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Abstract—We describe a series of experiments simulating data
from the standard Hidden Markov Model (HMM) framework
used for speech recognition. Starting with a set of test transcrip-
tions, we begin by simulating every step of the generative process.
In each subsequent experiment, we substitute a real component
for a simulated component (real state durations rather than
simulating from the transition models, for example), and compare
the word error rates of the resulting data, thus quantifying the
relative costs of each modeling assumption. A novel sampling
process allows us to test the independence assumptions of the
HMM, which appear to present far more serious problems than
the other data/model mismatches.

I. INTRODUCTION

There are two main failures of the standard Hidden Markov

Model (see Figure I) to model speech data: the form of the

output distribution and the statistical independence assump-

tions.

Nearly all HMM-based speech recognition systems model

speech frames, the output of the underlying or hidden states,

with a Gaussian Mixture Model (GMM), typically using diag-

onal covariance matrices. Much of the progress in recognition

accuracy over the last twenty years is typically attributed to

improving the accuracy of this approximation: adding mix-

ture components, compensating for the diagonal covariance

assumption [1], employing “discriminative” estimation criteria

[2], and training with larger datasets [3], for example.

The HMM structure also induces a set of assumptions based

on the conditional independence of the outputs. Specifically,

the model assumes that conditional on a state, the frames

in that state segment are independent of each other and

independent of frames generated by other states. For example,

in Figure I, conditional on the value of state s5, output frame

o5 is independent of every other output frame. Such strong

independence claims are clearly false, partly because of the

mechanics of speech production, and partly because of the

way speech features are computed (for example, 10 ms frames

are computed from a 25 ms window; delta and double-delta

features—literally functions of features in adjacent frames—

are tacked on to the standard features). However, attempts to

relax the HMM’s independence assumptions [4], [5] or replace

the HMM with a model that captures more temporal structure

[6], [7], [8], [9] have met with limited success and have not

been adopted in practice.
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Fig. 1. A depiction of the standard generative speech model. An HMM
models the continuous output distribution P (ot|st) with a GMM and the
discrete transition distribution P (st|st−1). Each phoneme p is modeled by
an HMM, typically with three sub-phoneme states, and each word w consists
of a sequence of phonemes; these pronunciations are derived from a dictionary.

Given this record, we might be tempted to conclude that

properly modeling the output distribution is more important

than addressing the broken independence assumptions. The

goal of this paper is to quantify losses incurred by making

these standard modeling assumptions. Of course, there are

other failings of speech recognition to model speech data,

including shortcomings of the front-end, the language model,

and the pronunciation dictionary. We do not intend to suggest

these are minor issues, but choose to focus specifically on the

statistical properties of the standard acoustic model.

Why are we doing this? First, we want to better understand

the failings of the model. Second, we found many of the results

surprising—for example, the effect of dependence is much

stronger than we expected—and may suggest ways to refocus
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future research.

Inspired by results reported in [10], we describe a series

of simulation and resampling experiments—using the model

to create alternate versions of a test set and then re-running

recognition—to measure the impact of each assumption. Sec-

tion II outlines the data and models we built for the series

of experiments described in Section III; we conclude with a

discussion in Section IV.

II. DATA AND MODELS

We show experimental results on both Wall Street Jour-

nal (WSJ), carefully read news reports in controlled quiet

conditions, and Switchboard (SWB), spontaneous telephone

conversations in uncontrolled environments. The training data

include 66 hours of the WSJ SI-200 dataset and 300 hours of

Switchboard I. To ensure the purity of our results, we split each

dataset into two speaker-disjoint pieces, and train a simulation

model and a recognition model.

For WSJ experiments, we use the standard 5k bigram

language model created at Lincoln Labs for the 1992 evalua-

tion. For SWB experiments, we build a standard 20k trigram

language model with absolute discounting using SRILM [12]

from all the utterances used to build the recognition acoustic

model. We use version 0.6 of the CMU pronunciation dictio-

nary (stress removed) for both WSJ and SWB models.

