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Abstract—In Bayesian sensing hidden Markov models (BSH-
MMs) the acoustic feature vectors are represented by a set
of state-dependent basis vectors and by time-dependent sensing
weights. The Bayesian formulation comes from assuming state-
dependent zero mean Gaussian priors for the weights and from
using marginal likelihood functions obtained by integrating out
the weights. Here, we discuss two properties of BSHMMs. The
first property is that the marginal likelihood is Gaussian with a
factor analyzed covariance matrix with the basis providing a low-
rank correction to the diagonal covariance of the reconstruction
errors. The second property, termed automatic relevance deter-
mination, provides a method for discarding basis vectors that
are not relevant for encoding feature vectors. This allows model
complexity control where one can initially train a large model
and then prune it to a smaller size by removing the basis vectors
which correspond to the largest precision values of the sensing
weights. The last property turned out to be useful in successfully
deploying models trained on 1800 hours of data during the 2011
DARPA GALE Arabic broadcast news transcription evaluation.

I. INTRODUCTION

One of the goals of acoustic modeling for modern ASR

systems is to achieve a rich representation with few trainable

parameters. The underlying principle is that, among several

representations of similar descriptive power, one should choose

the one with the fewest free parameters requiring the least

amount of training data to be robustly estimated. One avenue

that is considered is to use a shared representation across

phonetic states and state-specific “views” derived from the

shared parameters. This is the case, for example, for tied Gaus-

sian mixture models (GMMs), subspace precision and mean

(SPAM) models [1] and, more recently, subspace GMMs [2].

In another approach, not necessarily orthogonal to the first,

acoustic models are designed as an efficient approximation

to more parameter-intensive, accurate representations such as

full-covariance GMMs. Diagonal covariance GMMs, semi-

tied covariance transforms [3] and factor-analyzed covariance

GMMs [4] fall into this category.

Another option that is getting some traction in the literature

is to rely on Bayesian learning techniques to address the

overfitting issue when training on insufficient or noisy data.

The uncertainties of HMM parameters, expressed through

prior distributions, are incorporated in the model construction

leading to a regularized model with superior recognition

performance on mismatched test data [5]. The advantage of

Bayesian learning in this context is that it can provide “error

bars” or “distribution estimates” of the underlying parameters

rather than providing “point estimates” which can be unreli-

able.

Bayesian sensing HMMs, introduced in [6], [7], combine

both aforementioned ideas. On the one hand, as will be shown

in this paper, they provide a parsimonious approximation to

full-covariance Gaussian modeling through factor analyzed

covariance matrices. The factors correspond to basis vectors

that are used in a basis representation of speech features.

The compressed representation comes from the fact that basis

vectors which are not relevant for encoding feature vectors can

be discarded through a procedure called automatic relevance

determination (ARD) [8]. On the other hand, the model adopts

a Bayesian treatment for the sensing weights which attempts

to mitigate the risk of an overdetermined basis representation

due to maximum likelihood (ML) point estimates of the

weights. Instead, the model provides posterior distribution

estimates of the sensing weights when conditioned on a feature

vector and an HMM state. This Bayesian sensing scheme

is important for compensating the model variations and for

having a regularized basis representation.

The paper is organized as follows: in section II we re-

view the model specification for Bayesian sensing HMMs,

in section III we discuss two properties of these models,

in section IV we provide some experimental results on a

large scale LVCSR task, and in section V we summarize our

findings.

