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Abstract—In this paper, we propose a novel exemplar based
technique for classification problems where for every new test
sample the classification model is re-estimated from a subset of
relevant samples of the training data. We formulate the exemplar-
based classification paradigm as a sparse representation (SR)
problem, and explore the use of convex hull constraints to
enforce both regularization and sparsity. Finally, we utilize the
Extended Baum-Welch (EBW) optimization technique to solve
the SR problem. We explore our proposed methodology on the
TIMIT phonetic classification task, showing that our proposed
method offers statistically significant improvements over common
classification methods, and provides an accuracy of 82.9%, the
best single-classifier number reported to date.

I. INTRODUCTION

In order to solve real-world machine learning classification

and recognition problems, we need a principled way of mod-

eling the phenomenon generating the observed data and the

uncertainty in it. Typically, many aspects of the phenomenon

generating the data are imperfectly known. Furthermore, ob-

served data can be corrupted by environmental and channel

noise. A good classification model is one that best represents

these variations and inherent properties of the classes as

captured in the observed data.

Approaches for modeling the observed data can be divided

into two broad areas, parametric and non-parametric. In para-

metric models, the data is completely modeled by a finite

set of parameters learnt from the observed data, while non-

parametric models do not assume an underlying functional

distribution for the model. All parametric and non-parametric

methods use some amount of training data when learning the

parameters or forming the non-parametric representation of

the model. In some cases, such as Gaussian Mixture Model

(GMM) estimation in speech recognition, all of the training

data is used. For brevity purposes, we refer to methods that

use all the training data as all-data methods. In other cases,

exemplars of the observed data need to be judiciously selected

such that they will generalize and produce robust models [1].

Exemplars can be in the form of instances from the training

data or representations derived from the training data, such as

prototypes or hyperplanes or basis functions [2]. Approaches

such as k-nearest neighbors (kNNs), support vector machines

(SVMs) and a variety of sparse representation (SR) methods

commonly used in pattern recognition tasks, fall under the

category of exemplar-based methods. Exemplar-based methods

use individual training examples in different ways. SVMs use

training examples to generate a model, and fix this model when

classifying a test sample. However, kNNs and SRs re-estimate

a model from training points for each test sample.

While exemplar-based methods are popular in the machine

learning community, all-data methods continue to be widely

used in the speech recognition community. The most widely

used all-data method is the GMM where all training samples

are pooled together for estimating the parameters of the GMM.

Exemplar based methods that re-estimate a new model for each

test sample and use SRs for robust estimation of the model

parameters are slowly being adopted as a new paradigm in

the speech recognition community. These methods have been

shown to offer improvements in accuracy over GMMs for

classification tasks [3], [4]. In this work, we introduce a

novel extension of exemplar-based methods by using Convex

Hull (CH) constraints for the SR problem. We refer to this

new technique as SR-CH. We show that SR-CH formulation

lends itself to an elegant use of the Extended Baum-Welch

(EBW) algorithm [5] for its optimization. Finally, we introduce

a methodology to combine the all-data GMM method with the

SR-CH exemplar-based technique to improve the robustness.

We define the basic exemplar-based SR problem using

Equation 1 below.

y = Hβ s.t. ‖ β ‖aq< ε (1)

Given a test sample, y, the goal of the sparse representation

scheme is to solve Equation 1 for β, where ‖ β ‖aq< ε
imposes a different regularization (constraint) on the vector β
for various choices of q and a, thus selecting a small number of

examples from H . Many techniques in the literature exist to

solve this problem, including Lasso, Approximate Bayesian

Compressive Sensing (ABCS) [6] and Non-negative Matrix

Factorization (NMF) [7]. The SR-CH method proposed in this

work imposes additional constraints on the values of β to

control the flexibility of Hβ transformation in scaling as well

as polar and axial reflections. This paper focuses on the perfor-

mance of the SR-CH method on a well-studied classification

task in speech, namely the TIMIT phone classification task [8].

We will show that the proposed method offers improvements

in classification accuracy over other SR methods.

There have been several variations of kNNs, GMMs, and

SVMs proposed in the literature. An extensive survey of

these is beyond the scope of this paper. However, we present
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comparisons with kNNs, SVMs, GMMs and other exemplar-

based SR methods. We find that the SR-CH method of-

fers statistically significant improvements over these other

classification techniques and in fact achieves a classification

accuracy of 82.87% and 85.14% on TIMIT using two different

representations of sample vectors, both of which are the best

reported numbers to date when a single classifier is used.

