
Sparse Maximum A Posteriori Adaptation

Peder A. Olsen, Jing Huang, Vaibhava Goel, Steven J. Rennie

Department of Speech and Language Algorithms,
T. J. Watson Research Center, IBM,

1101 Kitchawan rd, Yorktown Heights, NY 10598, USA
{pederao,jghg,vgoel,sjrennie}@us.ibm.com

Abstract—Maximum A Posteriori (MAP) adaptation is a powerful
tool for building speaker specific acoustic models. Modern speech
applications utilize acoustic models with millions of parameters,
and serve millions of users. Storing an acoustic model for each
user in such settings is costly. However, speaker specific acoustic
models are generally similar to the acoustic model being adapted.
By imposing sparseness constraints, we can save significantly on
storage, and even improve the quality of the resulting speaker-
dependent model. In this paper we utilize the �1 or �0 norm as a
regularizer to induce sparsity. We show that we can obtain up to
95% sparsity with negligible loss in recognition accuracy, with
both penalties. By removing small differences, which constitute
“adaptation noise”, sparse MAP is actually able to improve upon
MAP adaptation. Sparse MAP reduces the MAP word error rate
by 2% relative at 89% sparsity.

I. INTRODUCTION

The state of the art estimation of an acoustic model depends

on the type and amount of training data available. With large

amounts of data (100-10,000 hours) the training is typically

done with maximum likelihood or discriminative training tech-

niques, [1]. The resulting acoustic models frequently consist

of 105–106 gaussian components. Such large acoustic models

cannot be estimated from small amounts of data. To adapt

an acoustic model to a speaker given a limited amount of

data (10 seconds to 10 minutes), linear regression methods

are usually employed, [2], [3]. Multiple class-based linear

transforms can be used as the amount of data grows, but

ultimately the framework of maximum a posteriori (MAP)

model adaptation, [4], is needed to reach the best performance

for medium amounts of data (20 minutes to 10 hours).

MAP adaptation for Gaussian Mixture Models (GMMs), [4],

utilizes conjugate Bayesian priors for the gaussian components

(Dirichlet for mixture weights, Normal distribution for mean

and Wishart for covariances) to re-estimate the parameters

of the acoustic model, starting from a speaker independent

or canonical acoustic model. The number of parameters es-

timated can be very large compared to the amount of data,

and although the Bayesian prior provides smoothing, small

movements of model parameters can still constitute noise. In

this paper we consider removing the small differences between

the old acoustic model and the speaker specific acoustic model.

We aim for two objectives: compressing the information we

need to store and reducing the word error rate. Both objectives

are met through the use of sparse differences.

To make the parameter differences sparse we employ sparsity

inducing penalties, and in particular we employ the �q penal-

ties. For �0 we employ the counting “norm”

‖x‖0 = #{i : xi �= 0}. (1)

and for q = 1 we the regular �1 norm: ‖x‖1 =
∑
i |xi|.

In general there are well known techniques to minimize

smooth convex functions with an additional ‖x‖1 term, [5].

The ‖x‖0 term, in contrast, is not convex and convex problems

with an additional �0 penalty are known in general to be NP-

hard, [6]. However, the problems considered in this paper are

tractable and have elementary analytic solutions. Consequently

the resulting algorithms are very efficient and straightforward

to implement.

A. Important Related Work
In [7], it was demonstrated that an exponential language model

trained with an �22 + �1 penalty can predict its own test

performance to a remarkable accuracy. This penalty is known

as the elastic net penalty, [8]. This insight has led to better

language models, such as Model M, [9]. In this work, our

ultimate goal is to understand what the analogous statement

should be for acoustic models, and indeed our best results

are for exponential acoustic models with an approximate

�22 + �1 penalty. However, at this point, we make no claims to

performance prediction.

