus

are mostly Cisco internal presentations with often times

highly disfluent speech and noisy environments. In total, there

are 1,350 videos amounting to 977h of audio.

For our experiments, we make use of one development

set and one test set that we had previously separated from

the loosely transcribed corpus. For both sets, high quality

manual transcriptions are available, in addition to the loose

transcriptions. We refer to these sets in the following as

cscoDev and cscoTest. In this context, it should be noted

that none of our experiments make use of the cscoTest loose

transcriptions in any way. We also report word error rates

on one additional test set, referred to as nonCsco. As the

name suggests, the videos in this set are non-Cisco domain

videos from a Cisco customer. The set mostly consist of

road-show type product presentations with very noisy acoustic

environments and speakers that are not included in any of

our training sets. Table I lists the amount of speech included

in our development and test sets.

TABLE I
DEVELOPMENT AND EVALUATION DATA: AMOUNT OF SPEECH

cscoDev cscoTest nonCsco
speech 4.9h 8.2h 1.9h

B. Loose Transcriptions: A Closer Look

The loose transcriptions available for our 977 hours of Cisco

corporate videos are formatted for an easy readability, for

example by representing numbers as digits and by making

use of common abbreviations. We apply some basic text nor-

malization to transform the loose transcriptions more towards

their spoken form. This text normalization is limited to the

spelling out of numbers and the expansion of abbreviations.

Number conversion is accomplished with the help of the

‘token-to-word’ rules offered by the Festival Speech Synthesis

System [9]. For the expansion of abbreviations, we use our

own set of simple rules. After text normalization, the loosely

transcribed corpus comprises 9.8 million running words. All

numbers reported in this paper are based on normalized loose

transcriptions.
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One central question when dealing with loose transcriptions

is how close the transcriptions are to the true transcript. We can

answer this question with the help of cscoDev. Since we have

the accurate transcription as well as the loose transcription

available for this set, we can simply compute the WER of loose

transcription relative to accurate transcription. Word error rate

computation for the purpose of evaluating ASR system output

typically ignores non-speech events and speech disfluencies.

However, in the context of AM training it is important that

these tokens are accurately labeled and they should therefore

be included when computing the WER between loose tran-

scription and accurate transcription. The first data row of table

II therefore lists the WER of the loose transcription when

including non-speech events and speech disfluencies in WER

computation. The WER is 24.3%. The table also lists the

error rates achieved after successively removing noise markers,

fillers and word fragments from the accurate transcription

reference. Using a ‘cleaned’ reference, the WER is 12.9%.

A significant amount of errors stem from fillers and word

fragments, which demonstrates the highly disfluent nature of

our lightly-supervised training corpus.

TABLE II
LOOSE TRANSCRIPTION QUALITY: WER ON CSCODEV

reference WER
accurate transcription 24.3%
− noise markers 19.4%
− fillers 13.7%
− word fragments 12.9%

In order to compare the quality of our loose transcriptions

to the quality of loose transcriptions used in related work, we

report following numbers. The authors of [6] list a WER of

10.3% for closed-captions of broadcast news, however, without

specifying if non-speech events and speech disfluencies were

considered during WER computation. For meeting minutes of

Japanese parliamentary meetings, [8] reports an average WER

of 15.5%, with half of the errors stemming from fillers and

without considering non-speech events like breath or laughter.

C. Training and Decoding Setup

Acoustic model training is performed with HTK [10]. We

employ a simple training setup featuring maximum likelihood

training of speaker independent cross-word tri-phone models.

The acoustic models are trained on features derived by

perceptual linear predictive (PLP) analysis [11].

Language model training is accomplished with the SRI LM

toolkit [12]. In all of our experiments, we use 3-gram language

models with modified Kneser-Ney discounting [13], [14]. A

description of the biased language models used to decode

the loosely transcribed corpus is given in section IV. Our

decoding LM, used to measure the performance of the re-

trained acoustic models on the test sets, is estimated on the

loose transcriptions (excluding cscoDev and cscoTest), the su-

pervised training transcriptions, selected Gigaword sentences

and on data collected from the world wide web. In total, the

decoding LM is trained on 560 million running words over a

58k vocabulary. The decoding dictionary has 64k entries. Table

III lists the out-of-vocabulary (OOV) rates and LM perplexities

(PPL) on the used development and test sets.

