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Abstract—This paper proposes a novel technique to exploit
generative and discriminative models for speech recognition.
Speech recognition using discriminative models has attracted
much attention in the past decade. In particular, a rescoring
framework using discriminative word classifiers with generative-
model-based features was shown to be effective in small-
vocabulary tasks. However, a straightforward application of the
framework to large-vocabulary tasks is difficult because the
number of classifiers increases in proportion to the number of
word pairs. We extend this framework to exploit generative
and discriminative models in large-vocabulary tasks. N-best
hypotheses obtained in the first pass are rescored using AdaBoost
phoneme classifiers, where generative-model-based features, i.e.
difference-of-likelihood features in particular, are used for the
classifiers. Special care is taken to use context-dependent hidden
Markov models (CDHMMs) as generative models, since most
of the state-of-the-art speech recognizers use CDHMMs. Exper-
imental results show that the proposed method reduces word
errors by 32.68% relatively in a one-million-vocabulary isolated
word recognition task.

I. INTRODUCTION

Many applications that exploit automatic speech recognition
(ASR) demand better performance for large vocabulary ASR
with the rise of machine power. Some of those applications
require ASR engines to recognize several million words.
However, it becomes difficult to discriminate target words
from others because the large vocabulary includes similar
word sets. Language models can help to discriminate similar
words in the speech recognition process. Nevertheless, there
are still some similar word sets that have a similar meaning
and are used in similar contexts. In this case, the system
has to discriminate the target phonemes from others because
only a few different phonemes are the clues to discriminate
similar words. Therefore we focus on phoneme discrimination
in the speech recognition. As the first step, we consider the
isolated word recognition to improve the “acoustic” phoneme
discrimination performance.

The hidden Markov model (HMM) is the principal tech-
nique for automatic speech recognition. However, since its
performance is not sufficient for speech recognition, many
efforts have been made to compensate for the weakness of

HMM. One of the well-known problems of HMM is that
it is a generative model whereas the word recognition task
is a discrimination problem. To cope with this gap, some
techniques employed discriminative models. Ganapathiraju
et al.[1] combined HMM and the support vector machine
(SVM) which is one of the effective discriminative models.
Their technique applies SVMs to phoneme segments obtained
from alignment of HMM and N-best hypotheses are rescored
by scores of SVMs. Gales and Longworth[2] also proposed
combining the scores of HMMs and SVMs with generative
kernels to improve the performance of the continuous digit
task. Padrell-Sendra et al.[4] applied SVM to the frame-
level discrimination combined with token passing instead of
HMM, and obtained better performance than a standard HMM.
Gunawardana et al.[5] applied hidden conditional random
fields (HCRFs) to the speech recognition instead of HMMs.

Among previous studies of using discriminative models for
speech recognition, we especially focus on the combination
of generative and discriminative models in [2] [3]. This
technique can also be applied to image recognition [6] [7].
This framework can easily apply the developed techniques of
speech recognition to generative models because features of
discriminative models are calculated from generative models.
Gales and Longworth [2] apply SVMs with generative kernels
to pairs of words. Classification scores are calculated from the
SVM outputs. Finally the classification score is combined with
the HMM score, which has led to improved performance on a
continuous digit task. However it is difficult to model all pairs
of words because the number of pairs is very large when it
is applied to large vocabulary speech recognition. Therefore
we cannot directly use this method for large vocabulary tasks.
We would like to apply the framework of combining generative
and discriminative models to large vocabulary tasks. The pre-
vious method could be applied to pairs of phonemes. However
it is not realistic to prepare models for all pairs of all triphones.
In this paper, we propose a combination method of generative
and discriminative models for large vocabulary tasks. The
combination is realized by N-Best rescoring by discriminative
scores. In our technique, classification scores are calculated
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Fig. 1. The framework of the proposed method.

using AdaBoost classifiers [8] [9] for the phoneme segments
of N-best hypotheses given by HMMs, and N-best hypotheses
are re-ordered based on the classification scores. AdaBoost
classifies a phoneme of a segment into the correct phoneme
or not as a binary classifier. For AdaBoost feature, we use
difference-of-likelihood feature which is a part of generative
process of HMM. It can handle the triphone framework for
the discriminative model feature. All of these techniques are
for the scalability for large vocabulary tasks.