B. Choice of Parameterization
In this work we consider sparse regularizers for the following

parameterizations of a gaussian:

• Moment Variables: This is the usual representation with

the parameters being ξ = ( μv ). We refer to the collection

of variables for all the mixtures as Ξ = {ωg,μg,vg}Gg=1,

where ωg are the mixture weights, and G is the total

number of gaussians in the acoustic model.

• Exponential Family Variables: Here we use the expo-

nential family representation θ =
( μ

v

− 1
2v

)
=
(

ψ

− 1
2p

)
.

We will say more about this later. This representation is

especially efficient for likelihood computations. For this

parameterization we refer to the collection of variables

as Θ = {ωg,ψg,pg}Gg=1.

C. The Normal Distribution as an Exponential Family
We can write the one-dimensional gaussian as an exponential

family as follows:

N (x;μ, v) =
e−

(x−μ)2

2v√
2πv

=
eθ�φ(x)

Z(θ)
. (2)

53978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011



With the features φ and parameters θ chosen as follows

φ(x) =
(
x
x2

)
θ =

(
μ
v− 1
2v

)
=
(

ψ
− 1

2p

)
, (3)

we get the following log-partition function

logZ(θ) =
1
2

(
log(2π)− log(p) +

ψ2

p

)
. (4)

In the exponential family formulation the maximum log like-

lihood objective function has the simple form

L(θ) = s�θ − logZ(θ) (5)

where s is the empirical expected value of the sufficient

statistic. The Kullback-Leibler (KL) divergence between two

one-dimensional normal distributions will be needed later. It

is given by the following formulas:

D(f‖g) =
∫
f(x) log

(
f(x)
g(x)

)
dx (6)

= log
Z(θg)
Z(θf )

+ (θf − θg)�Eθf
[φ(x)] (7)

=
1
2

(
vf
vg
− 1− log

(
vf
vg

)
+

(μf − μg)2
vg

)
(8)

The expected value of the features in (7) is given by

Eθ[φ(x)] =
(

μ
v + μ2

)
=

(
ψ
p

ψ2+p
p2

)
. (9)

II. REVIEW OF MAP ADAPTATION

Let H = {π,A,Ξ} be a Hidden Markov Model (HMM),

where π is the initial state distribution, A is the transition

matrix and Ξ is the acoustic model Ξ = {ωg,μg,vg}Gg=1,

where G is the total number of gaussians. The likelihood of

the training data can then be written

P(X|H) =
∑
σ

πσ0

∏
t

aσt−1σt

∑
g∈Gσt

ωgN (xt;μg,vg), (10)

where the outer sum is over all possible state sequences σ, and

the inner sum is over the mixture components corresponding

to the state σt. For the acoustic model parameters we provide

the following prior distribution

P(Ξ) =
G∏
g=1

P (μg,vg|μold
g ,vold

g , τμ, τv)P(ωg|ωold
g , τω),

(11)

where τμ, τv, τω are hyper-parameters that control the strength

of the prior, and μold
g ,vold

g , ωold
g are hyper-parameters inher-

ited from the base acoustic model. We will assume that the

priors for the remaining parameters are uniform, and therefore

P(H) ∝ P(Ξ). To estimate the acoustic model parameters we

maximize the Bayesian likelihood

P(X|H)P(H). (12)

Thus the Bayesian log likelihood is log P(X|H)+log P(Ξ)+
const. Following [4] we use the Expectation Maximization

(EM) framework to formulate an auxiliary function

Q(Ξ(k),Ξ(k−1)) =
X
gt

γg(xt) log
ω

(k)
g N (xt;μ

(k)
g ,v

(k)
g )

ω
(k−1)
g N (xt;μ

(k−1)
g ,v

(k−1)
g )

+ log
P(Ξ(k))

P(Ξ(k−1))
. (13)