TABLE III
OUT-OF-VOCABULARY RATES AND LM PERPLEXITIES

Data Set PPL OOV
cscoDev 128 1.6%
cscoTest 133 1.5%
nonCsco 198 3.3%

We automatically obtain speech segments by Viterbi

decoding of a mel-frequency cepstral coefficients (MFCC)

based feature stream using 1-state HMMs modeling speech,

silence, noises and music. These 1-state HMMs have 128

Gaussian components each, and are trained on 37.5 hours of

the clean Cisco Television data. The speech and non-speech

segments obtained from Viterbi decoding are smoothed by

applying minimum duration constraints and are padded by

0.3 seconds of silence.

Decoding is performed with the Juicer [15] WFST decoder.

We use static ASR cascades, compiled with the help of the

openFST [16] libraries and scripts provided by the Transduc-

ersaurus [17] project. Our cascades include a silence class

transducer with the same topology as described in [18], [19].

We model noise and hesitations within the language model,

using only uni-gram entries for both. Decoding consists of

one decoding pass with speaker independent models.

IV. EXPERIMENTS AND RESULTS

Our experiments follow the general recipe for lightly su-

pervised acoustic model training, as described in detail in

section II. In summary, we decode the loosely transcribed

corpus with biased ASR systems, filter their first-best system

output with the loose transcriptions and re-train the acoustic

model based on the filtered hypotheses. We repeat the process

once, using the re-trained acoustic model for decoding the

loosely transcribed corpus once more at a lower WER. Before

employing the whole training scheme on the 977 hours of

loosely transcribed videos, we tune the parameters needed for

biasing and filtering on cscoDev.

A. Experimental Considerations

To bias the initial ASR system towards the loose transcrip-

tions, we make use of small, video-specific language models

and one training dictionary. The training dictionary is created

from the combined vocabulary of the initial 54 hours of

training transcriptions and the loose transcriptions, including

the loose transcriptions for cscoDev. The resulting dictionary

has 61k entries over a 53k vocabulary. Slightly more than

half of the words in the training vocabulary, 27k words, are

not included in our manual created background pronunciation

dictionary. The pronunciations for these words are created
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automatically, with the help of a grapheme-to-phoneme (G2P)

translation system. We train this G2P system on the letter and

phone sequences found in the COMBILEX dictionary [20],

using the GIZA++ toolkit [21]. The final translation from

letter sequences to phone sequences is done with the help

of the Moses decoder [22]. With the help of a held out test

set, we estimate the phoneme error rate for the G2P tool to

be 2.6%. A large amount of the training dictionary words

for which pronunciations have to be created automatically are

acronyms. For these acronyms, we offer two pronunciations in

the training dictionary, one based on the isolated letters of the

acronym and one based on the full letter sequence. The biased,

video-specific language models are created in the following

manner. For each video, we create a small 3-gram language

model based on the loose transcription for this video. We then

interpolate this small language model with a more generic

training language model. The generic training language model

is estimated on the combined corpus of training transcriptions

and loose transcriptions. This corpus comprises 10.4 million

running words. We use a fixed interpolation factor that was

estimated on cscoDev, see section IV-B.

B. Tuning on cscoDev

As described in detail in the previous section, we compute

video-specific language models by interpolating a generic

LM with small LMs that are solely trained on the loose

transcription of the respective video. For the individual videos

in cscoDev, we are able to automatically determine the inter-

polation weight of the small LM that minimizes the perplexity

of the interpolated model. Table IV lists the respective inter-

polation factors, perplexities and word error rates for each of

the 8 videos included in cscoDev. For comparison, we also

list the PPL and WER achieved when using the more generic

training LM. The use of video-specific LMs results in strong

word error rate and perplexity reductions. The average optimal

interpolation factor is 0.25. We use this fixed value when we

create the video-specific language models for the videos found

in the 977 hour training corpus.

TABLE IV
PPL AND WER REDUCTION BY USING VIDEO-SPECIFIC LMS

video training LM biased LMs best lambda
PPL WER PPL WER

1 91 60.1% 38 46.1% 0.21
2 134 25.3% 46 16.5% 0.2
3 113 67.5% 46 50.9% 0.2
4 104 41.2% 46 30.1% 0.26
5 86 33.5% 37 23.0% 0.26
6 92 33.9% 46 26.3% 0.37
7 116 18.4% 41 12.9% 0.2
8 109 40.5% 44 27.0% 0.27