The WSJ test set consists of the 1992 ARPA evaluation set

(often called Nov-92) and a set referred to as si dt 05.odd in

[13]. The SWB test set is assembled from all the speakers

in Switchboard I who participated in only one call (these

conversations are removed from the training sets). To avoid

out-of-vocabulary issues, all test utterances containing some

word not present in the relevant language model are removed.

Statistics of the training and test sets are given in Table I.

Dataset Speakers Utterances Words Hours
WSJ sim 100 13,857 249,557 32
WSJ rec 100 14,852 250,904 32
SWB sim 256 105,629 1,366,704 135
SWB rec 255 100,750 1,343,286 132

WSJ test 18 576 9,381 1.2
SWB test 23 954 10,727 1.1

TABLE I
TRAINING SET (TOP) AND TEST SET (BOTTOM) STATISTICS.

A. Training

We use version 3.4 of the HTK toolkit to train and test our

models [14]. In particular, we use the standard HTK front-

end to produce a 39 dimensional feature vector every 10 ms:

13 Mel-cepstral coefficients, including energy, plus their first

and second differences. The cepstral coefficients are mean-

normalized at the utterance level.

The acoustic models are cross-word triphones estimated

with maximum likelihood1. Except for silence, each triphone is

1The model training procedure roughly follows the HTK tutorial: we
estimate monophone models from a “flat start”, then duplicate these to form
triphone models, cluster, and re-estimate.

modeled using a three-state HMM with a discrete linear tran-

sition structure that prevents skipping. The resulting triphone

states are clustered using decision trees to 2500 tied states

for WSJ models and 5000 tied states for SWB models. The

output distribution for each tied state is a single, multivariate

Gaussian with diagonal covariance.

While significantly better performance can be achieved with

mixtures of more components (16 components are sufficient

for WSJ; 32 for SWB), the simplicity of a single component

is preferable for our analysis; it also helps highlight the

performance differences between our experiments.

B. Decoding

We use HTK’s HDecode for decoding, employing a wide

search beam (300), a word-insertion penalty of -4, and the

language model scale factor set to 15. Recall that the decoder

is trying to find the sequence of words w with the largest score

(log probability) according to the model:

argmax
w

log P (o|w) + κ log P (w)

Due to incorrect model assumptions, the two components, the

acoustic model P (o|w), and the language model P (w), do

not produce scores on the same scale. The language model

scale factor κ increases the weight of the language model with

respect to the acoustic model, a kind of coarse compensation.

When we dramatically improve the acoustic model’s fit to the

data, the best scale factor is much smaller. The first three lines

of Table II (below) use a language model scale factor of 4.

III. EXPERIMENTS

The standard acoustic model for speech recognition is

generative: it describes a process by which acoustic features

arise from a sequence of words. As a result, we can follow

the generative process to simulate data:

1) Start with the test transcriptions.

2) Look up each word in the pronunciation dictionary to

create phoneme-level transcriptions.

3) Simulate the sequence of subphone states and their

durations for each triphone from the appropriate HMM

transition model.

4) Simulate pseudo speech frames matching the duration of

each state from the appropriate HMM emission model.

In the following sections, we’ll use the simulation model

to create pseudo speech data in accordance with this gener-

ative story, and then decode it using the recognition model.

With each subsequent experiment, we’ll replace a simulated

component with the corresponding component from the actual

test data. Recall that the simulation models are used to create

the simulated test data, so simulation is done completely

independently from recognition. Refer to table II for the

resulting WERs; each line is annotated with the section label

(A-F) in which the experiment is described. Because random

sampling is involved, we repeat each experiment 5 times and

report mean WER along with a standard error (SE).