Here we have used γg(xt) = P(g|Ξ(k−1),xt) for the gaus-

sian posterior at time t. This auxilliary function is a lower

bound on the Bayesian log likelihood ratio, which can be

maximized with respect to Ξ(k). Dropping terms that depend

only on Ξ(k−1), leads to Q(Ξ(k)) =
∑
g L(ω(k)

g ,μ
(k)
g ,v(k)

g )+
R(ω(k)

g ,μ
(k)
g ,v(k)

g ) + const, where

L(ωg,μg,vg) =
∑
t

γg(xt) log
(
ωgN (xt;μg,vg)

)
(14)

and

R(ωg,μg,vg) = logP (μg,vg|μold
g ,vold

g , τμ, τv)

+ log P(ωg|ωold
g , τω). (15)

In our work we use a Bayesian prior that is a special case of

the more general Bayesian prior discussed in [4]. We use the

I-smoothing framework, [1], with the simple regularizer, [10],

R(ωg,μg,vg) = −τD (N (μold
g ,vold

g )‖N (μg,vg)
)
, (16)

where τμ = τv = τ and the prior on w is uniform. The

corresponding log likelihood can be written

L(ωg,μg,vg) = Tg

(
logωg +

d∑
i=1

μgis1gi
vgi

−1
2

(s2gi + μ2
gi

vgi
+ log(2πvgi)

))
.

Here Tg =
∑
t γg(xt) is the posterior count, s1gi =

1
Tg

∑
t γg(xt)xti, and s2gi = 1

Tg

∑
t γg(xt)x

2
ti.

Now, that we have formulated the MAP auxiliary objec-

tive function, we will make some simplifications. Since the

auxiliary objective function decouples across gaussians and

dimensions we simply drop the indices g and i. Also, we are

not particularly interested in sparsity on ωg , so we will ignore

this variable altogether. Thus,

L(μ,v; s1, s2) =
Tμs1
v
− T

2

(
s2 + μ2

v
+ log(2πv)

)
.

One more simplification is useful, to use the exponential

family representation:

L(θ; s) = s�θ − logZ(θ), (17)

where s = (s1, s2)�. In the exponential family representation

the penalty term can be written

R(θ) = −τD (N (μold, vold)‖N (μ, v)
)

= −τ logZ(θ) + τθ�Eθold [φ(x)] + const. (18)
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Defining sold = Eθold [φ(x)] yields the Bayesian auxiliary

objective:

Q(θ) = L(θ; s) +R(θ)
= θ�(T s + τsold)− (T + τ) logZ(θ) + const
= (T + τ)L(θ; sMAP) + const, (19)

where sMAP = Ts+τsold

T+τ . In other words the auxiliary MAP

objective function is of the same form as the maximum

likelihood objective function, but with the sufficient statistics

replaced by smooth statistics sMAP. Note that it is possible

to apply similar regularization to discriminative objective

functions, [11]. Discriminative MAP is challenging because

discriminative objectives are difficult to optimize even when

data is plentiful.

III. SPARSE CONSTRAINTS

A. Restricting parameter movement

Consider the following constrained MAP problem where we

only allow N parameters to change:

max
θ

∑
gi

(Tg + τ)L(θgi; sMAP
gi ) (20)

subject to: N =
∑
gi

‖θgi − θold
gi ‖0, (21)

where ‖θ‖0 = #{j : θj �= 0} is the counting norm, and

θgi = (ψgi,−pgi/2)� is the parameter vector for dimension

i of gaussian g. This problem can be solved exactly, because

the objective function and the constraint are direct sums over

g and i. The same result holds for the moment variable

case. For each term there are four possible scenarios for

‖θgi − θold
gi ‖0 ∈ {0, 1, 2}: (1) ψgi = ψold

gi , pgi = pold
gi , (2)

ψgi �= ψold
gi , pgi = pold

gi , (3) ψgi = ψold
gi , pgi �= pold

gi or (4)

ψgi �= ψold
gi , pgi �= pold

gi . For each scenario L(θgi; sMAP
gi ) can

be maximized analytically. From these, it is trivial to maximize

L(θgi; sMAP
gi ) for 0, 1, or 2 parameter changes. To solve the

presented MAP constraint problem for N = 1, it is clear that

the single parameter change that causes the largest increase

in the objective function is optimal. The optimal solution for

general N can be built up by greedily selecting the next

parameter change that most increases the objective function.