The reminder of this paper is organized as follows: Section
II introduces the proposed rescoring method by AdaBoost.
Section III shows experimental setups and results of the pro-
posed rescoring method. Conclusions are presented in section
IV.

II. RESCORING USING ADABOOST CLASSIFIERS

A. Overview of the Rescoring Process

This section describes the proposed method to rescore
the N-best hypotheses using AdaBoost phoneme classifiers.
Our method consists of the first pass and the second pass
shown in Fig.1. The first pass outputs N-best hypotheses with
scores by a conventional speech recognition system using
HMMs. The process of the second pass is shown in Fig.2.
First, phoneme segments are obtained by forced alignment of
phoneme HMMs for each hypothesis. Then, the difference-of-
likelihood features are extracted from each phoneme segment,
and classification scores are calculated by AdaBoost classifiers
using the segment features. Finally, classification scores are
added to the N-best scores and N-best hypotheses are re-
ordered.

B. Segment Feature

In our approach, difference-of-likelihood of HMM as fea-
ture of generative process is used for segment feature of Ad-
aBoost. Difference-of-likelihood of HMM φ1,2(X;λ) between
phonme class p1 and p2 is defined by the following equation
for input feature vectors x

φ1,2(x;λ) =
1

T

[
log (P (x;λ(p1)))− log (P (x;λ(p2))

]
, (1)

where T is the number of frames in x, and P (x;λ(p1)) and
P (x;λ(p2)) are the likelihoods from HMMs with parameters
λ associated with phoneme class p1 and p2. This calculation

Fig. 2. The flowchart of the second pass.

is applied to all phoneme combinations and they are concate-
nated to a vector f(x).

f(x) =

⎡
⎢⎢⎢⎢⎣

φ1,2(x;λ)
φ1,3(x;λ)

· · ·
φN−2,N (x;λ)
φN−1,N (x;λ)

⎤
⎥⎥⎥⎥⎦ . (2)

Fig.3 shows the process of extracting features. First
phoneme segmentations are obtained by forced alignment
based on triphone HMMs for N-Best hypotheses. Secondly,
likelihood of each segment is calculated by each triphone
HMM, where the left and right contexts of the triphone are
defined by the phoneme sequence of the hypothesis. Thirdly,
differences of likelihood are calculated for all phoneme com-
binations. Finally NC2 dimensional feature vector is extracted
from the segment. This feature can handle the variations in
the left and right contexts. Therefore the latter discriminator
can ignore the contexts.

C. AdaBoost Score

Assume that there are N training samples
(x1, y1), ..., (xN , yN ), where xi and yi denote a feature
vector and a class label of sample i. AdaBoost classifiers are
trained by the following steps:

• Step 1. Initialize sample weight distribution D0(i) by the
following equation:

D0(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
∑

j:yj=1 1
, yi = 1,

1

2
∑

j:yj=−1 1
, yi = −1.

(3)
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Fig. 3. The process of extracting the difference-of-likelihood feature.

• Step2. Train a weak classifier ht(xi) minimizing error
rate εt on sample weight distribution Dt,

εt =
∑

i:yi �=ht(xi)

Dt(i). (4)

• Step3. Compute voting weight αt as

αt =
1

2
log

1− εt
εt

. (5)

• Step4. Recompute sample weight distribution as

D̂t+1(i) = Dt(i) exp(−αtyiht(xi)). (6)
• Step5. Normalize the summation of sample weights to 1

Dt+1(i) =
D̂t+1(i)

Zt+1
, (7)

where

Zt+1 =
N∑
i=1

D̂t+1(i). (8)

• Step6. Iterate from step 2 to step 5 T times, and obtain
T weak classifiers.

Finally the strong classifier H(x) is obtained by weighted sum
of T weak classifiers as

H(x) = sign

{
T∑

t=1

αtht(x)

}
, (9)

where each weak classifier outputs 1 (true) or −1 (false) by
comparing a threshold and values of a selected dimension of
the segment feature vectors.