From the results in table IV we see that even with video-

specific language models, the achieved word error rates are

relatively high and they vary strongly between the different

videos. The total WER on cscoDev is 32.3%, with significantly

higher word error rates on some videos, e.g. 50.9% on video

number three. A filtering of the hypotheses seems therefore

necessary. The same argument holds for the loose transcrip-

tions. The comparable WER for the loose transcriptions is

only 12.9%, as estimated in section III-A. However, directly

training with these loose transcriptions, by force aligning

them, would not just suffer from ‘regular’ word errors, but

also from the fact that they do not including noise markers

and fillers. As a reminder, when including these tokens,

the WER of the loose transcriptions is 24.3%. For filtering

erroneous ASR hypotheses, we compute the word alignment

between automatic and loose transcription using NIST’s sclite
WER scoring tool. We use the word alignment to identify

regions where loose transcription and automatic transcription

are identical, ignoring noise markers and fillers present in the

ASR output. We discard regions that are less than one second

long and contain less than three words. The effects of filtering

on the total amount of extracted data are shown in table V.

TABLE V
EXTRACTING TRAINING DATA FROM CSCODEV

System WER Extracted Data
generic training LM 43.8% 128min (44%)

video-specific LMs 32.3% 172min (59%)
retrained AM172min 28.2% 186min (63%)

The table shows the WER of the ASR hypotheses and

the amount of speech data left after filtering. The amount of

speech data is given in minutes and as a percentage of the

total amount of speech included in the development set. For

comparison, the table also list the results when only using the

generic training LM. Applying video-specific LMs increases

the amount of training data left after filtering significantly,

from 128 minutes to 172 minutes. In other words, 44% and

59%, respectively, of the total amount of speech available in

cscoDev can be ‘recovered’ for AM training. Adding these

172 minutes to the baseline training corpus and re-training

the acoustic model lowers the WER on cscoDev from 32.3%

to 28.2%, even though the total amount of AM training

data is only increased by 5.4% relative, from 53.8 to 56.7

hours. This strong reduction in WER, despite the small

additional amount of training data, speaks for the strong

data mismatch between the supervised and lightly-supervised

training corpora. With a decreased WER of the re-trained

AM, the amount of extracted training data further increases.

This indicates that introducing at least one iteration when

extracting training data may be useful. The results also give a

good indication for how much training speech we can expect

to recover from our 977 hours of loosely transcribed videos.

Using video-specific LMs in combination with the baseline

AM, we expect to recover approximately 59% of the 977

hours for AM training. Introducing one iteration, by applying

an already re-trained AM for training data extraction, we

expect to recover 63%. In fact, we expect to recover more

than 63%. After all, the first iteration should already yield

more than 500 hours of training data, resulting in an AM that

no longer suffers from a training corpus that mostly consists
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of mismatched speech data.

C. Correcting the Baseline Model

While not the main focus of this paper, we want to make

one observation that is related to the reasoning used by [4] to

motivate their filtering of n-best ASR hypotheses with loose

transcriptions. The reasoning (see also section II) is that it may

be particularly valuable to provide correct training labels for

exactly those parts where the ASR system makes recognition

errors. In table V we showed that using the more generic

training LM, we are able to extract 128 minutes of lightly-

supervised training labels. Using the video-specific LMs, we

extract a higher amount of lightly-supervised training labels,

172 minutes in total (44 minutes more). While the generic

training LM already provides a light bias, by including the

loose transcription of cscoDev in an unweighted fashion, we

can argue that its performance is somewhat close to the perfor-

mance of a large, well-trained in-domain decoding LM. On the

other hand, the video-specific LMs are strongly biased. This

strong bias allows us to create, presumably correct, hypotheses

for speech on which the generic ASR system would fail. We

therefore propose to take a closer look at the training data that

can only be extracted by the video-biased ASR systems. To

do so, we identify those parts in the 172 minutes of training

labels that are not already covered by training labels obtained

with the generic training LM system. After identifying these

regions, we extend their right and left boundaries by one word,

if the neighboring word was also included in the training labels

of the generic training LM system. The reasoning for this is

that an incorrectly modeled cross-word context may have been

responsible for the word error in the more generic system.

Extending the boundaries results in a total of 56 minutes of

data. We then add those 56 minutes to the supervised training

corpus and re-train the acoustic model. The supervised training

corpus has significantly more data, 54 hours in total. The

56 minutes therefore can only have a very limited impact

on the resulting AM. For this reason, we arbitrarily weight

the contribution of the 56 minutes by a factor of three. We

also randomly select2 56 minutes worth of labels from the

training data extracted with the generic training LM system,

again weighting their contribution by a factor of three during

the subsequent AM training step. Table VI lists the word error

rates achieved with the trained acoustic models on cscoTest .