Alternatively we can consider maximizing the Lagrangian

L(Θ;λ) =
∑
gi

(Tg + τ)L(θgi; sMAP
gi )

−λ(
∑
gi

‖θgi − θold
gi ‖0 −N)

with respect to Θ for each λ. This dual problem is not

equivalent to the constrained MAP problem stated above: in

general the duality gap may be non-zero. For fixed λ the

problem fully decouples across g, i and we solve each sub-

problem

max
θgi

(Tg + τ)L(θgi; sMAP
gi )− λ‖θgi − θold

gi ‖0 (22)

independently. A bisection search can locate the value of λ that

gives approximately N parameter changes (exactly if there is

no duality gap). This second method is efficient and simple

to implement. and it motivates the introduction of the sparsity

promoting ‖ · ‖0 penalty as well as ‖ · ‖1.

B. Sparsity Promoting Regularizers

More generally, we can restrict parameter changes by imposing

a sparsity promoting regularizer of the form:

R(Θ) =
∑
gi

−τD(θold
gi ‖θgi)− λ‖θgi − θold

gi ‖q

for 0 ≤ q ≤ 1. Here we consider two cases: q = 0 and q = 1,

which can be solved analytically. Both cases can be solved

by partitioning the domain into pieces where the function is

continuously differentiable. On each piece the local maxima

can be found analytically. The same holds for representations

in terms of moment variables.

The total auxiliary penalized Bayesian log likelihood can then

be written

Q(Θ) =
∑
gi

(Tg + τ)L(θgi; sMAP
gi )− λ‖θgi − θold

gi ‖q (23)

for the exponential family representation and

Q(Ξ) =
∑
gi

(Tg + τ)L(ξgi; s
MAP
gi )− λ‖ξgi − ξold

gi ‖q (24)

for the moment variable case.

C. Optimization

In considering maximizing the auxiliary objective function we

find it useful to instead minimize the function

F (θgi; sMAP
gi ) = −2L(θgi; sMAP

gi ) + α‖θgi − θold
gi ‖q (25)

for each g, i for the exponential family representation and

F (ξgi; s
MAP
gi ) = −2L(ξgi; s

MAP
gi ) + α‖ξgi − ξold

gi ‖q (26)

for each g, i for the moment variable case. Here α = 2λ
Tg+τ .

The function F can be maximized analytically. For the �0
constraint we must consider 4 different cases, and for the �1
constraint we must consider 9 different cases. For example

for ξgi = (μgi, vgi), μgi can be less than, equal to and greater

than μold
gi and similarly for vgi. The �1 penalty is continuously

differentiable on each of these pieces and the solution for

each case can be readily computed. For the �0 constraint

with moment variables the solution is given by Algorithm 1,

for exponential family variables by Algorithm 2, for �1 with

exponential family variables by Algorithm 4. Finally for the

�1 case with moment variables we give the algorithm to locate

all the local minima of F by Algorithm 3.
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input : Statistics sMAP, T , model μold, vold and τ, λ
output: μ, v

Compute α = 2λ/(T + τ)
Compute candidate answers: μMAP, vMAP and v∗

μMAP ←− sMAP
1

vMAP ←− sMAP
2 − (sMAP

1 )2

v∗ ←− vMAP + (μold − μMAP)2

Compute Lagrangian objectives:

F1 ←− (μold−μMAP)2+vMAP

vold
+ log(2πvold)

F2 ←−
(
vMAP

vold
+ log(2πvold)