Before describing the results in detail, it is important to

reflect on what kind of experiments we are doing, as they
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WSJ test SWB test Model assumptions satisfied
Test WER SE WER SE P (si|si−1) ∼ T P (o) ∼ E oi ⊥⊥ oj |s
(A) Simulate from T and E 0.2 0.01 2.4 0.04 yes yes yes
(B) Simulate from E 0.3 0.01 3.0 0.05 no yes yes
(C) Resample frames 0.5 0.02 4.5 0.09 no no yes
(D) Resample states 2.8 0.06 25.3 0.12 no no with i and j in different states
(E) Resample phonemes 6.2 0.10 43.4 0.19 no no with i and j in different phonemes
(F) Resample words 13.7 0.10 56.4 0.22 no no with i and j in different words
Original data 15.2 61.5 no no no

TABLE II
ALL SIMULATION RESULTS; EXPERIMENTS ARE ANNOTATED WITH THE SECTION IN WHICH THEY ARE DESCRIBED. T AND E REFER TO THE STANDARD

HMM TRANSITION AND EMISSION MODELS.

are a bit unusual. Speech research usually involves one of

two sorts of experiments: (1) improvement due to a new

method is measured by WER, or (2) a “cheating” experiment

that addresses how much WER could improve if only some

unknown variable were revealed (e.g. What if we could always

re-rank an n-best list of hypotheses perfectly?). This work does

not fit into either category. We are creating artificial speech

data and using WER as a familiar metric to compare the

effects of the model assumptions. Thus, the results are purely

diagnostic and should not be misconstrued as remedies.

A. Simulating transitions and emissions

In our first experiment, we’ll follow the full generative

process (above) so that the simulated data matches all the

assumptions of the model: The state durations and outputs

respect the model transition and emission distributions, and

the frames are conditionally independent because they are

simulated only with respect to their generating state.

Note that we are simulating a 39-dimensional frame that, in

real data, included delta and double-delta features computed

from a local window. When we simulate from the model, the

structural dependence in these delta features is ignored. This

is intentional: the Gaussian distribution used to model speech

frames knows nothing about delta features, and the typical

diagonal covariance matrix further assumes that each feature is

independent. Simulation shows just how extreme the mismatch

is between real data and the standard model.

So how well does recognition work if the data completely

respects the model assumptions? It turns out that even if each

state is modeled by just one diagonal covariance Gaussian,

the WER of simulated data is extremely low: 0.2 for WSJ

and 2.4 for SWB, and most of these errors are homophones

(see Table III). If only real speech data matched the HMM

assumptions, recognition would work very well, even with

very limited training data.

How many of these errors are due to mismatch between the

simulation model and the recognition model? If we use the

recognition model for simulation, the WER for the SWB test

drops to 1.5; if, alternatively, we force the simulation model to

use the same decision tree (for state tying) as the recognition

model, and run the rest of the training process as usual, the

WER again drops to 1.5. These results show that while there

is indeed a difference between the two models, it is mostly

due to variability in the decision tree clustering; holding the

Confusion Count Confusion Count
uh ==> a 22 than ==> then 4
a ==> uh 17 huh ==> oh 3
uh ==> the 7 to ==> into 3
too ==> to 5 two ==> to 3
are ==> our 4 wines ==> wine 3

TABLE III
THE MOST COMMONLY CONFUSED WORD PAIRS IN THE FULLY

SIMULATED SWB TEST SET.

decision tree constant, the Gaussian parameters of the models

are well-estimated.

B. Simulating emissions

Next, we’d like to replace the simulated state durations with

real durations to measure the mismatch between the transition

model and actual speech data. We do this by deriving a state-

level forced alignment of the real test data using the simulation

model. Now we have the simulation model’s best guess of

the test data’s actual state sequence. As before, we simulate

speech frames from the appropriate state models, thus creating

pseudo utterances that are now exactly as long as the original

test utterances.

The WERs for both WSJ and SWB tests increase by about

25%. What’s wrong with the transition models? The most

obvious issue is that speaking rate differs substantially for

different speakers, but the transition models do not reflect this

variability—a kind of speaker dependence. Figure 2 shows that

the number of frames per phoneme varies between 7 and 13

for the 23 speakers in the SWB test set. In addition, the per-

speaker standard deviation of this speaking rate varies between

6 and 14, a measure of speaker “burstiness”.