This paper details the following key contributions:

• Improved performance via the use of a convex hull to

constrain the values of the sparseness defining coefficients

• A novel solution to the SR-CH optimization problem

based on the well-known Extended Baum-Welch (EBW)

method used to estimate parameters in speech recognition

• Impose additional regularization on the SR-CH method

through the all-data GMM for improved robustness

II. SRS FOR CLASSIFICATION

Before we describe our convex hull sparse representation

methodology, we first begin by reviewing the use of SRs

for classification, as first presented in [3]. To populate the

matrix H in Equation 1, let us consider training examples

from k different classes as columns in matrix H , i.e., H =
[h1,1, h2,1, . . . , hn,k] ∈ �m×n. Here hi,j ∈ �m represents

feature vector i from class j with dimension m, and n is

the total number of training examples from all classes. H is

assumed to be an overcomplete dictionary where m < n.

[9] shows that a test sample y ∈ �m can be represented

as a linear combination of the entries in H weighted by β.

However, if sparsity is enforced on β such that only a few

elements in H are chosen, then ideally the optimal β should be

non-zero for the elements in H which belong to the same class

as y. This motivates us to solve for β using a SR technique,

which solves for y = Hβ subject to sparsity on β.

After solving for β, the β entries are used to make a

classification decision. In this work, we explore a classification

decision rule linked to the objective function of our convex

hull SR method. As we introduce the convex hull method in

Section III, we will reserve our discussion of this classification

rule to Section III-D.

III. SRS USING A CONVEX HULL FRAMEWORK

In this section, we provide motivation behind using a convex

hull approach for SRs, and then present our formulation and

solution using the convex hull.

A. Motivation

The goal of classification methods are twofold. First, they

look to capture salient differences between different classes.

Second, these methods look to account for variability in

the data due to channel effects, transmission effects, system

noise, etc. In many machine learning applications, features are

transformed to accentuate differences between classes and also

reduce the variability in a class due to noise and channel effect.

For example, in speech recognition applications, techniques

such as Linear Discriminant Analysis (LDA) are used to

accentuate class differences, and cepstral mean normalization

and subtraction to reduce data variability [10].

A typical SR formulation in Equation 1 does not constrain β
to be positive and normalized, which can result in the projected

training points hiβi ∈ Hβ being reflected and scaled. While

this can be desirable when data variability exists, allowing

for too much flexibility when data variability is minimized

can reduce the discrimination between classes. Driven by

this intuition, below we present two examples where data

variability is minimized, and demonstrate how SRs manipulate

the feature space, thus leading to classification errors.

First, consider two clusters in a 2-dim space as shown in

Figure 1 with sample points {a1, a2, . . . , a6} belonging to

Class 1 and {b1, b2, . . . , b6} belonging to Class 2. Assume

that points ai and bi are concatenated into a matrix H =
[h1, h2, . . . , h12] = [a1, . . . , a6, b1, . . . b6], with a specific

entry being denoted by hi ∈ H . In a typical SR problem,

given a new point y indicted in Figure 1, we project y into

the linear span of training examples in H by trying to solve:

argmin ‖ β ‖0 s.t. y = Hβ =

12∑
i=1

hiβi (2)
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Fig. 1. Reflective Issue with Negative β

As shown in Figure 1, the best solution will be obtained by

setting all βi = 0 except for β8 = −1, corresponding to the

weight on point b2. At this point |β|0 takes the lowest value

of 1 and y = −b2, meaning it is assigned to Class 2. The

SR method misclassifies point y, as it is clearly in Class 1,

because it puts no constraints on the β values. Specifically,

in this case, the issue arises from the possibility of β entries

taking negative values.

Second, consider two clusters in a 2-dimensional space as

shown in Figure 2 with sample points belonging to Class 1 and

2. Again, we try to find the best representation for test point

y by solving Equation 2. The best solution will be obtained

by setting all βi = 0 except for β5 = 0.5. At this value, |β|0
will take the lowest possible value of 1 and y = 0.5× a5.