)
+ α

F3 ←− log(2πev∗) + α
F4 ←− log(2πevMAP) + 2α

if F1 smallest then (μ, v)←− (μold, vold)
if F2 smallest then (μ, v)←− (μMAP, vold)
if F3 smallest then (μ, v)←− (μMAP, v∗)
if F4 smallest then (μ, v)←− (μMAP, vMAP)

Algorithm 1: Solution to sparse MAP adaptation with �0
penalty on the moment variables.

input : Statistics sMAP, T , model μold, vold and τ, λ
output: ψ, p

Compute α = 2λ/(T + τ)
Compute candidate answers: μMAP, vMAP and p∗

μMAP ←− sMAP
1

vMAP ←− sMAP
2 − (sMAP

1 )2

p∗ ←− 1+
√

1+(ψold)2sMAP
2

2sMAP
2

Compute Lagrangian objectives:

F1 ←− (μold−μMAP)2+vMAP

vold
+ log(2πvold)

F2 ←−
(
vMAP

vold
+ log(2πvold)

)
+ α

F3 ←− −2ψoldμMAP + p∗sMAP
2 + (ψold)2

p∗ +log
(

2π
p∗

)
+α

F4 ←− log(2πevMAP) + 2α

if F1 smallest then (ψ, p)←− (μold/vold, 1/vold)
if F2 smallest then (ψ, p)←− (μMAP/vold, 1/vold)
if F3 smallest then (ψ, p)←− (μold/vold, p∗)
if F4 smallest then (ψ, p)←− (μMAP/vMAP, 1/vMAP)

Algorithm 2: Solution to sparse MAP adaptation with �0
penalty on the exponential family variables.

IV. EXPERIMENTS

A. Task Description

We used an internal US English speech recognition task for

all experiments. The training set consists of 2000 hours of

recordings. The test and adaptation sets were collected from

the same set of 26 speakers. The enrollment data used for

adaptation consists of 2.8±1.5 hours of data per speaker with

known transcripts. The test data has 7-20 minutes per speaker

(52K words in total). Acoustic features were constructed

from 12 dimensional Mel-frequency Cepstra coefficients and

input : Statistics sMAP, T , model μold, vold and τ, λ
output: Candidate list C

Initialize: C ← ∅, i← 0.

Compute α = 2λ/(T + τ) and v∗ = (μold − μMAP)2 + vMAP.

if |μold − μMAP| ≤ α
2
vold and

˛̨
˛1− v∗

vold

˛̨
˛ ≤ αvold then

C[i] = (μold, vold, F (μold, vold)), i← i+ 1
end
if 4αv∗ ≤ 1 then

vel = 1−√
1−4αv∗
2α

, μel = μold

if vel < vold and |μold − μMAP| ≤ α
2
vel then

C[i] = (μel, vel, F (μel, vel)), i← i+ 1
end

end

veg =
√

1+4αv∗−1
2α

, μeg = μold

if veg > vold and |μold − μMAP| ≤ α
2
veg then

C[i] = (μeg, veg, F (μeg, veg)), i← i+ 1
end
if

˛̨
˛ 1
vold

“
1− vMAP

vold

”
− α2

4

˛̨
˛ ≤ α then

μle = μMAP + α
2
vold, vle = vold

if μle < μold then
C[i] = (μle, vle, F (μle, vle)), i← i+ 1

end
μge = μMAP − α

2
vold, vge = vold

if μge > μold then
C[i] = (μge, vge, F (μge, vge)), i← i+ 1

end
end
if 1 ≥ α(4 + α)vMAP then

vll = vgl =
1−
√

1−α(4+α)vMAP

α(4+α)/2

μll = μMAP + α
2
vll, μgl = μMAP − α

2
vgl

if μll < μold and vll < vold then
C[i] = (μll, vll, F (μll, vll)), i← i+ 1

end
if μgl > μold and vgl < vold then

C[i] = (μgl, vgl, F (μgl, vgl)), i← i+ 1
end

end
if α ≤ 4 or (α > 4 and vMAPα(α− 4) ≤ 1) then

vlg = vgg =

8>>><
>>>:

√
1+vMAPα(4−α)−1

α/2(4−α)
if α < 4

vMAP if α = 4

1−
√

1−vMAPα(α−4)

α/2(α−4)
if α > 4.

