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Abstract—We investigate joint models of articulatory features
and apply these models to the problem of automatically generat-
ing articulatory transcriptions of spoken utterances given their
word transcriptions. The task is motivated by the need for larger
amounts of labeled articulatory data for both speech recognition
and linguistics research, which is costly and difficult to obtain
through manual transcription or physical measurement. Unlike
phonetic transcription, in our task it is important to account
for the fact that the articulatory features can desynchronize. We
consider factored models of the articulatory state space with an
explicit model of articulator asynchrony. We compare two types
of graphical models: a dynamic Bayesian network (DBN), based
on previously proposed models; and a conditional random field
(CRF), which we develop here. We demonstrate how task-specific
constraints can be leveraged to allow for efficient exact inference
in the CRF. On the transcription task, the CRF outperforms the
DBN, with relative improvements of 2.2% to 10.0%.

I. INTRODUCTION

Models of articulatory features have been investigated in

both speech recognition research [1], [2], [3], [4], [5] and

linguistics [6]. By “articulatory features”, we refer to discrete-

valued, speaker-independent parameters of speech production

such as voicing, nasality, and constriction degrees and loca-

tions. For speech recognition, there is evidence that articula-

tory feature-based models may help to better handle noise [7],

multilinguality [8], and pronunciation variation [9], [10].1

Articulatory models of word pronunciation are more com-

plex than traditional phone-based ones, because they must

account for the ability of articulators to desynchronize (that

is, to reach their positions for a given sub-word state at

different times) or fail to reach their target positions. In

prior work, this has been addressed using dynamic Bayesian

networks (DBNs) explicitly modeling the multiple articulatory

streams [9] or finite-state models (hidden Markov models,

finite-state transducers) in which the multiple state variables

are “collapsed” into a single one [1], [11], [4]. In this paper,

we present a factored conditional random field [12], [13]

(CRF), which includes different factors for different articula-

1By the term “articulatory feature-based models”, we include what are
sometimes referred to as “production models”, “phonological feature models”,
or “gestural models”.

tory feature streams.2 The factorization allows us to explicitly

represent articulatory asynchrony and avoid the large number

of parameters involved in models with collapsed state spaces.

In this paper, we discuss how task-specific constraints can be

exploited to perform exact inference efficiently as if the model

were a single linear chain, while maintaining the factorization

in the original distributed model.

One difficulty associated with articulatory models is the lack

of data transcribed with articulatory labels. Articulatory labels

have been variously obtained through conversion from pho-

netic labels [7], [8], manual transcription [14], and conversion

from physical measurements to speaker-independent quanti-

ties [15]. All of these suffer from the difficulty of obtaining the

labels or appropriate source data. In this work, we address this

in a similar manner to which phonetic transcriptions are often

obtained: by forced transcription given the acoustics and word

labels, along with a model of the relationship between the

words, articulatory features, and acoustics. This necessitates a

detailed pronunciation model in terms of articulatory features.

Additional motivation for the CRF models developed here is

the desire for a discriminative articulatory feature-based end-

to-end speech recognizer. Our models can be straightforwardly

adapted for this purpose, although in this paper we focus on

forced transcription.

The important aspects of the models we present are that:

1) They are conditional models, unlike previously proposed

DBN or finite-state models of articulatory features. This

should improve their discriminative ability.

2) They are undirected graphical models, making it easy

to incorporate a wide variety of classifiers as feature

functions (as in [16]).

3) They are factored, encoding linguistic knowledge about

articulator configurations into the model parameteriza-

tion.

4) They are highly constrained, so that it is possible to

perform fast exact inference.

2Factored CRFs have also been referred to as dynamic CRFs [13]. We prefer
the term “factored” since “dynamic” is typically used for referring to models
with repeating structure. While our models are dynamic, it is the factorization
of the state space that is important.
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Fig. 1. Canonical pronunciation for sense, corresponding to a production
where the features velum (VEL), tongue body (TB), tongue tip (TT), lip
position (LIPS) and glottis (GLO) are synchronized. Values in parentheses
are the sub-word state indices (SubwordStatei) corresponding to each sub-
word unit in the word (see Section III).

Fig. 2. A non-canonical variant pronunciation for sense (with an epenthetic
[t] insertion), produced when the velum and tongue features desynchronize.

