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Abstract—In this paper, we propose a multi-level, context-
dependent acoustic modeling framework for automatic speech
recognition. For each context-dependent unit considered by the
recognizer, we construct a set of classifiers that target different
amounts of contextual resolution, and then combine them for
scoring. Since information from multiple levels of contexts
is appropriately combined, the proposed modeling framework
provides reasonable scores for units with few or no training
examples, while maintaining an ability to distinguish between
different context-dependent units. On a large vocabulary lecture
transcription task, the proposed modeling framework outper-
forms a traditional clustering-based context-dependent acoustic
model by 3.5% (11.4% relative) in terms of word error rate.

I. INTRODUCTION

Context-dependent acoustic modeling is a fundamental com-

ponent of all state-of-the-art Hidden Markov Model (HMM)

Automatic Speech Recognition (ASR) systems. Under the

context-dependent modeling framework, the acoustic state

space is expanded to jointly consider the phonetic label of an

acoustic feature vector and its nearby phonetic contexts. Since

any state transition in this expanded state space matches the

appropriate phonetic contexts, this framework provides a set

of acoustic-level constraints that can potentially help refine

the search. To fully exploit the advantage of this context-

dependent framework, however, it is essential to be able to

train model parameters that can generate reliable scores for

the context-dependent states.

Generating reliable scores for context-dependent states is

not trivial, however, due to the classical data sparsity problem.

This is because the inventory of context-dependent labels

grows exponentially with the length of the context being

considered. Consider, for example, a recognizer that has 60
basic phonetic units. In this case, a triphone acoustic model

that jointly predicts the current phonetic label, its previous

label, and its following label can have 603 = 216, 000 pos-

sible context-dependent labels. Since the number of possible

context-dependent labels can be very large, many of the labels

will not have enough training examples to robustly train an

acoustic model, which results in the data-sparsity problem.

To generate reliable acoustic scores, data-sparsity must be

dealt with appropriately. One commonly used method to

alleviate the data sparsity problem is clustering. By clustering

similar context-dependent units, each clustered unit can have

a sufficient amount of data to train a robust model. Such

clustering (tying) can happen either at the phonetic level or at

the HMM state level [1]. Typically, the clustering procedure

is guided by a decision tree that is constructed automatically

based on phonetic rules [2].

Although clustering addresses the data sparsity problem, it

also creates a side effect; that is, the acoustic scores for the

context-dependent units that are clustered together are always

essentially acoustically undistinguishable to the recognizer.

This effect is not negligible. For example, in a conventional

setup of a triphone-based recognizer for a large vocabulary

continuous speech recognition (LVCSR) task, the number of

clustered states is on the order of 103 ∼ 104; compared to

the number of possible triphones, the difference is one or two

orders of magnitude. Therefore, clustering can potentially limit

the discriminative power of context-dependent modeling. To

better exploit its potential advantage, generating different but

reliable scores for different units is desirable.

Another way to address the data sparsity problem is to

reduce the problem of modeling a long context-dependent unit

into a problem of modeling a composition of a set of shorter

units. One example of this reduction-based approach is the

quasi-triphone modeling proposed in [3], where a HMM for

a triphone is decomposed into a left context sensitive diphone

state at the beginning, several context independent states in

the middle, and a right context sensitive diphone state at

the end. Another way of decomposing a triphone is using

the Bayesian approach proposed in [4]. Under a Bayesian

assumption, a triphone can be represented by a product of two

diphone probabilities divided by the monophone probability

of the center unit. By using such methods, it is possible to

address the data sparsity problem while keeping the context-

dependent units distinguishable from each other. However, a

pure reduction-based approach does not consider the fact that

if some context-dependent units have many occurrences in the

training data, it may be beneficial to incorporate a classifier

that directly models the occurrence of the context-dependent

unit as a part of the modeling framework.

In addition to context-dependent acoustic modeling, another

widely used technique to improve ASR performance is dis-

criminative training. The basic idea of discriminative training

is to construct an objective function that reflects the degree

of confusion of the speech recognizer, and update model

parameters via optimizing the objective function. Several
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Fig. 1. Sets of questions that can identify the triphone “k-oy+n”. The triphone
is identified if the answers to the questions in each set are “yes”. The lower
the question set is, each question in the set is less specific in the context, but
the classifier associated with the question can have more training examples.

objective functions have been proposed in the literature that

have shown significant improvement on a variety of LVCSR

tasks, including Minimum Classification Error (MCE) train-

ing [5], [6], Maximum Mutual Information (MMI) training [7],

Minimum Phone Error (MPE) training [8], and their variants

with margin-based modification [9], [10], [11], [12]. Since

discriminative training is an effective method to reduce ASR

errors, it is desirable to incorporate it along with any proposed

acoustic modeling framework.