μgg = μMAP − α
2
vgg , μlg = μMAP + α

2
v1g

if μlg < μold and vlg > vold then
C[i] = (μlg, vlg, F (μlg, vlg)), i← i+ 1

end
if μgg > μold and vgg > vold then

C[i] = (μgg, vgg, F (μgg, vgg)), i← i+ 1
end

end
Algorithm 3: Candidate local minima for sparse �1 penalty

in the moment variable case.
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input : Statistics sMAP, T , model μold, vold and τ, λ
output: Parameters (ψ, p) attaining global minimum

Compute α = 2λ/(T + τ) and ψold = μold/vold,
pold = 1/vold

Compute MAP solution
μMAP = sMAP

1 ,vMAP = sMAP
2 − (sMAP

1 )2,
ψMAP = μMAP/vMAP, pMAP = 1/vMAP

Compute pa = αpMAP/2, paa = αpa/2, ψa = αψMAP/2
for ε ∈ {−1, 1} do

for δ ∈ {−1, 1} do
Δ = 1 + 2εψa + δpa − paa
ψ = ψMAP−εpa

Δ
, p = pMAP

Δ

if (εψ > εψold and δp < δpold and p > 0) then
return (ψ, p)

end
end

end

p = pold

for ε ∈ {−1, 1} do
ψ = pold

pMAP

`
ψMAP − εpa

´
η = (−sMAP

2 + 1/p+ ψ2/p2)/2
∇left = η − α/4, ∇right = η + α/4
if (εψ > εψold and ∇left ≤ 0 and ∇right ≥ 0) then

return (ψ, p)
end

end

ψ = ψold

for δ ∈ {−1, 1} do
ζ = 2

`
(ψMAP)2 + pMAP + δpap

MAP
´

if ζ > 0 then

p =
(pMAP)2+pMAP

√
(pMAP)2+2ζψ2

ζ

η = μMAP − ψ/p
∇left = η − α/2, ∇right = η + α/2
if (δp > δpold and ∇left ≤ 0 and ∇right ≥ 0 and
p > 0) then

return (ψ, p)
end

end
end

return (ψold, pold)

Algorithm 4: Global minimum for sparse �1 penalty for

exponential family variables.

their first, second and third derivative, followed by a Linear

Discriminant Analysis (LDA) projection.

The acoustic model had 5000 HMM states and 200,000

gaussian components and was trained using feature space min-

imum phone error rate (fMPE) and discriminative Minimum

Phone Error (MPE), as described in [12], [13]. A Constrained

Maximum Likelihood Linear Regression (CMLLR) transform,

[3], was learned for each speaker. In the transformed feature

space, we then trained a “canonical acoustic model” using

speaker adaptive training (SAT), [14].

B. Baseline MAP results

Even MAP adaptation can suffer from lack of data, and our

default MAP adaptation code contains a count threshold (cnt)

TABLE I
WORD ERROR RATES FOR BASELINE SYSTEMS

System WER

FMPE+CMLLR+SAT 13.2%
MAP, cnt = 10, τ = 500 11.1%
MAP, cnt = 0, τ = 500 10.9%
ML (adaptation data only) 23.8%

TABLE II
MAP PERFORMANCE FOR VARIOUS CHOICES OF τ

τ 0 10 50 100 250 500 1000

WER(%) 23.8 12.4 11.3 10.9 10.9 10.9 11.2

to determine whether the mean, variance and mixture weights

should be updated. The default posterior count threshold in the

MAP training code was cnt = 10, and although this choice

had been seen to be effective on other tasks with smaller data

amounts, it was apparently not effective here. Table I shows

the baseline word error rates (WER) with and without MAP

adaptation and with maximum likelihood (ML) estimation on

only the adaptation data. ML estimation suffers greatly from

lack of data and this hurts the performance significantly.