A phoneme classifier is constructed for each phoneme by the
AdaBoost algorithm. Each phoneme classifier discriminates
whether the given segment is the phoneme or not, and outputs
the AdaBoost score for the segment. As described in [10], the
AdaBoost score Sp(x) of a phoneme p for segment feature x
is derived from the following equation,

Sp(x) =
1∑T

t=1 α
(p)
t

T∑
t=1

α
(p)
t h

(p)
t (x). (10)

Note that the range of Sp(x) is −1 ≤ Sp(x) ≤ 1 due to the
normalization.

TABLE I
Training and evaluation data

Language Japanese
Training data 120 hours

#Evaluation utterances 5800 (58 speakers)
#Phonemes 39 (including a silence phoneme)

#Phoneme segments in 43848 (including silences)
evaluation utterances

Evaluation task 1 million isolated
words recognition

Evaluation vocabulary city and town names
station names,

people’s names,
nouns from the Web

Feature for HMM 12-dimensional MFCCs
+ power,

their Δs and ΔΔs
(totally 39 dimensions)

Feature for AdaBoost difference-of-likelihood
#dimensions 39C2 = 741

D. Classification Score

Classification scores are calculated from the AdaBoost
scores. First the classification score is calculated at each
phoneme segment in all N-best hypotheses. Classification
score li of i-th phoneme segment in a hypothesis is obtained
by the following equation:

li = log (Sipi
+ 1), (11)

where pi denote the phoneme of the i-th segment in the
hypothesis. In order to guarantee that the normalized score
is positive, a constant 1 is added to all AdaBoost scores Sipi .

The classification score L for a hypothesis is obtained by
averaging li in the hypothesis,

L =
1

K

K∑
i=1

li, (12)

where K is the number of phonemes in the hypothesis. Finally,
the rescored score Lre is obtained by weighted sum of L and
HMM score L(HMM) of the hypothesis,

Lre = (1− α)L(HMM) + αL (0 ≤ α ≤ 1), (13)

and the N-best hypotheses are re-ordered using the score Lre.

III. EXPERIMENTS

A. Experimental Setup

1) Evaluation Data: A one-million-word recognition ex-
periment was conducted using a Japanese speech database. A
one-million-word grammar was used where the one-million-
word vocabulary consisted of Japanese city names, town
names, station names, people’s names and nouns from the
Web. Evaluation data were recorded under clean conditions.
All utterances in the evaluation data were Japanese city names
in one-million-words such as ‘Sapporo’ and ‘Meguro.’ The
number of speakers is 58 and each speaker utters 100 words.
Hence, 5800 utterances were used for the evaluation.
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2) HMM training: The HMMs were trained by 120-hour
Japanese speech data recorded under clean conditions. The
basic structure of the HMM is three-state continuous density
triphones that share 3000 states with 20 Gaussian mixture
components. All triphones have a simple left-to-right topology.
A feature vector for the HMM consisted of 12 MFCCs (Mel-
frequency cepstral coefficients), a power, and their Δs and
ΔΔs (39 dimensions). HTK[11] was used for the HMM train-
ing. HLDA (heteroscedastic linear discriminant analysis)[12]
without nuisance dimensions and MPE (minimum phone error)
training[13] were applied to the HMM after the MLE training.

3) AdaBoost Training: AdaBoost was trained using the
same data as HMMs’. The feature parameters for AdaBoost
were obtained by the method described in Sec.II-B based on
forced alignment of HMMs which was trained in Sec.III-A2.
AdaBoost classifiers were trained for 39 phonemes which
include a silence phoneme. Consequently, there were 741
dimensions for AdaBoost features (39C2 = 741) to take
differences of likelihood for 39 phonemes combinations. Each
AdaBoost classifier discriminates if a given segment is the
phoneme or not. The positive samples for phoneme A are
samples which have label A in training data, and negative
samples are others. Each selection of weak classifier step
selects the best dimension and its threshold for the current
discrimination.