In this paper, we extend our previous work in [13], and

propose a multi-level context-dependent modeling framework

that is compatible with triphone-based modeling. For each

context-dependent state, we construct a set of classifiers with

different levels of context resolution, and combine the clas-

sifiers appropriately when scoring. The multi-level modeling

framework has the following properties: outputting different

scores for different states, incorporating classifiers that di-

rectly model context-dependent states with sufficient amounts

of training data, and being compatible with discriminative

training. The proposed modeling framework is evaluated on

a large vocabulary lecture transcription task [14].

II. MULTI-LEVEL CONTEXT-DEPENDENT MODELING

To explain the idea of multi-level context-dependent mod-

eling, consider the process of classifying a feature vector x as

a triphone with label “k-oy+n”: an “oy” with left context “k”

and right context “n” as in the word “coin”. Classification

is equivalent to answering “yes” to the question {is x an

“oy” with left context “k” and right context “n”?}. Although

it is possible to construct a classifier that directly answers

this question, the problem is that there may not be enough

examples to train a reliable model.

Instead of directly answering the specific question, it is

possible to answer more general questions such as: {is x an

“oy” with left context “k”?} and {is x an “oy” with right

context “n”?}. If we answer “yes” to both questions, we can

also identify the triphone label. Classifiers for this pair of

questions can have more training examples because each one

of them is a less specific question. Note that we can arbitrarily

reduce the resolution of the contextual questions that can be

asked, as illustrated in Figure 1.

For each triphone context, we can construct multiple sets

of contextual questions with different levels of granularity,

along with the corresponding classifiers. While classifiers with

higher context resolution can provide more specific informa-

tion, classifiers with lower context resolution can have more

training examples. If a certain triphone unit occurs relatively

infrequently in the training data, its corresponding classifiers

with less contextual resolution may still have a reasonable

number of training examples, and thus can be used for scoring.

Conversely, when a triphone has plenty of occurrences, the

classifier with highest contextual resolution can be used, but

it may still be beneficial to incorporate classifiers with less

resolution when scoring. Doing so provides redundancy and

can potentially help reduce confusions.

A. Multi-Level Notation

We first define some common notations used throughout the

paper for convenience and quick referencing.

“pl − pc + pr”: The label denotes a triphone that has left

context (previous phone label) “pl”, current phone label “pc”,

and right context (next phone label) “pr”. For each triphone

we build multiple sets of classifiers targeting different levels

of context resolution.

〈pl, pc, pr〉: The label of the classifier that directly models

the occurrences of the triphone “pl − pc + pr”. The label of a

classifier is always enclosed by angle brackets.

“∗”: This symbol is used when the classifier ignores certain

contexts. For example, 〈pl, pc, ∗〉 denotes the label of a classi-

fier that models the occurrence of “pc” with left context “pl”
but with the right context being ignored.

B(·): This function is used to reduce a phoneme to a

broad-class. In general, we can associate each phonetic unit

with one or more equivalence classes. For example, the

phoneme “n” in the word “noise” can belong to the broad-

class “Nasal Consonant”. Under the broad-class notation,

〈B(pl), pc, ∗〉 represents the label of a classifier that models

the occurrence of “pc” with left context belonging to the broad-

class “B(pl)”.

Tij(·): Each triphone is associated with multiple classifiers

with different degrees, or levels, of context resolution. The

function Tij(·) is used to denote the label of the jth classifier

at the ith context resolution level. A smaller value of i
refers to a finer context resolution. For example, T11(“pl-
pc+pr”) = 〈pl, pc, pr〉, the label of the classifier with full

context resolution.