This leads to a wrong classification decision as y clearly is

a point in Class 2. The misclassification is due to having no

constraint on the β elements. Specifically, in this case, the

issue arises from total independence between the β values

and no normalization criteria as a way to enforce dependency

between the β elements.
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While negative matrix factorization (NMF) [7] is a popular

technique for SRs to ensure that β entries are sparse and

positive, it does not address the normalization issue. If we

enforce β to be positive and normalized, then training points

hi ∈ H form a convex hull. Mathematically speaking, a con-

vex hull of training points H is defined by the set of all convex

combinations of finite subsets of points from H , in other words

a set of points that satisfy the following:
∑n

i=1 hiβi. Here n
is any arbitrary number and the βi components are positive

and sum to 1.

Since many classification techniques can be sensitive to

outliers, we examine the sensitivity of our convex hull SR

method. Consider two clusters shown in Figure 3 with sample

points in Classes 1 and 2. Again, given point y, we try to

find the best representation for y by solving Equation 2, where

now we will use a convex hull approach to solve, putting extra

positivity and normalization constraints on β.

Class 2

d2

d1

Class 1

b4

.
b5

b6 .
.b3

.
b2

b1

.

a4

*

*
a1

*

a5

*
a3

*
a2*a6

r1
r2

q2

q1

m1

m2

@y

.

Fig. 3. Outliers Effect

As shown in Figure 3, if we project y onto the convex hulls

of Class 1 and Class 2, the distance from y to the convex hull

of Class 1 (indicated by r1) is less than the distance from y
to the convex hull of Class 2 (i.e. r2). This leads to a wrong

classification decision as y clearly is a point in Class 2. The

misclassification is due to the effect of outliers a1 and a4,

which create an inappropriate convex hull for Class 1.

However, all-data methods, such as GMMs, are much less

susceptible to outliers, as a model for a class is built by esti-

mating the mean and variance of training examples belonging

to this class. Thus, if we include the the distance between

the projection of y onto the two convex hulls of Class 1 and

Class 2, as well as the distance between this projection and

the means mi of Class 1 and 2 (distance indicated by q1 and

q2) respectively, then test point y is classified correctly. Thus

combining purely exemplar-based distances (ri) with GMM-

based distances (qi), which are less susceptible to outliers,

provides a more robust measure.

B. Convex Hull Formulation

In our SR-CH formulation, first we seek to project test point

y into the convex hull of H . After y is projected into the

convex hull of H , we compute how far this projection (which

we call Hβ) is from the Gaussian means1 of all classes in

H . The full convex hull formulation, which tries to find the

optimal β to minimize both the exemplar and GMM-based

distances, is given by Equation 3. Here Nclasses represents

the number of unique classes in H , and ‖ Hβ − μt ‖22 is the

distance from Hβ to the mean μt of class t.

argmin
β

‖ y −Hβ ‖22 +

Nclasses∑
t=1

‖ Hβ − μt ‖22

s.t.
∑
i

βi = 1 and βi ≥ 0 (3)

In our work, we associate these distance measures with

probabilities. Specifically, we assume that y satisfies a linear

model as y = Hβ + ζ with observation noise ζ ∼ N(0, R).
This allows us to represent the distance between y and Hβ
using the term p(y|β), which we will refer to as the exemplar-

based term as given in Equation 4.

p(y|β) ∝ exp(−1/2(y −Hβ)TR−1(y −Hβ)) (4)

We also explore a probabilistic representation for the∑Nclasses

t=1 ‖ Hβ − μt ‖22 term. Specifically, we define the

GMM-based term pM (β), by seeing how well our projection

of y onto the convex hull of H , as represented by Hβ, is

explained by each of the Nclasses GMM models. We score Hβ
against the GMM from each of the classes and sum the scores

(in log-space) from all classes. This is given more formally

in Equation 5 (log-space), where p(Hβ|GMMt) indicates the

score from GMM t.

log pM (β) =

Nclasses∑
t=1

log p(Hβ|GMMt) (5)

Given the exemplar-based term p(y|β) and GMM-based

term pM (β), the total objective function we would like to

maximize is given in the log-space by Equation 6.

maxβF (β) = {log p(y|β) + log pM (β)}
s.t.