In experiments, we demonstrate the superiority of the proposed

approach over a DBN model using a similar factorization.

II. ARTICULATORY FEATURE-BASED MODELS OF

PRONUNCIATION

Following previous work by Livescu et al. [3], [9], we use

a set of articulatory features based on the tract variables of

articulatory phonology [6]. These include the position and

constriction degree of the lips (3 and 4 values, respectively),

the tongue tip (4 and 6 values), and tongue body (4 and 6

values), and the states of the velum (nasality, 2 values) and

glottis (voicing state, 3 values).

We assume that we have a standard dictionary of phone-

based canonical pronunciations for the words in our vocabu-

lary. We further assume that each phone can be deterministi-

cally mapped to a set of articulatory feature target values (in

our case, using the mapping described in [9]). The pronun-

ciation of each word can therefore be re-written in terms of

articulatory feature targets. The articulatory features may move

asynchronously from one target to the next; if the transitions

are completely synchronized, then the resulting pronunciation

corresponds (by construction) to the canonical pronunciation.

Figures 1 and 2 show the canonical pronunciation and one non-

canonical variant of the word sense. Note that the sequence of

targets for each articulatory feature is identical in these two

pronunciations; the pronunciations differ only in the relative

timing of the targets in different feature tiers.

The models developed in this work are applied to the task of

articulatory feature forced alignment: Given a parameterization

of the acoustics for the entire utterance (x) (e.g., PLP coef-

ficients) corresponding to word(s) w, predict the most likely

Fig. 3. Two frames of a DBN model for articulatory feature alignment.
Shaded nodes correspond to observed variables, while unshaded nodes cor-
respond to hidden variables. Variables that are deterministic given the values
of their parents appear as dashed circles.

values of the articulatory features in each time frame. In this

paper we will assume that the word boundaries are also given,

and we will operate on one word at a time. (Our models can,

however, be easily extended to multi-word sequences.) That

is, we seek to solve the following:

AF1∗,AF2∗, . . . ,AFK∗ =

argmax
AF1,AF2,...,AFK

p(AF1,AF2, . . . ,AFK |w,x) (1)

where K is the number of articulatory features and AFi =
(AFi

1, . . . ,AFi
t, . . . ,AFi

T ) is the sequence of values of artic-

ulatory feature i, where T is the number of frames in the

utterance.

III. DYNAMIC BAYESIAN NETWORK-BASED MODEL

A dynamic Bayesian network (DBN) model for this task,

based on the models used previously by Livescu et al. [3]

(with minor modifications), is shown in Figure 3.

Each articulatory feature AFi has a corresponding sub-word

state variable (SubwordStatei), whose value ranges from 1

to the number of states (in our case, phones) in the word.

For each frame, the value of the sub-word state variable is

either incremented (if the transition variable Transi = 1) or

remains the same in the next frame (if Transi = 0). The feature

variables AFi depend on the word and SubwordStatei. Using

the example in Figure 1, if AF1 is velum (VEL), then when

w = sense and SubwordState1 = 1, AF1 = “non-nasal”, while

when SubwordState1 = 3, AF1 = “nasal”.

The model constrains asynchrony as follows: For each pair

(i, j) of articulatory features, define the degree of asynchrony

between the two streams (di,jt ) at time frame t as the difference

between the sub-word state indices corresponding to the two
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streams at that frame:

di,jt = SubwordStateit − SubwordState
j
t (2)

with di,jt = 0 indicating that streams i and j are synchronized

at time t. We constrain the degree of asynchrony to no more

than M for any pair of streams; that is,

−M ≤ di,jt ≤ M, 1 ≤ i, j ≤ K and 1 ≤ t ≤ T (3)

where T is the length of the utterance. In the DBN,

these constraints are imposed using the FtrAsyncConfig,

AsyncConfig and CheckAsyncConfig variables. The variable

FtrAsyncConfigt is a vector representing the current config-

uration of asynchrony amongst all of the streams, consisting

of the degrees of asynchrony of streams 2, . . . ,K with re-

spect to the first stream: (d2,1t , d3,1t , · · · , dK,1
t ). For example,

FtrAsyncConfigt = (1, 0, · · · , 0) indicates that the second

articulatory stream is one state ahead of the first stream, while

the remaining streams are synchronized with the first. Async-

Config is a vector variable with no parents that can take on any

value corresponding to an allowable asynchrony configuration.