II. BAYESIAN SENSING HIDDEN MARKOV MODELS

In Bayesian sensing HMMs, acoustic feature vectors xt ∈
IRD are seen as samples generated from a state-dependent

additive model

xt = Φiwt + εt (1)

where Φi = [φi1, . . . , φiN ], φij ∈ IRD, is the basis (or

dictionary) for state i, wt = [wt1, . . . , wtN ]T is a time-
dependent weight vector, and εt is a sample drawn from an

independent Gaussian noise process with zero mean and a

state-dependent precision matrix Ri, i.e. εt ∼ N (0, R−1
i ) or

equivalently

p(xt|wt, λi) ∝ |Ri|
1/2 exp

[
−

1

2
(xt − Φiwt)

T Ri(xt − Φiwt)

]

(2)
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The sensing weight vector wt is also assumed to be Gaussian

distributed with zero mean and a state-dependent precision

matrix Ai, that is

p(wt|λi) ∝ |Ai|
1/2 exp

[
−

1

2
w

T
t Aiwt

]
(3)

where λi = {Ai, Φi, Ri} denotes the parameters for state i.

Figure 1 displays the graphical model of BSHMMs for sequen-

tial frames {xt−1,xt,xt+1}. Each frame xt is generated by

the BSHMM parameters λ = {πi, aik, Ai, Φi, Ri}, consisting
of initial state probabilities {πi}, state transition probabilities
{aik}, precision matrices of sensing weights {Ai}, basis
vectors {Φi} and precision matrices of residuals {Ri}.

T

1ts ts 1ts

1tw tw 1tw

1tx tx 1tx

Fig. 1. Graphical model of BSHMMs. st−1, st, st+1,wt−1,wt,wt+1 and
xt−1, xt, xt+1 denote the HMM states, the sensing weights and the feature
vectors at times t − 1, t, t + 1, respectively.

The key quantity for this model is the marginal likelihood or

Bayesian predictive likelihood p(xt|λi) which is obtained by
marginalizing over the weight vector wt and is proportional

to [6]

∫
IRN

|Ri|
1/2 exp

[
−

1

2
(xt − Φiwt)

T Ri(xt − Φiwt)

]

·|Ai|
1/2 exp

[
−

1

2
w

T
t Aiwt

]
dwt

∝ |Ri|
1/2|Ai|

1/2|Σi|
1/2 exp

[
−

1

2
x

T
t (Ri − RiΦiΣiΦ

T
i Ri)xt

]

= |Ri|
1/2|Ai|

1/2|Σi|
1/2 exp

[
−

1

2
(xT

t Rixt − m
T
tiΣ

−1
i mti)

]

(4)

where Σi
Δ
= (ΦT

i RiΦi + Ai)
−1, mti

Δ
= ΣiΦ

T
i Rixt are

the covariance matrix and the mean vector of the posterior
distribution p(wt|xt, λi), respectively. The mean vector mti

corresponds to the maximum a posteriori (MAP) estimate of
the sensing weights at time t for state i. In [6], we discuss

the estimation of BSHMM parameters according to an ML

type II criterion by maximizing the marginal likelihood of

the training data, whereas in [7] we derive parameter updates

under a maximum mutual information objective function.

III. PROPERTIES OF BSHMMS

In this section we discuss two properties of Bayesian

sensing HMMs that were not addressed in [6], [7]. These

properties shed some additional light on the functioning of

the models and were found to be beneficial experimentally.

A. Gaussians with factor analyzed covariances

The first property has to do with the fact that the marginal

likelihood derived in (4) is a Gaussian function because the

convolution of two Gaussian distributions is also a Gaussian

distribution. This has two immediate consequences: 1) the

matrixRi−RiΦiΣiΦ
T
i Ri has to be symmetric positive definite

(SPD) to be a valid precision matrix and 2) its determinant

has to be equal to |Ri||Ai||Σi|. In order to gain more insight
into the model, we provide alternative proofs for 1) and 2).