lλ(x, s): As in conventional ASR systems, a Gaussian

Mixture Model (GMM) is used as the classifier in the proposed

framework. lλ(x, s) denotes the log-likelihood of feature vec-

tor x with respect to the GMM for label s. More specifically,

lλ(x, s) = log(
Ms∑

m=1

ωs
mN (x,μs

m,σs
m)), (1)

where m is the index of mixture component, Ms is the total

number of mixture components, ωs
m is the mixture weight of

the mth component, and N (x,μs
m,σs

m) is the multivariate

Gaussian density function of x with respect to the mean vector

μs
m and standard deviation σs

m.
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Fig. 2. Classifiers associated with the triphone “pl−pc+pr”. The classifier
at the top level has the finest context resolution, and the least amount of
training examples, while the classifiers at the lowest level have coarser context
resolution, but the most training examples.

aλ(x, s): Acoustic score of x with respect to the label s that

is used by the recognizer for decoding. This is equivalent to

the log of the observation probability in an HMM framework.

B. Model Formulation

As shown in Figure 2, we can associate each triphone

“pl-pc+pr” with a set of classifiers. For each classifier, we

can collect the training examples and train a GMM using

the Maximum-Likelihood criterion. The GMM parameters can

be further refined via discriminative training, which will be

discussed in more detail in Section III.

When decoding, the acoustic score of x with respect to

the triphone s =“pl-pc+pr” can be computed as a linear

combination of the log-likelihoods of the classifiers associated

with the triphone:

aλ(x, s) =

3∑

i=1

Ji∑

j=1

ws
ij lλ(x, Tij(s)), (2)

where Ji is the number of classifiers at level i in Figure 2, ws
ij

is a nonnegative combination weight, and other notations can

be found in Section II-A. In addition to being nonnegative,

we also require the combination weights {ws
ij} to satisfy the

constraint that
∑3

i=1

∑Ji

j=1 w
s
ij = 1 for each triphone, in order

to make all acoustic scores a convex combination of GMM

log-likelihoods.

While it is possible to optimize the combination weights, in

this work, we use fixed combination weights for each triphone,

and leave the optimization of the weights as future work. The

default setting of the weights is as follows. If the triphone has

enough training examples at the top level, we assign a total

weight of 1
3 to each level, and distribute the weight equally to

the classifiers at the same level. If a classifier does not have

enough training examples, its combination weight is equally

distributed among its children in the hierarchy. In this way,

only the classifiers that have enough training examples can

contribute to the acoustic scores, and the data sparsity issue is

avoided.

To show that all triphones are distinguishable from each

other, consider the sparse output code matrix M, where the

number of rows is the number of triphone and the number of

columns is the number of classifiers with sufficient training

examples. In the row for a particular triphone, if a classifier

Fig. 3. Part of the output code matrix where the rows for “p-oy+n” and “k-
oy+n” differ. “HV” refers the broad-class “High Vowel” Note that the two
classifiers “〈k,oy,n〉” and “〈k,oy,*〉” do not have enough training examples,
so do not show up in the output matrix. The classifier “〈k,HV,n〉” inherits
weights from the two missing classifier, and thus has a higher weight.

is associated with the triphone, the entry corresponding to

the classifier is assigned a combination weight as described

above, and zero otherwise. Under this construction, if we have

computed a log-likelihood vector l for each GMM classifier,

the product Ml is an acoustic score vector that can be used by

the recognizer. To show that all triphones are distinguishable

is equivalent to showing that no two rows in M are identical.

A brief way to show that no two rows in the output code

matrix M are identical is as follows. First, based on the weight

assignment described above, the weights for classifiers at the

bottom level in Figure 2 are always non-zero. Second, if two

triphones are different, they must at least differ in at least

one of the following ways: left-context, phone label, or right

context. If they differ at the left-context, the classifier corre-

sponding to the left most node in Figure 2 differ. Similarly,

the right most node would differ for a different right context,

and two nodes in the middle would differ for the phone label.

Figure 3 shows the sub-matrix of M where the entries of two

triphones “p-oy+n” (as in the word “point”) and “k-oy+n”

differ as a concrete example. In this way, all triphones are

acoustic distinguishable from each other.

Finally, we note that it is possible to consider multiple

broad-class mappings (e.g., B′(·)) based on different grouping

criteria. For example, the phoneme “n” can belong to “Nasal

Consonant” based on manner of pronunciation, and can belong

to “Alveolar” based on place of articulation. If we have addi-

tional broad-class mappings, B′(·), we can construct additional

classifiers and add them into the bottom level in Figure 2.

Considering multiple sets of broad-classes can potentially help

the recognizer reduce recognition errors.