CheckAsyncConfig is a dummy observed variable with value

1 (say) which has a non-zero probability for only those

configurations in which AsyncConfig and FtrAsyncConfig are

assigned the same value. Therefore, the distribution of Async-

Config, which is learned during DBN training, represents the

probability of each asynchrony configuration.3

IV. CONDITIONAL RANDOM FIELD-BASED MODEL

The proposed CRF, shown in Figure 4 as a factor graph [18],

incorporates a number of aspects of the DBN. Each factor

(red or blue square) represents a (non-negative) function over

the set of variables that are connected to it. As before, x =
(x1, . . . , xt, . . . , xT ) denotes the sequence of observations and

w denotes the word spoken in the utterance. The sequence

of all other variables in the graph (which are all hidden) is

denoted by y = (y1, . . . , yt, . . . , yT ), where yt is all of these

variables at time t. Each factor node is associated with a

potential function, which may depend on the time t and is

indexed by the set of variable nodes (or clique) c that it is

connected to in the graph. In the factor graph presented in

Figure 4, for example, one factor is associated with the set

of variable nodes c = {SubwordState1,AF1, w} at each time

frame.
Let yct represent the values of the hidden variables in c at

time t. The probability distribution over y, conditioned on the

observations x and the word w, can then be expressed as a

normalized product of potentials corresponding to the factors:

p(y|x, w) = 1

Z(x, w)

∏
t

∏
c∈C

φc(y
c
t ,x, w, t) (4)

where Z(x, w) is a normalization term, the potentials

φc(y
c
t ,x, w, t) are any non-negative functions, and C is the

set of variable subsets corresponding to all of the factors.

3The structure using both the deterministic FtrAsyncConfig and non-
deterministic AsyncConfig allows the asynchrony distribution to be learned
as part of the DBN training via Expectation-Maximization. See [17] for more
details.

Fig. 4. Factor graph [18] representing the proposed CRF model for
articulatory feature forced transcription. The shaded nodes represent variables
that we condition on. The red and blue square nodes represent factors, each
of which is a non-negative function defined over the configuration of the set
of variables connected to it. The number in the dashed box corresponds to
the equation(s) in the text that implements the corresponding factor.

A. Deterministic vs. Trainable Factors

We distinguish between factors that are associated with

learnable parameters of the model, denoted in red in Figure

4, from those that enforce deterministic constraints, denoted

in blue. Each trainable factor is associated with a vector of

feature functions, f c(yct ,x, w, t) = [f c
i (y

c
t ,x, w, t)]

T , 1 ≤
i ≤ Nc for some integer Nc. We represent the potential

associated with this factor as

φc(y
c
t ,x, w, t) = eλc·fc(yc

t ,x,w,t) (5)

Where λc is a vector of weights to be learned. In equation

5, we have implicitly assumed that weights are tied across

corresponding cliques in different time frames t. The specific

parameterization of each feature function depends on the

particular clique.

In our model the trainable factors are associated with config-

urations of feature asynchrony, individual articulatory features

(the “acoustic model”), and articulatory feature transitions

(the “transition model”). The feature functions associated with

each articulatory feature variable AFi
t are constructed by first

computing a set of statistics gl,m(xt) from the acoustics (e.g.

gl,m(xt) could be the lth output of a particular multilayer

perceptron (MLP) indexed by m, as in Section V). These

statistics are then used to construct individual components in

the vector of feature functions associated with the articulatory

feature variable (AFi),

fi,j,l,m(AFi
t,x, t) = gl,m(xt)δ(AFi

t = aij) (6)

where aij is one value that AFi can take and δ(z = z′) = 1
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if z = z′ and 0 otherwise. The feature functions associated

with the feature asynchrony configuration (FtrAsyncConfig)

and articulatory feature transitions (AFi,Transi) are

fr(FtrAsyncConfigt, t) = δ(FtrAsyncConfigt = r) (7)

fi,j,v(AFi
t,Transit, t) = δ(AFi

t = aij)δ(Transit = v) (8)

where r is an asynchrony configuration vector as defined in

Section III and v is a boolean value indicating the presence

or absence of a state transition.