To prove 1) we make use of the Woodbury matrix inversion

lemma which states that

(A+UCV )−1 = A−1−A−1U(C−1+V A−1U)−1V A−1 (5)

where A, U , C and V denote matrices of compatible dimen-

sions. Specifically, A is n×n, U is n×k, V is k×n and C is

k×k. Setting A = Ri, U = RiΦi, V = ΦT
i Ri and C = −Σi,

we get

Si
Δ
= (Ri − RiΦiΣiΦ

T
i Ri)

−1

= R−1
i − R−1

i RiΦi((−Σi)
−1 + ΦT

i RiR
−1
i RiΦi)

−1ΦT
i RiR

−1
i

= R−1
i + ΦiA

−1
i ΦT

i
(6)

This result also follows from (1) due to the additivity of

the covariance matrices of independent multivariate random

variables, i.e.

Si = Cov(xt) = Cov(Φiwt) + Cov(εt) = ΦiA
−1
i ΦT

i + R−1
i

(7)

because εt is independent of wt. The expression in (6) and (7)

is a sum of two SPD matrices which makes the covariance

matrix Si also SPD.

For Ri diagonal, Si is a factor analyzed covariance where

the factor loading matrix Λi
Δ
= ΦiA

−1/2
i can be seen as a rank-

N correction to R−1
i as shown in (7). Λi is responsible for

modeling the off-diagonal elements in Si. The hope is that with

relatively few factors, a good approximation of the covariance

of the underlying Gaussian distribution can be obtained. Such a

covariance structure has been proposed for general ASR in [4]

and [9] and for noise-robust ASR in [10]. The difference here

is that we have an additional term, Ai, which controls the

importance of the columns of Φi as will be explained in the

next section. Secondly, for (4) to be a Gaussian distribution,

the following determinant equality has to hold
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|Ri − RiΦiΣiΦ
T
i Ri| = |Ri||Ai||Σi| (8)

One way to prove this is by observing that p(xt|λi) is a valid
PDF therefore it has to integrate to 1. Another way of show-

ing (8) involves the extended matrix of size (D+N)×(D+N)

[
(Ri)D×D (RiΦi)D×N

(ΦT
i Ri)N×D Σ−1

i = (ΦT
i RiΦi + Ai)N×N

]
(9)

For the sake of clarity, we indicate the dimensions of the

various submatrices. We consider the determinant identity for

a partitioned matrix

∣∣∣∣ B11 B12

B21 B22

∣∣∣∣ =

|B22||B11 − B12B
−1
22 B21| = |B11||B22 − B21B

−1
11 B12|

(10)

where, for example, the second equality can be demonstrated

via the matrix identity

[
B11 B12

B21 B22

]
=

[
B11 0
B21 I

][
I B−1

11 B12

0 B22 − B21B
−1
11 B12

]

(11)

Applying (10) to the matrix in (9) yields

∣∣∣∣ Ri RiΦi

ΦT
i Ri ΦT

i RiΦi + Ai

∣∣∣∣ =
|Ri − RiΦiΣiΦ

T
i Ri|

|Σi|
= |Ri||Ai|

(12)

which completes the proof of (8).

B. Automatic relevance determination

In BSHMMs, the state-dependent priors of the time-

dependent sensing weights are governed by a set of hyperpa-

rameters consisting of the precision matrices of the sensing

weights. The precision matrices are iteratively reestimated

from data using evidence maximization (ML type II estima-

tion). More concretely, we remind the reader of the update

formula for Ai which was derived in [6]

A
(k+1)
i =

[
Σi +

∑
t γt(i)mtim

T
ti∑

t γt(i)

]−1

(13)

(13) was obtained by maximizing with respect to Ai the

auxiliary function

Q(λ|λ(k)) =
∑

i

∑
t

γt(i) log p(xt|λi) (14)

where γt(i) = p(st = i|X, λ(k)) is the posterior probability
of being in state i at time t given the observation sequence

X = {xt} and the current parameters λ(k). Recall thatmti are

the MAP estimates of the sensing weights at time t (for state

i) and Σi is the covariance matrix of the posterior distribution

p(wt|xt, λi).
For the case of a diagonal matrix of sensing weights

Ai = diag(αi1, . . . , αiN ), if many of the mti’s are close

to 0 for a particular dimension j, αij can become quite

large. In the case of sufficiently large αij , the corresponding

weight parameter wtj is pegged at 0 by the dimension-specific
prior N (0, α−1

ij ) implying an irrelevant basis φij for the

Bayesian representation. This characteristic of the estimated

αij is known as automatic relevance determination (ARD) [8].