TABLE VI
IDENTIFYING MORE IMPORTANT TRAINING LABELS: WER ON CSCOTEST

baseline +56min +56min random
WER 43.9% 42.9% 43.3%

All re-trained acoustic models achieve a lower WER than

the baseline AM, and the AM based on the 56 minutes of data

that can only be recovered with the video-biased ASR system

2We repeated the random selection process three times and only present
the best results.

achieves the lowest WER. While the difference in WER,

compared to the best performing random-selection AM, is only

0.4% absolute lower, it is statistically significant at a level of

p = 0.001. This result indicates that the those training labels

are more important to the training process. Consequently, in

the context of adapting a larger baseline acoustic model with

a comparably small amount of loosely transcribed data, it may

be helpful to give a higher weight to training labels that can

only be extracted with the (strongly) biased ASR system.

D. Final Results

We apply the described approach for lightly supervised AM

training on the full 977 hours of loosely transcribed videos,

using the parameters we found to work best on cscoDev. Table

VII lists the amount of training data extracted from the corpus.

TABLE VII
AMOUNT OF EXTRACTED TRAINING DATA

Baseline AM Iteration-0 AM
565h (58%) 678h (69%)

It should be noted that the predictions that were based on

the results obtained on cscoDev are accurate. Applying the

re-trained AM on the corpus recovers 69% of the available

speech data for training, compared to 58% when only using

the baseline AM. The additional training data results in a

significant decrease in word error rate, as shown in table VIII.

This is true not only for the matched data conditions, on

cscoDev and cscoTest, but in particular also on the nonCsco
test set. All listed WER reductions, with the exception of the

WER reduction on nonCsco between iteration 0 and iteration

1, are statistically significant. Overall, the extracted training

data reduces the word error rate on cscoTest by 19.4% relative,

from 43.9% to 35.4% and on nonCsco by 13.8% relative, from

55.9% to 48.2%.

TABLE VIII
WORD ERROR RATES FOR THE RE-TRAINED AMS

Baseline Iteration-0 Iteration-1
cscoDev 48.0% 38.9% 37.1%
cscoTest 43.9% 36.5% 35.4%
nonCsco 55.9% 48.4% 48.2%

We also try to identify potentially more ‘important’ training

labels, similar to the experiments described in section IV-C.

As before, we transcribe the training corpus once with video-

biased ASR systems and once with an ASR system that only

uses the more generic training language model. After filtering,

this results in 565 hours and 437 hours of training data,

respectively. We then mark the transcription segments from

the 565 hours of training data that are not already included

in the 437 hours of training data and extend the marked

segments by one word, where possible (see section IV-C for

details). This results in 188 hours worth of marked training

labels. We then repeat the re-training of the iteration-0 AM

(54 hours of supervised training data plus 565 hours of lightly
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supervised training data). However, we now weight the marked

segments more strongly during training. Table IX compares

the resulting acoustic model to an acoustic model where we

randomly marked 188 hours of training labels. In both cases,

we arbitrarily set the weight to 3.

TABLE IX
ITERATION-0 AM: WER WITH WEIGHTED TRAINING LABELS

Weighting → none targeted random
cscoDev 38.9% 38.3% 38.7%
cscoTest 36.5% 35.9% 36.3%
nonCsco 48.4% 48.6% 48.4%

The results show that on cscoDev and cscoTest, the AM

trained with the described targeted weighting of training

labels outperforms both, the unweighted baseline AM and the

randomly weighted AM. This gives further indication that the

subset of lightly-supervised training labels that was selected

in this manner is more important to the AM training process.

V. SUMMARY AND DISCUSSION

We gave an overview of the state of the art in lightly

supervised acoustic model training and described in detail

our efforts on applying this technology in the context of

corporate videos. We also reported initial results for a simple,

yet effective scheme to identify a subset of lightly-supervised

training labels that are more important to the acoustic model

training process. Future work should address the question on

how to weight these training labels optimally and how the

scheme performs in the context of multiple training iterations.

We also plan to investigate the effects of discriminative

lightly-supervised acoustic model training.

Despite the highly disfluent speech present in the 977 hours

of loosely transcribed corporate videos used for training, we

achieve significant word error rate reductions of up to 19.4%

relative over our baseline. It should be noted that our decoding

setup includes only one decoding pass based on speaker

independent models. This, together with the strong acoustic

channel mismatch between our supervised training corpus and

the test sets certainly contributes to the strong performance

improvements. However, especially the strong reduction in

word error rate on the non-Cisco domain task demonstrate

the importance of the described lightly-supervised training

techniques in the context of corporate videos.
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