III. DISCRIMINATIVE TRAINING OF MULTI-LEVEL MODEL

In this section, we describe how to integrate the proposed

multi-level modeling framework with discriminative training.

First, we explain the idea of discriminative training in more

detail, and use Minimum Classification Error (MCE) training

criterion as an example of how to construct an objective

function for discriminative training. We then explain how to

combine the proposed multi-level modeling framework with

discriminative training.

A. Objective Function of Discriminative Training

The first step of discriminative training is to specify an

efficiently computable set of statistics from the training data
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that reflects the degree of speech recognizer confusion. In the

case of the MCE training, the statistics are the sentence errors

Nerr =
N∑

n=1

sign[−Lλ(Xn,Yn) + max
S �=Yn

Lλ(Xn,S)], (3)

where N is the number of training utterances, Xn is the

sequence of feature vectors extracted from an utterance, Yn is

the reference string, S is a hypothesis string, Lλ(Xn,Yn) is

the recognition score of the reference string, and Lλ(Xn,S))
is the score for the hypothesis S. While the sentence errors

in Eq. (3) are computable, it is difficult to optimize because

of the fact that the sign function and the max function are

not continuous, nor differentiable, with respect to the model

parameters.

Therefore, the next step is to relax the statistics appro-

priately such that they are continuously differentiable with

respect to the parameters. In the case of MCE training, the

sign[d] in Eq. (3) is relaxed to a differentiable sigmoid function

�(d) = 1
1+exp(−ζd) , where ζ is a parameter that controls the

sharpness of the function around d = 0. There are several

ways to address the max function issue, one of which is

to replace the max with a scaled log-sum of the best K
incorrect hypotheses. By combining these two relaxations, a

continuously differentiable loss function can be computed by

L =
∑N

n=1 �(−Lλ(Xn,Yn)+

log([ 1K
∑

S∈SK

n

exp(ηLλ(Xn,S))]
1
η )),

(4)

where SK
n is the best K incorrect hypotheses of the nth

utterance, and η is a parameter that determines the relative

importance of the hypotheses.

B. Optimization of Multi-level Model

After a continuously differentiable loss function has been

constructed, the final step is to adjust the model parameters

to minimize the loss function. In terms of optimizing the loss

function, there are many methods proposed in the literature,

but there are essentially two types of approaches that have been

used. The first type is a gradient-based approach such as the

quickprop algorithm used in [6], while the second type is the

Baum-Welch based approach as described in [8]. The proposed

multi-level modeling framework is compatible with both types

of optimizations. The key issue is that the acoustic scores

computed by the multi-level model are convex combinations

of log-likelihoods of GMMs.

For the gradient-based approach, the main idea is to com-

pute the gradient of the loss function, and adjust the parameters

in the opposite direction of the gradient. In general, the

gradient can be computed efficiently by first taking partial

derivatives with respect to each acoustic score and then

summing up the contribution of the gradient with respect to

each acoustic score:

∂L
∂λ

=
N∑

n=1

∑

x∈Xn

∑

s

∂L
∂aλ(x, s)

∂aλ(x, s)

∂λ
. (5)

Since the acoustic score can be decomposed into a linear

combination of the log-likelihood of GMMs as in Eq. (2),

the gradient of the acoustic score can be further computed by

∂aλ(x, s)

∂λ
=

3∑

i=1

Ji∑

j=1

ws
ij

∂lλ(x, Tij(s))

∂λ
. (6)

In this way, computing the gradient of the multi-level model

can be done by first computing the partial derivative with

respect to each acoustic score as in conventional discriminative

training, and then distributing the contribution of each GMM

with respect to the combination weights.

For the GMM update using the Baum-Welch based ap-

proach, the main procedure is to compute the positive and

negative counts of each state, and the first and second order

statistics of the positive and negative examples. Since the

acoustic score of the multi-level model is a linear combination

of GMM likelihoods, we can distribute the counts and statistics

to the GMMs with respect to the combination weights. In this

way, the multi-level framework can fit into the Baum-Welch

based update with relatively minor changes.

Discriminative training can potentially provide larger gains

for the multi-level acoustic model than for conventional

clustering-based acoustic modeling. Under the Maximum-

Likelihood (ML) training criterion, model parameters of the

GMM classifiers at the same level in Figure 2 are initialized

independently. During discriminative training, the indepen-

dently initialized parameters can be jointly updated under

the guidance of the objective function. This can potentially

make the classifiers become more complementary, and can

potentially help reduce recognition errors.