The effect of a large αij on the factor analyzed covariance

Si = (Ri −RiΦiΣiΦ
T
i Ri)

−1 can also be seen from (6) when

rewritten as an expansion of rank-1 matrices

Si = R−1
i +

N∑
j=1

1

αij
φijφ

T
ij (15)

A large αij will effectively zero out the contribution of φijφ
T
ij

in the expansion. Alternatively, one can use the trained αij

for controlling model complexity. The technique consists in

discarding the basis vectors φij for which the corresponding

αij are greater than a predefined threshold and in retraining

the compressed model. The compressed representation is more

robust to mismatched or noisy conditions and provides better

generalization on unseen data.

IV. EXPERIMENTS AND RESULTS

A. Acoustic training and test data

The experiments were carried out on an Arabic broadcast

news transcription task as part of the DARPA GALE program.

The goal of the GALE program is to make foreign language

(Arabic and Chinese) speech and text accessible to English-

only speakers, particularly in military settings. A core compo-

nent of GALE is automatic speech recognition, and research

in this area spans multiple fields ranging from traditional

speech recognition to improving the interfaces between speech

recognition, machine translation and information extraction.

We used 1800 hours of manually transcribed Arabic broad-

cast news and broadcast conversations, coming from many

different broadcasters and containing a mixture of Modern

Standard Arabic (MSA) and dialectical Arabic. Results are

presented on several testsets depending on the experiment

and the availability of the data at the time the experiment

was run: DEV’07 (2.5 hours), DEV’08 (3 hours), DEV’09

(3 hours), unsequestered portion of the phase 4 evaluation

EVAL’09 (4.2 hours), unsequestered portion of the phase 5

evaluation EVAL’11 (3 hours).

B. Front-end processing and acoustic modeling

The input speech is represented by PLP VTL-warped cep-

stra and a context window of 9 frames. The features are mean

and variance normalized on a per speaker basis. An LDA

transform is used to reduce the feature dimensionality to 40.

The maximum-likelihood training of the acoustic model is
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interleaved with estimation of a global semi-tied covariance

transform [3].

Words in the recognition lexicon have a phonetic representa-

tion, and phones are modeled with 3-state left-to-right HMMs

without state skipping. For the experiments described here,

we used unvowelized (or graphemic) acoustic models where

Arabic short vowels are not modeled explicitly. All acoustic

models have pentaphone cross-word acoustic context and are

speaker adaptively trained with feature-space MLLR (FM-

LLR) [3]. At test time, speaker adaptation is performed with

VTLN, FMLLR and multiple regression tree-based MLLR

transforms. The recognition vocabulary has 795K words and

the decoding is done with 4-gram language models containing

either 78M or 883M n-grams depending on the setup. The

LMs were estimated with modified Kneser-Ney smoothing on

a variety of corpora.

The acoustic models are discriminatively trained in both

feature space [11] and model space using the boosted MMI

criterion [12], [13]. For feature space discriminative training,

all models use two-level transforms with offset features as

described in [14]. Frame posteriors and offset features are

provided by 4096 diagonal covariance Gaussians and form the

input to the first-level transform. The temporal context spanned

by the second-level transform is ±8 frames.
The baseline acoustic models have 5000 context-dependent

HMM states and 800K 40-dimensional diagonal covariance

Gaussians. The models have been sized for optimal perfor-

mance after discriminative training during the GALE phase 4

and phase 5 evaluations [15], [16].