B. Rescoring Experiment

1) Recognition Performance: Performance of the proposed
technique was evaluated on the isolated word recognition
task shown in Sec.III-A1. In this experiment, the first pass
output 32-best hypotheses, and they were rescored by the
AdaBoost scores in Eq.(12) in the second pass. 1-best and
5-best results are shown in this experiment. Fig. 4 and Fig.
5 show the 1-best and 5-best performance of the rescoring,
respectively. The horizontal axis shows the number of weak
classifiers. Weak Classifiers = 0 means the original result
without rescoring. “Correct” means the correct rate which is
calculated from the following equation:

Correct [%] = 100× #correct

#sentence
, (14)

They show that the performance increases as the number of
weak classifiers increases. Both 1-best and 5-best were almost
saturated where the number of weak classifiers is 400. The
original performance of 1-best and 5-best were 66.67% and
90.76%, respectively. The 1-best and 5-best performance of
rescoring by 400 weak classifiers were 70.84% and 93.78%,
respectively. They show that the proposed technique improves
the performance of the isolated word recognition.

Fig. 6 shows the Relative Error Rate Reduction (RERR)
of the proposed technique. RERR is calculated from the
following equation:

RERR [%] = 100× Correctrescore − Correctoriginal
100− Correctoriginal

,

(15)

Fig. 4. 1-best result of rescoring by the proposed technique.

Fig. 5. 5-best result of rescoring by the proposed technique.

Fig. 6. Relative Error Rate Reduction of the proposed technique.

RERR of 5-best was higher than 1-best for any number
of weak classifiers. We calculated 1 − 31 best results for
#Weak Classifiers = 400 in order to obtain more details
about N-Best results. Fig. 7 and Fig. 8 show the 1 − 32
best results and their RERR. They show that the proposed
technique is especially effective for 4− 16 best when 32 best
results are rescored. These results obtained more than 30.0%
RERR. We conclude that this framework using difference-of-
likelihood feature is more effective for 4−16 best recognition.

We show the relation between the parameter α and the
peformance. Fig. 9 shows the best parameter α for each
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Fig. 7. The 32-best performance of #Weak Classifiers = 400.

Fig. 8. The 32-best performance of #Weak Classifiers = 400.

number of weak classifiers. The α which means the weight of
AdaBoost score increased as the number of weak classifiers
increased. It is natural because AdaBoost becomes strong
discriminator. Fig. 10 and Fig. 11 show 1-best and 5-best
results, respectively when the number of weak classifiers is
fixed at 400 and parameter α is changed. α = 0.0 denotes the
result without rescoring by AdaBoost score. On the other hand,
α = 1.0 denotes the result using AdaBoost score only. In our
experiment the range of HMM score and AdaBoost score were
not normalized. Therefore absolute value of α has no meaning.
The performance of rescoring is better than original’s for any
value of α in the case of 5-best results. On the other hand, the
performance degrades when α is near 1.0. However trends of
both 1-best and 5-best are the same, and a certain range of α
for contribution to improving performance exists.

IV. CONCLUSIONS

We proposed a method of combining generative and dis-
criminative models for large vocabulary tasks. The combina-
tion is realized by N-best rescoring by classification scores.
In our technique, classification scores are calculated using
AdaBoost phoneme classifiers for the phoneme segments of
N-best hypotheses given by HMMs, and N-best hypotheses are
re-ordered based on the weighed sum of the HMM score and
the classification score. We use difference-of-likelihood feature
which is a part of generative process of HMM for AdaBoost.
A phoneme classifier is constructed for each phoneme by

Fig. 9. The best coefficient α for the number of weak classifiers.

Fig. 10. The 1-best performance by the control of coefficient α
(#Weak Classifiers = 400).

Fig. 11. The 5-best performance by the control of coefficient α
(#Weak Classifiers = 400).

the AdaBoost algorithm. Each phoneme classifier discrimi-
nates whether the given segment is the phoneme or other
phonemes, and outputs the AdaBoost score for the segment as
the classification score. Experimental results showed that the
proposed technique consistently improved the isolated word
recognition performance. RERRs for 1-best and 5-best results
were 12.51% and 32.68%, respectively when the number of
weak classifiers was 400. This framework has many possi-
bilities because we can try other classification scores using
other discriminators. Furthermore it can be applied to LVCSR
tasks because it is based on the phoneme-based discrimination
models and it can handle the framework of triphones.

pass rescoring in the future.
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