To test whether these factors account for the gap be-

tween simulated and real durations, we estimate a linear

regression model. Let Y be a vector containing the ratio
simulated duration WER/real duration WER for each speaker s in the test

set. Usually, Ys < 1 because the simulated duration WER

tends to be lower. Let M be a vector of the corresponding

mean speaking rates, measured in frames per phoneme, and S
be a vector of the corresponding log standard deviations. We

set up a regression of the form:

Y = α + β1M + β2S + ε

73



We find that β1 has a highly significant (p = 0.007) positive

coefficient: Slower speech makes recognition easier—more

frames provide more information—so the fastest speakers ben-

efit from simulating state durations while the slowest speakers

are better off with their original durations. In addition, β2 has

a marginally significant (p = 0.08) negative coefficient: More

variability in speaking rate tends to make recognition with real

state durations harder relative to simulated durations. Together,

these variables explain nearly 40% of the variance (R2 = 0.39)

in Y .

Fig. 2. In the SWB test data, there is a strong relationship between speaking
rate, measured in frames per phoneme, and the ratio of per-speaker WER for
simulated state durations and real state durations.

C. Resampling frames

The next model assumption we want to address is the output

distribution specified by the emission models. Certainly, real

speech data is not well modeled by a single diagonal Gaussian

per state. To help understand how harmful this assumption is,

we’d like to replace the simulated frames with real frames, but

keeping intact the independence among frames.

To create data that matches the output distribution of real

data but respects the model’s independence assumptions, we

introduce the notion of resampling, an application of Bradley

Efron’s work on Bootstrapping [11]. Rather than simulate a

pseudo frame directly from the appropriate emission model,

we draw an actual speech frame from an urn filled with ex-

amples of the relevant state. Figure 3 diagrams the resampling

process.

Specifically, we create a state-level Viterbi alignment of

the data used to train the simulation model. That is, given

the trained simulation model and the correct transcriptions of

the simulation data, we output the model state most likely

to have generated each frame. Then we step through this

alignment, placing each frame from the training data in an

urn corresponding to its most likely generating state. At the

end of this process, each urn represents a sample of the actual

distribution of speech frames assigned to each state. Of course,

since there is a limited quantity of training data, the number

of representative examples in each urn varies considerably.

Resampling is the process of drawing a frame at random

(with replacement) from the appropriate urn instead of simu-

lating it from the emission model. As in the previous section,

we start with the state-level Viterbi alignment of the test data

(created using the simulation model). As before, we walk

through the alignment one frame at a time. But now, rather

than simulating each frame from its aligned state’s model, we

draw a sample from the urn labeled with the aligned state.

o1
o2
o3
o4
o5
o6
o7
o8
o9

s1

s2

s3

p1

w1

s1

s2

s3

o93
o2

(1) (2) (3)

o7
...

o10

s1

s4
p2

s1

s25 p6

w32

s9

s109

Training data Test data

Fig. 3. A depiction of the frame-level resampling process. (1) represents
the Viterbi time alignment of the simulation model’s data, (2) shows how
frames are placed into urns, here based on their state identity, and (3) shows
the creation of resampled test data by drawing at random (with replacement)
from the appropriate urn.

Resampling is a non-parametric analog to simulation. As in

simulation, the independence assumptions of the HMM are

satisfied by construction of the data: each frame is drawn

randomly, that is, without respect to any previously drawn

frame. However, while simulation creates frames that match

the Gaussian model assumption, resampling results in frames

matching the output distribution of real data. Note that this sort

of resampling draws adjacent frames from different contexts

and different speakers, both of which are sources of depen-

dence in real data.

Perhaps the most startling result in this study is that

resampling at the frame level gives WERs almost as low

as simulation. This suggests that real data’s violation of

the model’s independence assumptions is a far more serious

problem than the mismatch between the output distribution

and a single diagonal Gaussian. Quantitatively, creating data

that satisfies the independence assumptions improves the SWB

test WER from 61.5 to 4.5 (93% improvement); creating data

that additionally fits the model’s output distribution improves

the WER from 61.5 to 3.0 (95% improvement). The relative

improvements are 97% (resampling) and 98% (simulation) for

the WSJ test set.