∑
i

βi = 1 and βi ≥ 0 (6)

Equation 6 can be solved using a variety of optimization

methods. We use a technique widely used in the speech

recognition community, namely the Extended Baum-Welch

transformations (EBW) [5], to solve this problem. In [11],

1Note that the Gaussian means we refer to in this work are built from the
original training data, not the projected Hβ features.
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the author shows that the EBW optimization technique can be

used to maximize objective functions which are differentiable

and satisfy constraints given in Equation 6. In the next section,

we describe the EBW algorithm in more detail.

C. Solution using EBW Transformations

Given an initial parameter β = β0 and an objective function,

many optimization techniques typically involve taking a step

along the gradient of the objective function, to estimate

an updated parameter β1, and then continue this parameter

estimation process in an iterative fashion. The EBW algorithm

is one example of a gradient-based technique which provides

an iterative closed form solution to estimate β.

To describe the EBW algorithm in more detail, first define

F (β) be a differentiable function in β satisfying constraints

given in Equation 6. Given a value for component i in β at

iteration k − 1, denoted by βk−1
i , an updated estimate for

βk
i is given by Equation 7.2 In Appendix A, we provide a

closed-form solution for βi
k given the exemplar-based term in

Equation 4 and a GMM-based term in Equation 5.

βk
i =

βk−1
i

{
∂F (βk−1)/∂βk−1

i +D
}

∑
j β

k−1
j

{
∂F (βk−1)/∂βk−1

j

}
+D

(7)

The parameter D controls the growth of the objective func-

tion. In [11] it was shown that the EBW transformations can

guarantee growth in the objective function at each iteration.

Specifically, for a function F which is differentiable at β,

if we define βk by Equation 7, then for sufficiently large

positive D, while growth of the objective function is slow,

F (βk) ≥ F (βk−1) and the objective function increases on

each iteration. While a smaller value of D can lead to a larger

jump along the objective function, it cannot guarantee growth

in the objective function.

We explore setting D to a small value to ensure a large

jump in the objective function. However, for a specific choice

of D if we see that the objective function value has decreased

when estimating βk, i.e. F (βk) < F (βk−1), or one of the βk
i

components is negative, then we double the value of D and use

this to estimate a new value of βk in Equation 7. We continue

to increase the value of D until we guarantee a growth in the

objective function, and all βi components are positive. This

strategy of setting D is similar to other applications in speech

where the EBW transformations are used [12]. The process

of iteratively estimating β continues until there is very little

change in the objective function value.

D. Convex Hull Classification Rule

In this paper, since we are trying to solve for the β which

maximizes the objective function in Equation 6, it seems nat-

ural to also explore a classification rule which defines the best

class as that which maximizes this objective function. Using

Equation 6, with the exemplar-based term from Equation 4

2The EBW update formula requires an initial value for β at iteration 0. We
set the initial value of each βi component to be 1/N, where N is the total
number of β components.

and the GMM-based term from Equation 5, then the objective-

function linked classification rule for the best class t∗ is given

in Equation 8. Here δt(β) is a vector which is only non-zero

for entries of β corresponding to class t.

t∗ = max
t

{log p(y|δt(β)) + log p(Hδt(β)|GMMt)} (8)

IV. EXPERIMENTS

Classification experiments are conducted on the TIMIT [8]

acoustic phonetic corpus. The training set consists of over

140, 000 phoneme samples, while the development set is com-

posed of over 15, 000 phoneme samples. Results are reported

on the core test set, which contains 7,215 phoneme samples.

In accordance with standard experimentation on TIMIT, the 61

phonetic labels are collapsed into a set of 48 for acoustic model

training, ignoring the glottal stop [q]. For testing purposes, the

standard practice is to collapse the 48 trained labels into a

smaller set of 39 labels.

Two different feature representations are explored. First, we

use the recognition setup described in [10] to create a set of

discriminatively-trained feature-Space Boosted Maximum Mu-

tual Information (fBMMI) features [12]. Given the frame-level

features, we split each phonetic segment into thirds, taking the

average of these 40 dimensional frame-level features around

3rds, and splice them together to form a 120 dimensional

vector. Second, we use the recognition setup in [10] to create a

set of speaker-adapted (SA), discriminatively trained features

per frame. These frame-level features are again averaged and

spliced to form a feature vector per phone segment.

We compare the performance of our SR-CH method to other

standard classifiers used on the TIMIT task, including the

GMM, SVM, kNN and ABCS [6] SR methods. For the GMM,

we explored training it via a maximum likelihood objective

function, and a discriminative BMMI objective function [12].