C. Two extensions for acoustic modeling

Throughout the paper we assumed BSHMMs with a single

Gaussian per state. In practice, similar to [6], [7], we consider

a mixture model within each state where each component has

its own basis and precision matrices of sensing weights and

reconstruction errors. This leads to a new GMM in each state

where each Gaussian has its own factor analyzed covariance

matrix.

Second, we allow the Gaussians in the model to have non-

zero means that are also trained. These means were introduced

primarily in order to apply MLLR for speaker adaptation. The

factor-analyzed covariances are assumed to be diagonal when

computing the sufficient statistics for the MLLR transforms.

In Table I, we compare BSHMMs with zero and non-zero

mean Gaussians and conclude that the main benefit comes

from being able to perform MLLR speaker adaptation on the

non-zero means.

Means MLLR DEV’07 DEV’08 DEV’09
zero no 14.3% 16.7% 19.7%
non-zero no 14.2% 16.4% 19.6%
non-zero yes 13.6% 16.0% 18.9%

TABLE I
COMPARISON OF WORD ERROR RATES FOR BSHMMS WITH ZERO AND

NON-ZERO MEAN GAUSSIANS.

D. BSHMM initialization and training

The first step in initializing the BSHMM parameters is to

train a large acoustic model with 2.8M diagonal covariance

Gaussians (and 5000 HMM states) using maximum likelihood.

The means of the GMM for state i are clustered using k-

means. The means that are assigned to cluster center (i, j)
form the initial basis Φij for mixture component (i, j). The
resulting number of mixture components for the BSHMM after

the clustering step was 417K with, on average, 6.7 vectors per

basis. The mixture component means μij are initialized to

zero. The precision matrices Aij and Rij are assumed to be

diagonal and are initialized to the identity matrix.

The ML type II training regime for the BSHMMs consists of

5 iterations with fixed HMM state alignments provided by the

baseline HMMs followed by one Viterbi iteration where the

data are re-aligned with the BSHMMs. In Table II, we compare

the performance of the baseline 800K Gaussians models and

the 2.8M Gaussians models used to seed the BSHMMs after

ML training, and the BSHMMs after ML type II training.

System Nb. parameters WER
DEV’07 DEV’08 DEV’09

baseline 800K 64.8M 13.8% 16.4% 19.6%
baseline 2.8M 226.8M 14.1% 16.2% 19.3%
BSHMM 417K 148.5M 13.6% 16.0% 18.9%

TABLE II
COMPARISON OF THE NUMBER OF FREE PARAMETERS AND WORD ERROR
RATES FOR BASELINE ACOUSTIC MODELS AFTER ML TRAINING AND

BSHMMS AFTER ML TYPE II TRAINING.

Additionally, we compare the number of free parameters for

the three models in the second column of Table II. As can be

seen, BSHMMs outperform both acoustic models even though

it does not have the most parameters. We attribute this possibly

to the more accurate modeling of the Gaussian covariance

matrices and/or to the Bayesian parameter updates which

provide an efficient form of smoothing. More experiments

are needed to tease apart the relative contributions of the two

components.

E. Model compression

In this set of experiments, the acoustic models are built

in the FMMI space, i.e. with discriminative feature-space

transforms. As before, we first train a large 2.8M diagonal

covariance Gaussian HMM with ML that is used to initialize

the Bayesian sensing HMM parameters. Next, we perform ML

type II estimation of the BSHMM parameters for 5 iterations

with fixed state alignments followed by one Viterbi iteration.

In Figure 2, we plot the histogram of the hyperparameters of

the sensing weights (the αij’s) after 6 training iterations.

We observe that all αij ’s have relatively small values

because all of the basis vectors get used during training. This

is due to the initialization of the basis vectors with Gaussian

means which are estimated from the same training data. Model

compression is performed by discarding 50% of the basis

vectors φij corresponding to the largest αij . This resulted in
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Fig. 2. Histogram of precision values αij of the sensing weights after 6
iterations of ML type II training.

a compressed model with approximately 91M free parameters

(about 30% larger than the 800K baseline HMM). For both

models (original and compressed), we perform four iterations

of model-space discriminative training using the boosted MMI

criterion as described in [7]. In Table III, we report the

recognition results before and after model-space discriminative

training.