D. Resampling states

By simply changing the way we populate the urns, we

can create resampled data that is locally dependent, but has

longer-range independence. We’ll start by placing full state

segments (sequences of frames in the simulation model’s data)

in the urns—on average, 2-3 frames in length for non-silence

states. In Figure 3, this would involve inserting the sequences

(o1, o2) and (o7) into urn s1, (o3, o4, o5) into urn s2, and so

on. Then to resample, we draw full state segments from the
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urns, again following the state sequence determined by forced

alignment of the test data (note that the durations in the forced

alignments are no longer relevant and the resulting resampled

data will likely be of a different length than the original).

This resampled data is dependent within state regions but

independent across states.
This shift from frame-level independence to state-level

independence causes the WERs to jump by nearly a factor of

6. Thus the model assumption, that frames within a particular

state are independent, is particularly problematic. Still, a

considerable gap remains with respect to the original test data,

so dependence across state boundaries is a serious issue.

E. Resampling phonemes
We can extend the reach of the data dependencies to the

phoneme level by resampling phonemes (the triphone context

is included in the urn labels). In Figure 3, this would involve

inserting the sequence (o1, o2, ..., o7) into an urn labeled

“silence− p1 + p2” (assuming that silence precedes phoneme

p1 in this example). Now the average length of a resampled

unit is about 7-8 frames, and the WERs increase by a factor of

2.2 for WSJ data and 1.7 for SWB data. Since the error rates

are still considerably lower than the original test data, cross-

phoneme dependence is a significant source of mismatch.

F. Resampling words
When we further increase the size of the resampled seg-

ments to words (an average of 21-25 frames), we include

the triphone context (one phoneme on each side) to respect

the structure of the cross-word triphone models. For exam-

ple, the word-level urns have labels like “n-THE-f” or “er-

HUNDRED-ae”. This makes for a very large number of

urns, many of which have only one example. A few sparsely

populated urns do not present a problem for resampling—

subsequent words in the resampled test utterances are just as

likely to be unrelated (thus preserving independence) as they

would be if these rare words had more support in the urns.

However, nearly a fifth of the SWB test word-level resamples

and nearly a third of the WSJ test resamples turn up empty

urns. In these cases, we simply keep the original segment. Still,

an asymptotic analysis—using increasingly large fractions of

the simulation data to populate the urns—suggests that the

WERs reported in Table II for resampling words are probably

nearly as low as we could expect if we had infinite simulation

data.
When we resample at the word level, the WER almost

returns to the rate of the original test data. This is reassuring:

as we allow more and more structure from the test data into our

simulation, the resulting WER increases; when we resample

whole words, almost all of the important structure has returned

and the WER parallels the WER of the original. So while local

dependence proves quite problematic, dependence across word

boundaries is of relatively little consequence.

G. Speaker dependence
In the frame resampling experiments described above (Sec-

tion III-C), neighboring resampled frames tend to be un-

correlated for two main reasons. First, they probably come

from different contexts—acoustic or linguistic. Second, they

probably come from different speakers. If we restrict the

collection of frame samples to a single training speaker,

and then resample the test data as before, we can start to

get a sense for how much of the data/model mismatch is

due to each sort of dependence (contextual or speaker). In

particular, if the WER of single-speaker resampled test data

is close to the WER of the original test data, then there is

little hope for improving speech recognition by modeling the

temporal dependence of frames. On the other hand, if there

is a relatively small increase in WER over the multi-speaker

resampled test data, then the mismatch between real data and

the model is probably due to the model’s failure to capture

temporal dependence.

We chose 10 different speakers in the SWB simulation

dataset (who participated in the most conversations), and

performed this single-speaker resampling experiment using

each one2. Figure 4 shows that while the resulting WERs

vary considerably, the median is just below 8, still quite small

relative to the WER of the original (61.5). The variability

is not particularly surprising; after all, some speakers have

much lower WERs than others. But the small WER gap

that separates the case where the urns are filled using all

speakers from the case where the urns are filled using a single

speaker suggests that the model’s failure to capture speaker-

based dependence is of less concern than its failure to capture

contextual dependence.