The deterministic factors, on the other hand, are binary

(zero-one) functions, whose only purpose is to ensure that

invalid values of the variables y are assigned zero probability.

For the model in Figure 4, since the sub-word state indices

index into the pronunciation of the word, any valid assign-

ment must satisfy the condition that sub-word state indices

increment by at most 1 from one frame to the next (equation

9 below); that in the first time frame, the articulators are in

the first state of the word (equation 10); that the last frame

corresponds to the last state in pron(w), the pronunciation

of the word (equation 11); and, finally, that the articulatory

feature value AFi is the correct value at the current sub-word

state (equation 12), where pron(w)i,s is the value of AFi in

sub-word state s in the pronunciation of the word:

0 ≤ SubwordStateit+1 − SubwordStateit ≤ 1 (9)

SubwordStatei1 = 1 (10)

SubwordStateiT = |pron(w)| (11)

AFi
t = pron(w)i,s if SubwordStateit = s (12)

For example, the condition in equation 10 would be expressed

with the deterministic factor

φ(SubwordStatei1,x, w, 1) =

{
1 SubwordStatei1 = 1
0 otherwise

(13)

B. Simplifying the Model

In pilot experiments, we implemented the CRF of Figure 4

using the GRMM toolkit [19]. However, exact inference in this

CRF was prohibitively slow, whereas approximate inference

algorithms resulted in low accuracies. We believe that this is

due to the fact that the toolkit does not automatically exploit

the sparsity that results from deterministic constraints in our

model. In this section, we describe how we take advantage of

this sparsity to allow us to do fast exact inference in our CRF.
We first observe that a number of deterministic variables

(variables that are deterministic given other variables) can
be eliminated if we include more general feature functions.
Exploiting the fact that AFi

t and FtrAsyncConfigt are deter-
ministic given SubwordStateit and w, we can restate the feature
function in equations 6–8 as

fi,j,l,m(SubwordState
i
t = s,x, w, t) = gl,m(xt)δ(pron(w)i,s = ai

j)
(6a)

fr(SubwordState
1:K
t , t) = δ((d2,1t , . . . , dK,1

t ) = r) (7a)

fi,j,v(SubwordState
i
t = s, SubwordState

i
t+1, w, t) =

δ(pron(w)i,s = ai
j)δ(SubwordState

i
t+1 = s+ v) (8a)

Fig. 5. Factor graph representation of final simplified model after sub-word
state variables have been collapsed to obtain a linear chain. The numbers in
each dashed box correspond to the equations in the text that implement the
corresponding factor.

where di,jt is as defined in equation 2. Thus, an equiv-

alent model can be obtained in which pronunciations are

represented only through the configurations of the K sub-

word state variables. The state variables can then be collapsed

into a single variable SubwordConfigt, whose domain is the

cross-product of the individual SubwordStateit variables. We

stress here that this process of collapsing the articulatory

variables into a single variable is purely for convenience;

the transformed model is exactly equivalent to the original

factored CRF model since we ensure that the feature functions

(both deterministic and trainable) constructed on this variable

in the resulting model are exactly the same as those in the

previous model. Finally, we obtain a linear chain CRF, shown

in Figure 5, that captures exactly the same dependencies as

in the original model in Figure 4. Now the state variable

is SubwordConfigt = (SubwordState1t , . . . ,SubwordStateKt ).
The factor corresponding to the state transition includes all

potentials involving only these variables (eq. 8a, 9). The

second factor includes the acoustic statistic-based features (eq.

6a), the asynchrony features (eq. 7a) and the deterministic

potentials (eq. 3, 10-11) encoding the dictionary.

C. Efficient Exact Inference

We can perform inference on the factor graph to obtain the

marginal distributions over SubwordConfigt using the standard

sum-product algorithm [18], which in this case is equivalent to

the standard alpha-beta recursions for linear-chain CRFs [12].