IV. EXPERIMENTS

In this section, we compare the performance of the proposed

multi-level acoustic model with a baseline clustering-based

acoustic model on a large vocabulary lecture transcription task.

The MIT Lecture Corpus contains audio recordings and

transcriptions for approximately 300 hours of MIT lectures

from eight different subjects and nearly 100 MITWorld sem-

inars given on a variety of topics [14]. The audio data was

recorded with omni-directional lapel microphones and was

generally recorded in a classroom environment. The recordings

were manually transcribed in a way that, in addition to spoken

words, disfluencies such as filled pauses, false starts, and

partial words are labeled. The lecture corpus is a difficult data

set for ASR because of the spontaneous nature of the data, hav-

ing many disfluencies and poorly organized or ungrammatical

sentences, and because of lecture specific vocabulary.

Among the lectures in the corpus, a 119-hour training set

that includes 7 lectures from 4 subjects and 99 lectures from

4 years of MITWorld lectures covering a variety of topics is

selected for acoustic model training. Two held-out MITWorld

lectures (about 2 hours) are used as a development set for

model tuning (such as when to stop discriminative training).

The test lectures are composed of 8 lectures from 4 different

class subjects with roughly 8 hours of audio data and 7.2K
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TABLE I
COUNT STATISTICS OF TRIPHONE STATES

Counts Number of Triphone States
> 0 102K
≥ 100 37.1K
≥ 200 26.3K
≥ 400 17.2K
≥ 800 10.3K
≥ 1600 5.6K
≥ 3200 2.7K

words. There is no speaker overlap between the three sets of

lectures.

The feature extraction procedure is the same as that used

in [13] except that a feature is extracted every 10ms instead

of at landmarks. For each feature, the average values of 14

Mel-Frequency Cepstral Coefficients in 8 telescoping regions

are concatenated (total 112 dimension), and are reduced to 50

dimensions by a composition of Neighborhood Component

Analysis (NCA) and Principal Component Analysis (PCA) as

in [15].

The training data for the language model comes from the

following three sources: 1) training lectures, 2) Switchboard

telephone conversations, and 3) Michigan Corpus of Academic

Spoken English. A set of 37K vocabulary is selected, and a

trigram language model is trained via the SRILM toolkit [16].

The trigram language model is converted to a Finite-State

Transducer (FST) by the MIT FST toolkit [17], and is com-

posed with other lexicon-level FSTs to form the search module

of the recognizer.

A. Clustering-based Acoustic Model

We constructed a clustering-based triphone acoustic model

using the top-down decision tree clustering algorithm de-

scribed in [1], [2]. The size of basic phonetic units is 60.

Multiple settings of stopping criteria for clustering and model

size were tested on the development set, and the best per-

forming one had 7.5K clustered triphone states and a total

of 310K diagonal Gaussian mixture components. The GMM

parameters were initialized via the ML criterion and were

further improved by MCE training. The optimization of MCE

training was done via the quickprop algorithm as described in

[6].

B. Multi-level Acoustic Model

To construct a multi-level acoustic model, we needed a

decision criterion for the amount of positive training examples

for a classifier to be considered as having enough training data

and kept in the output matrix. To decide the cut-off threshold,

we counted the number of occurrences of each triphone state in

the training lectures. The count statistics are listed in Table I.

As shown in the table, there are about 102K distinct triphone

states in the training data, but there are only 7.5K clustered

states, which can potentially limit the discriminative power of

the clustering-based model.

TABLE II
WER ON TEST LECTURES

Model ML WER MCE WER p-value
CL 32.4% 30.6% -

Multi 31.3% 27.4% p < 0.001
Ext-Multi 31.3% 27.1% p < 0.001

For the top level in Figure 2, we chose 800 as the cut-off

threshold, resulting in 10.3K classifiers, and a 15-component

GMM was trained for each classifier. For the second level,

we chose 200 as the cut-off threshold in order to model

most diphone contexts appeared in the lexicon, resulting

in 9.5K classifiers. Each classifier at the second level was

allowed to increase one mixture component per 50 training

examples up to a maximum of 30 mixture components. For

the bottom level no cut-off threshold was used. A set of nine

classes, {Low Vowels, High Vowels, Retroflex, L, Fricative,

Closure, Stop Consonants, Nasal Consonant, Silence}, were

used to construct broad-class classifiers. Each classifier at the

bottom level was allowed to increase the number of mixture

component per 50 training examples up to a maximum of 60

mixture components. Overall, 25.2K classifiers were trained,

and the total number of mixture components was 646K. As

for the clustering-based model, the GMMs for the multi-level

model were initialized by the ML criterion, and refined by

MCE training.