Fig. 4. Comparing WERs for two kinds of frame-resampling experiments.
Urns are filled with frames from all training speakers (above) and urns are
filled with frames from a specific speaker (below). The red lines indicate the
median WERs.

IV. DISCUSSION

Let’s review the sequence of experiments. Simulating state

durations from the transition models, and frames from the

emission models, results in very low WERs for both WSJ

and SWB test sets. WERs increase by 25% when we instead

use real state durations derived from a forced alignment of the

test data (forced alignment is done by the simulation model).

2We did not repeat this experiment for WSJ because the simulation error
rates are so low that it is hard to compare results.
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This change is due in part to speaking rate variability in real

data that is not captured by the transition models.
Next, we resampled frames—drawing actual speech frames

from an urn rather than simulating from the emission models—

so that the output distributions match the output distributions

of real speech. This increases the WERs by a factor of about

1.5. Presumably this factor would decrease if, for example,

we modeled states with full rather than diagonal covariance

Gaussians, or the traditional mixture of Gaussians.
Next we resampled whole states—drawing entire state se-

quences rather than each frame independently—and the WERs

increased by a factor of nearly 6. Resampling phonemes

and then finally words showed dramatic degradation in WER

as well, though unequally for WSJ and SWB. Perhaps this

divergent behavior is due to differences in the datasets: As

Table IV shows, SWB exhibits 6% faster speaking rates than

WSJ (measured in frames per phoneme). In addition, SWB

tends to have shorter words (2.9 phonemes per word for SWB

versus 3.2 phonemes per word for WSJ).

WSJ test SWB test
Unit length (frames) Mean Std. Mean Std.
States 2.8 2.1 2.7 3.3
Phonemes 7.6 4.0 7.2 4.6
Words 24.5 17.5 21.2 17.9

TABLE IV
MEAN AND STANDARD DEVIATION OF THE NUMBER OF FRAMES PER

STATE, PHONEME, AND WORD FOR THE WSJ AND SWB TEST SETS

(NON-SILENCE DATA ONLY).

Finally, we returned to resampling frames, but filled the

urns using a single speaker. This tended to increase the WER

relative to the case where the urns were filled using many

speakers, but by less than a factor of 2.
Together, this collection of experiments shows, at least for

SWB and WSJ, that the mismatch between real speech data

and standard models (1) is quite substantial, (2) is mostly the

result of dependence among output frames, even across state

and phoneme boundaries, and (3) has more to do with temporal

dependence than speaker-related dependence.
Let’s be more concrete. The HMM treats each output frame

as a piece of independent evidence. For example, consider

a situation where the decoder is trying to discern the word

“she” from the competing hypothesis “sea” where the “sh”

phoneme spans five very similar (and thus highly dependent)

frames. Since these individual observations may be close to

the decision boundary between “sh” and “s” states, the decoder

ought to remain uncertain about the correct state identity, but

in multiplying together essentially the same probability five

times, it arrives at a dramatically over-confident result. We

would expect this problem to effect long vowels in particular

like “ey” (as in “ate”) or “iy” (as in “eat”).
This work is the beginning of an attempt to understand

precisely where the standard model assumptions deviate from

real speech data. While previous work on segmental models

may have been headed in the right direction, perhaps it was

cut short because it took a top-down, rather than a bottom-up

approach to addressing temporal dependence. That is, while

much segmental model research started by hypothesizing a

new model for speech recognition and attempted to fit it

to data, we feel it is prudent to start with the data. What

kinds of dependence cause the most difficultly for current

HMM systems? And, how have current methods explicitly or

inadvertently helped address such dependence?

Regardless of what we find, it seems fitting to close with

this moral, borrowed from William Kruskal’s 1988 address

to the American Statistical Association [15]: Do not multiply
lightly.
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