If the pronunciation of word w has W states, W = |pron(w)|,
and the maximum allowable asynchrony between any pair

of feature streams is M , then it follows from equation 3

that SubwordConfigt can take on at most W (2M + 1)K−1

values. Additionally, note that the set of sub-word state con-

figurations s′ that can appear in a frame following a given

configuration s is much smaller than the full state-space of

W (2M + 1)K−1 allowable configurations: Since each sub-

word state can either increment or else retain the same value

between adjacent frames, the set of next configurations is of

size at most 2K . A similar analysis holds for the set of previous

configurations. Thus, by only summing over valid previous

and next configurations in the alpha-beta recursions [12] the

overall complexity of inference in the model can be reduced

to O(T2KW (2M + 1)K−1). Note that collapsing all of the

variables at each frame in Figure 4 directly and performing
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standard inference algorithms for the corresponding linear

chain model would incur quadratic complexity in the size

of the cross-product of the cardinalities of the variables at

each frame O(T (|W |K2K(2M + 1)K−1|AF 1| · · · |AFK |)2).
Exploiting task-specific constraints allows us to reduce training

time by many orders of magnitude: In our experiments, each

pass through the training data takes less than a minute.

V. EXPERIMENTS

Our experiments are performed on a subset of the Switch-

board Transcription Project (STP) [20] data. The STP data

consists of subsets of the Switchboard telephone conversa-

tional speech corpus [21] that was transcribed manually at

a detailed phonetic level including diacritics for nasalization,

frication, etc.

We use identical data sets to those of [9]: We include

all words from the “train-ws96-i” subset if they are one of

the 3500 most likely words in Switchboard, excluding partial

words and filled pauses. We divide these words into a training

set (sets 24-49, consisting of 2941 words and 89,748 frames),

development set (set 20, with 165 words and 5365 frames),

and test set (sets 21-22, with 236 words and 7037 frames).

Following [9], the STP phone transcriptions are stripped of

diacritics other than nasalization and converted to articulatory

feature labels, which serve as the ground truth. (This is, of

course, not ideal since the phone labels are not necessarily an

accurate representation of the articulatory configurations.) We

parameterize the acoustics by computing 12th-order speaker-

normalized PLPs with energy, deltas and double-deltas to

obtain a 39-dimensional input representation.

In all of our experiments, we assume that all four tongue

features (tongue tip and tongue body location and opening

degree) are completely synchronized, the two lip features

(location and opening) are synchronized, and the glottis and

velum features are synchronized. The models therefore effec-

tively have K = 3 articulatory feature streams, which we

refer to as L (lips), T (tongue), and G (glottis/velum). We

allow a maximum asynchrony of one sub-word state (M = 1)

between any pair of streams. Considering these constraints, the

numbers of distinct L, T and G labels in the data are 8, 25, and

4, respectively. Some example values of these “features” are

L = (protruded/ narrow), T = (alveolar/ closed/ uvular/ wide),

G = (voiceless/ non-nasal). Additional details of the features

and phone-to-feature mappings can be found in [9].

A. DBN and CRF systems

The DBN systems (described in Section III) were imple-

mented using the Graphical Models Toolkit (GMTK) [22].

The distribution of p(x|L, T,G) was modeled as a Gaussian

mixture, with the number of Gaussians for each (L, T,G) con-

figuration tuned on the development set. These models were

trained with Expectation-Maximization using only acoustics

and corresponding words. As a baseline, we implemented a

DBN with no asynchrony (M = 0), which is almost identical

to a phone-based system (DBN-noasync). We also trained a

system that allowed asynchrony of up to one sub-word state

System L Err T Err G Err Joint Err
Rate (%) Rate (%) Rate (%) Rate (%)

DBN-async-Train 11.2 34.7 15.9 47.2

DBN-noasync-Test 9.3 35.2 16.0 40.6
DBN-async-Test 9.6 35.2 16.8 44.0

Tandem-async-Test 9.9 35.4 17.7 43.7

CRF-Lin-Test 9.2 32.8* 14.4* 40.0
CRF-LogPost-Test 9.6 33.4* 14.8* 39.7

TABLE I
FRAME ERROR RATES (IN %) OF FORCED TRANSCRIPTION USING VARIOUS

MODELS. (*) INDICATES A STATISTICALLY SIGNIFICANT IMPROVEMENT

OVER THE DBN-NOASYNC-TEST RESULT AT THE (p ≤ 0.05) LEVEL USING

A ONE-TAILED Z-TEST. THE FIRST ROW SHOWS THE TRAINING ERROR OF

THE SYSTEM USED TO GENERATE TRAINING DATA; THE REMAINING ROWS

GIVE TEST RESULTS.