Model Training DEV’07 DEV’08 DEV’09
original ML type II 12.0% 13.9% 17.4%
compressed ML type II 12.4% 14.2% 17.6%
original boosted MMI 10.7% 11.9% 15.0%
compressed boosted MMI 10.4% 11.7% 14.8%

TABLE III
COMPARISON OF WORD ERROR RATES FOR ORIGINAL AND COMPRESSED
BSHMMS BEFORE AND AFTER MODEL-SPACE DISCRIMINATIVE TRAINING

WITH BOOSTED MMI. ALL MODELS HAVE DISCRIMINATIVE
FEATURE-SPACE TRANSFORMS.

We conclude that the compressed models outperform the

original ones after discriminative training even though they

start from a higher word error rate after ML type II estimation.

We have observed this phenomenon before in the context of

standard HMMs with diagonal covariance Gaussians where

optimal model size after ML training is not necessarily opti-

mal after discriminative training. Unfortunately, discriminative

training is significantly more expensive than ML estimation

which makes it difficult to find the optimal model size.

F. GALE 2011 evaluation deployment

In Table IV, we compare the word error rates of the

baseline acoustic models and the compressed BSHMMs after

discriminative training and cross-adaptation on the output of a

system using vowelized acoustic models and subspace GMMs

(SGMMs) [2]. Additionally, we report the performance of

system combination using decision tree arrays as described

in [17]. The DEV’09 word error rates in this table are much

lower than the ones in Table III because of the large cross-

adaptation gain. Also, the decodings here use the larger LM

with 883M n-grams whereas in Tables I, II and III the smaller

78M n-grams LM was employed.

System DEV’09 EVAL’09 EVAL’11
baseline 800K 13.1% 10.0% 9.4%
BSHMM 12.8% 9.7% 9.1%
system combination 12.6% 9.6% 9.0%

TABLE IV
COMPARISON OF WORD ERROR RATES FOR BASELINE ACOUSTIC MODELS

AND BSHMMS AFTER DISCRIMINATIVE TRAINING AND
CROSS-ADAPTATION ON THE OUTPUT OF A SYSTEM USING SUBSPACE

GMMS.

The numbers reported in Table IV were obtained during

the actual GALE 2011 evaluation run. The EVAL’11 testset

corresponds to the previously unseen evaluation data for

which there was no reference transcript available during the

evaluation. The other testsets were part of the “shadow data”

on which accuracy could be measured in order to optimize the

overall system architecture. The system combination reported

in the last line of Table IV formed one decoding branch out

of three in the overall evaluation system diagram [16]. As

can be seen, the BSHMMs achieved a 3% relative accuracy

improvement over the baseline HMMs on the evaluation data

(4% relative with system combination).

V. CONCLUSION

In Bayesian sensing HMMs, the observations within each

state are modeled by a mixture of Gaussians with factor

analyzed covariance matrices. This allows a parsimonious

representation of the acoustic features where an efficient ap-

proximation to the full covariance of the underlying Gaussian

distributions can be achieved with relatively few factors or ba-

sis vectors. Furthermore, the complexity of the model in terms

of the number of basis vectors can be controlled by discarding

the least relevant factors corresponding to the largest sensing

weight precision matrix values after training. This procedure

leads to more compact models with superior performance

after discriminative training. Such models have been deployed

during the 2011 GALE Arabic broadcast news transcription

evaluation and have shown gains on the evaluation data over

state-of-the-art systems.

Future work will address a better initialization of the

basis vectors via eigenanalysis of the covariances of a full

covariance model. Additionally, we will look at various ways

to improve discriminative training of the model parameters

through better smoothing and by also updating the precision

matrices of the sensing weights.
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