We also investigated an additional set of broad-classes

based on place of articulation to construct an extended set of

broad classifiers. These nine classes consisted of {Labial, Den-

tal, Palatal, Velar, Front Vowels, Back Vowels, Mid Vowels,

Semi Vowels, Silence}. In this extended multi-level model,

combination weights assigned to the top two levels were set

to 0.25 each, and the bottom level was set to 0.5. The extended

multi-level classifier is composed of 30.8K classifiers and

907K mixture components.

C. Recognition Results

The word error rates (WERs) of the clustering-based model

(CL), basic multi-level model (Multi), and extended multi-

level model (Ext-Multi) on the test lectures, before and after

MCE training, are shown in Table II. The p-values under the

McNemar significance test ([18]) between the MCE trained

clustering-based model and the multi-level models are also

listed in Table II. Based on the significance test, the im-

provement of the multi-level model over the clustering-based

model are statistically significant. Also, although not listed

in the table, the significance test between the MCE trained

multi-level model and the extended multi-level model also

has p < 0.001, showing the improvement is also statistically

significant.

Note that the improvement of the ML multi-level models

over the ML clustering-based model is 1.1%, and the gains

increase to 3.2% (10.4% relative) and 3.5% (11.4% relative)

respectively for the MCE models. This result is consistent with

the hypothesis stated earlier that discriminative training can

benefit the multi-level model more because the classifiers can
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be jointly updated via the objective function. Also, we have

tried to increase the size of the clustering-based model to be of

similar size as the multi-level model, but the WER of the en-

larged clustering-based model performs worse than the original

one after MCE training. On the other hand, the extended multi-

level model has about one third more parameters than the basic

multi-level model but its performance is still improving. This

fact also suggests that the multi-level framework is potentially

less subject to over-training.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a multi-level context-

dependent acoustic modeling framework. A set of classifiers

with different degrees of contextual resolution are constructed

for each context-dependent unit, and the classifier outputs are

linearly combined for scoring. Since all context-dependent hi-

erarchies differ by at least one of their classifiers, the resulting

context-dependent models are always acoustically distinguish-

able from each other. Since information from multiple levels of

context resolution are considered, the framework provides rea-

sonable scores for context-dependent units with few training

examples, while maintaining the modeling accuracy for units

with many examples. The multi-level modeling framework can

also be combined with discriminative training to further boost

ASR performance. The proposed multi-level model has shown

significant improvement over the traditional clustering-based

model on a large-vocabulary lecture transcription task.

Although we have focused on triphone-based modeling in

this work, it is possible to extend the framework to model

larger contexts (e.g., quinphones etc). Each triphone was also

implemented as a 3-state HMM in these experiment, and we

used phone-level notations. However, extensions to the state-

level can be accomplished by using state-level alignments

when constructing the classifiers.

While the combination weights used in this work were

prefixed, we can also formalize a constrained optimization

problem to automatically learn the weights. Note that the loss

function in Eq. (4) is also a function of the weights, and we

can fix GMM parameters and minimize the loss by adjusting

the weights. More specifically, let W = {ws
ij} be the set of

the fixed default weights where W = {ws
ij} be the weights to

be optimized. The optimization can be formalized as follows:

min
W

L(W) + α
∑

s,i,j

||ws
ij − ws

ij ||

subject to
∑

i,j

ws
ij = 1 ∀s,

ws
ij ≥ 0 ∀s, i, j,

ws
ij = 0 ∀ws

ij = 0.

(7)

The second term in the objective function regularizes the

weights such that they do not diverge much from the default

weights. The first two sets of constraints ensure each acoustic

score is a convex combination of GMM log-likelihoods. The

third set of constraints ensures that no unreliable classifiers

are used when scoring. In the future, we plan to explore if we

can incorporate the optimization of the weights as a part of

the training framework.

Finally, it would be interesting to see if the multi-level

framework can help the acoustic model adapt more effectively

to a new speaker or recording environment.
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