The parameters of each classifier were optimized for each

feature set on the development set. The ABCS method is

another SR technique that combines exemplar and GMM-

based terms [3], and since this method has provided the best

classification accuracy among many SR techniques [13], we

compare SR-CH to this method. Note that for the ABCS

classification rule, the best class is defined as that which has

the maximum l2 norm of β entries [3].

V. RESULTS

A. Analysis of SR-CH Algorithm

1) Algorithmic Behavior : In this section, we analyze the

behavior of the SR-CH method. As discussed in Section III-C,

for an appropriate choice of D, the objective function of the

SR-CH method is guaranteed to increase on each iteration. To

observe this behavior experimentally on TIMIT, we chose a

random test phone segment y, and solve y = Hβ using the

SR-CH algorithm. Figure 4 plots the value of the objective

function at each iteration. Notice that the objective function

increases rapidly until about iteration 30 and then increases

slower, experimentally confirming growth.

62



10 20 30 40 50 60 70 80 90 100
−11

−10.5

−10

−9.5

−9

−8.5

−8

Iterations

O
bj

ec
tiv

e 
F

un
ct

io
n

10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

180

200

Iterations

S
pa

rs
ity

 L
ev

el

Fig. 4. Left: Iterations vs. Objective Function, Right: Iterations vs. Sparsity

We also analyze the sparsity behavior for the SR-CH

method. For a randomly chosen test segment y, Figure 4

plots the sparsity level (defined as the number of non-zero

β coefficients), for each iteration of the SR-CH algorithm.

Notice that as the number of iterations increases, the sparsity

level continues to decrease and eventually approaches 20.

Our intuitive feeling is that the normalization and positive

constraints on β in the convex hull formulation allow for this

sparse solution. Recall that all β coefficients are positive and

the sum of the β coefficients is small (i.e.,
∑

i βi = 1). Given

that the initial β values are chosen to be uniform, and the fact

we seek to find a β to maximize Equation 6, then naturally

only a few β elements will dominate and most β values would

evolve to be close to zero.

B. Comparison to ABCS

To explore the constraints on β in the CH framework,

we compare SR-CH to ABCS, a SR method which puts no

positive and normalization constraints on β. To fairly analyze

the different β constraints in the SR-CH and ABCS methods,

we compare both methods only using the exemplar terms,

since the GMM-based terms for the two are different. Table

I shows that SR-CH method offers improvements over ABCS

on the fBMMI feature set, experimentally demonstrating that

constraining β values to be positive and normalized, and not

allowing data in H to be reflected and shifted, allows for

improved classification accuracy.

TABLE I
ACCURACY OF SR METHODS, TIMIT DEV. SET

Method Accuracy
SR-CH (Exemplar-Only) 83.86
ABCS (Exemplar-Only) 78.16

1) GMM-Based Term: In this section, we analyze the

behavior of using the exemplar-term only, given in Equation

4, versus including the additional model-based term given

in Equation 5. Table II shows the classification accuracy on

the development set with the fBMMI features. Notice that

including the additional Hβ GMM modeling term over the

exemplar-based term offers a slight improvement in classifi-

cation accuracy, demonstrating that including the GMM term

allows for a slightly better classifier.

C. Comparison to Other Techniques

Table III compares the classification accuracy of the SR-

CH method on the TIMIT core test set to other common

classification methods. Note that for ABCS, the best numbers

TABLE II
SR-CH ACCURACY, TIMIT DEVELOPMENT SET

SR-CH GMM-Based Term Accuracy
Exemplar Term Only 83.86

Exemplar Term+ Hβ GMM Term 84.00

for this method, which include the exemplar and GMM-based

terms, are reported. Results are provided for the fBMMI

and SA+fBMMI feature sets. Notice that SR-CH outperforms

the GMM, kNN and SVM classifiers. In addition, enforcing

β to be positive allows for improvements over ABCS. A

McNemar’s Significance Test indicates that the SR-CH result

is statistically significant from other classifiers with a 95%
confidence level. Our classification accuracy of 82.87% is

the best number on the TIMIT phone classification task

reported when discriminative features are used, beating the

previous best single-classifier number of 82.3% reported in

[14]. Finally, when using SA+fBMMI features, the SR-CH

method achieves an accuracy of over 85%.