(M = 1): a system identical to the baseline DBN but with

one state of allowed asynchrony (DBN-async).

After training, the asynchronous DBN system (DBN-async)

was used in forced-alignment mode to produce sub-word state

labels for the training set given the identity of each word;

these were used as training labels for the CRF-based systems.

(The ground-truth labels derived directly from the STP phones

cannot be used, as they do not conform to the constraints of the

model, such as limited asynchrony.) The CRF-based systems

were trained to optimize conditional log-likelihood p(y|x, w)
using stochastic gradient descent with ‘weight averaging’: we

maintain a running average of the weight vectors resulting

from all of the updates up to a given descent step. In our

experience and that of others [23], this weight averaging

improves performance over using unaveraged weights.

The feature functions for the CRFs can be constructed

using arbitrary classifiers; for this study we use multilayer

perceptrons trained with the QuickNet toolkit [24]. We train

four MLPs, one classifying each of the three articulatory

feature streams (L, T, G) and one classifying phones. Each

MLP has one hidden layer with a sigmoid activation function

and a softmax activation function on the output layer, with

the number of units in the hidden layer determined by tuning

the MLP frame accuracy on the development set. We consider

three statistics derived from the MLPs for constructing CRF

feature functions: (a) posteriors, the outputs of the MLPs,

(b) the log posteriors (CRF-LogPost), and (c) linear outputs,

obtained by removing the final softmax output layer (CRF-

Lin). Using MLP posteriors directly produced consistently

(slightly) worse performance than the other two cases. To

determine whether the use of discriminative classifiers (MLPs)

alone accounts for the performance improvement, we also

tested a “tandem” style system [25] consisting of the asyn-

chronous DBN in which the acoustic features were projections

of the linear outputs of the MLPs onto the top 39 principal

components.

B. Results and Discussion

Table I shows the frame error rates for all models measured

against the phone-derived articulatory feature labels for each

of the three articulatory feature streams, as well as for joint
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classification of the entire 3-stream configuration. Since the

CRFs are trained on labels produced by the asynchronous

DBN model on the training set, we present results of the

asynchronous DBN system for the training and test set; for

all other systems, only test results are given.

The asynchronous DBN’s performance is insignificantly dif-

ferent from either the Tandem or DBN-noasync performance

in predicting individual L, T, and G labels (first three result

columns in Table I). Similarly, the performance of CRF-

Lin and CRF-LogPost is comparable. Both CRFs, however,

show significant (p ≤ 0.05) improvement in classifying the

T and G streams, compared to each of the baseline models.

This is encouraging for two reasons. First, recall that the

training labels for the CRF are derived using the baseline

DBN system. The training error of the DBN is quite high,

so it is encouraging that the CRF trained on these labels can

still outperform the DBN. Second, in these pilot experiments

we explored a very limited set of CRF feature functions, both

in terms of the MLP-derived statistics and in terms of their

association with single articulatory feature streams. In previous

work, CRFs have been shown to be effective combiners of

MLP-based feature detectors [16], so similar improvements

may be possible here if we incorporate additional MLP clas-

sifiers. Additionally, it is possible to create feature functions

that capture higher-order interactions (pairwise or three-way)

between the articulatory features. Incorporating such features

within our model is straightforward.

In terms of joint classification performance, the CRF-Lin,

CRF-LogPost and DBN-noasync systems are all comparable.

The tandem system and the asynchronous DBN system, how-

ever, performed significantly worse than the DBN-noasync

model. One reason for the worse performance of the asyn-

chronous DBN relative to DBN-noasync may be the difficulty

of training Gaussian mixtures for the rarer asynchronous states.

VI. CONCLUSIONS

We have presented a new CRF that jointly models sequences

of several articulatory features, with results on a forced tran-

scription task showing the superiority of our model over a

baseline DBN. In future work, we intend to extend the model

to account not only for articulatory asynchrony but also for

reductions (or, more generally, substitutions) in articulatory

positions, as in [10]. Ultimately, we would like to use such a

CRF as an end-to-end word recognizer, and we are currently

exploring this extension.
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