TABLE III
CLASSIFICATION ACCURACY, TIMIT CORE TEST SET

Method Accuracy Accuracy
fBMMI SA+fBMMI

SR-CH (Ex.+GMM) 82.87 85.14
ABCS (Ex.+GMM) 81.37 83.22

kNN 81.30 83.56
GMM - BMMI Trained 80.82 82.84

SVM 80.79 82.62
GMM - ML Trained 79.75 82.02

D. Accuracy vs. Size of Dictionary

One disadvantage of many exemplar-based methods is that

as the number of training exemplars used to make a classifica-

tion decision increases, the accuracy deteriorates significantly.

For example, in the kNN method, this implies that the number

of training examples from each class used during voting in-

creases. Similarly, for SR methods, this is equivalent to the size

of H growing. Parametric-based classification approaches such

as GMMs do not suffer from a degradation in performance for

increased training data size.

Figure 5 shows the classification error versus number of

training-exemplars (i.e. size of H) for different classification

methods. Note that the GMM method is trained with all of the

training data, and is just shown here as a reference. In addition,

since the feature vectors in H have dimension 120, and for our

SR methods we assume H is over-complete, we only report

results on SR methods when the number of examples in H is

larger than 120.

First, observe that the error rates for the two purely

exemplar-based methods, namely kNN and ABCS with no

model term, increase exponentially as the size of H grows.

However, the SR-CH exemplar-only methodology is much

more robust with respect to increased size of H , demonstrating

the value of the convex hull regularization constraints. Includ-

ing the extra GMM term into the SR-CH method improves the

accuracy slightly. However, the SR-CH method still performs
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poorly compared to the ABCS technique which uses the

GMM-based term. One explanation for this behavior is that

GMM term for ABCS is capturing the probability of the data

y given the GMM model, and thus the accuracy of the ABCS

method eventually approaches the GMM accuracy. However,

in SR-CH we capture the probability of Hβ given the GMM.

This is one drawback of SR-CH compared to ABCS for large

H that we hope to address in the future.
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VI. CONCLUSIONS

In this paper, we proposed a novel exemplar based technique

for classification problems where for every new test sample the

classification model is re-estimated from a subset of relevant

samples of the training data. We formulated this exemplar

based paradigm as a SR problem in a convex hull framework,

and explored using EBW to solve the SR-CH problem. We

showed that the proposed SR-CH method offers improvements

in classification accuracy over common classification methods.

APPENDIX A: EBW UPDATE SOLUTIONS

In this section, we provide the detailed closed-form solution

for β given the EBW solution in Equation 7 along with the

exemplar-based term from Equation 4 and the model-based

term from Equation 5. The objective function can be written

more clearly in Equation 9. Here the unique GMM classes

are denoted by t, Ct is the number of Gaussians belonging to

class t, and wit, μit and σit are the weight, mean and variance

parameters for Gaussian i in GMM t.

F (β) = −1/2(y −Hβ)TR−1(y −Hβ)+

Nclasses∑
t=1

Ct∑
i=1

wit exp

(
−1/2× (μit −Hβ)T (μit −Hβ)

σ2
it

)

(9)

Given this objective function, and the update for component

βj at iteration k in Equation 7, the gradient ∂F (βk−1)/∂βk−1
j

is given by Equation 10.

∂F (βk−1)/∂βk−1
j =

∂(−0.5(y −Hβk−1)TR−1(y −Hβk−1))

∂βk−1
j

+ (10)

∑Nclasses

t=1

∑
i wit

∂ exp

(
−0.5(μit−Hβ)T (μit−Hβ)

σ2
it

)

∂βk−1
j∑Nclasses

t=1

∑
i wit exp

(
−0.5(μit−Hβ)T (μit−Hβ)

σ2
it

)

The two components from Equation 10 are given as:

1)
∂(−0.5(y −Hβk−1)TR−1(y −Hβk−1))

∂βk−1
j

=

HT
j R

−1(y −Hβk−1) (11)

where Hj denotes the j-th column in matrix H .

2)

∂ exp
(

−0.5(μit−Hβ)T (μit−Hβ)
σ2
it

)
∂βk−1

j

=

exp

(−0.5(μit −Hβ)T (μit −Hβ)

σ2
it

)

×HT
j (μit −Hβk−1)

σ2
it

(12)
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