We experimented with different values of τ to verify that the

best performance that could be reached was 10.9%. Table II

shows that the best performance is attained for a wide range

of the parameter τ (100-500).

Finally, to complete the baseline experiments, we investigated

directly thresholding parameter changes to obtain sparsity. In

other words, we only keep parameters for which |μi−μold
i | ≥ ε

or |vi − vold
i | ≥ ε, where ε is a parameter that controls the

amount of sparsity. Table III shows results for a number of

choices of ε used to threshold the moment variables. The

results show that the direct method is a poor control of

sparsity. At 74% sparsity, the performance is 0.7% worse

than the baseline. The performance of direct thresholding

could be improved by using separate thresholds for means and

variances, and by making the thresholds dimension dependent.

However, the sparse regularization methods presented here are

more flexible, principled, and directly maximize the likelihood

of the data subject to sparseness constraints.

C. Sparse Penalties as Bayesian Priors

Let’s consider the sparse penalties on their own as a regular-

izer, i.e. we choose τ = 0. The value of λ that minimizes

TABLE III
WORD ERROR RATES FOR VARIOUS DIRECT SPARSITY THRESHOLDS.

ε WER Sparsity

0 10.9% 0%
1 11.0% 43%
10 11.6% 74%

100 12.8% 95%
106 13.2% 100%
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TABLE IV
MINIMUM WORD ERROR RATES FOR �0 AND �1 SPARSITY PENALTIES WITH

THE MOMENT VARIABLE (MV) AND EXPONENTIAL FAMILY VARIABLE

(EFV) REPRESENTATIONS.

Penalty λ WER sparsity

�0, MV 6 11.5% 97.7%
�0, EFV 6 11.6% 97.7%
�1, MV 0.1 11.0% 86.9%
�1, EFV 8500 11.0% 88.0%

TABLE V
MINIMUM WORD ERROR RATES FOR �0 AND �1 SPARSITY PENALTIES

COMBINED WITH MAP.

Penalty τ λ WER sparsity

�0 MV 100 0.5 10.9% 86.0%
�0 EFV 100 0.5 10.9% 86.1%
�1 MV 50 0.1 10.8% 86.9%
�1 EFV 50 10000 10.7% 89.4%

the word error rate is shown in Table IV for the four cases

discussed in this paper. The penalty with best performance was

the �1 penalty with exponential family variables. The choice

of parameterization seemed to have little effect. For the �0
penalty, the minimum word error rate (11.5%) was reached at

97.7% sparsity, which speaks to its power to induce sparseness.

Although, the word error rate was higher than the �1 penalty

results (11.0%), it is remarkable considering that this penalty

essentially chooses between the parameters of the updated ML

model (WER 23.8%) and the baseline model (WER 13.2%).

Neither penalty was, on its own, competitive with the MAP

penalty.

D. Sparse MAP Adaptation

If sparse regularizers are used together with MAP, we see

only small gains in word error rate. Table V shows the

minimum word error rate attained for each penalty. Only the

�1 constrained penalties yielded lower word error rates than

MAP adaptation.

Finally, we considered minimizing the word error rate at a

95% sparsity level. Table VI shows the results for the different

penalties and the associated values for τ and λ. At this level

of sparsity three of the penalties achieved an 11.0% word

error rate. A 95% sparsity level implies that the speaker

dependent acoustic models could potentially be compressed by

a factor of close to 20, if the actual locations of the changed

parameters can be stored efficiently. An examination of the

sparsity structure revealed that 75% of the gaussians remained

unchanged. The entropy of the binary mask for the remaining

locations suggests that a Huffman coding, [15], would obtain

a compression factor close to 20.

V. DISCUSSION

We have shown that through the use of sparse regularization,

it is possible to obtain competitive adaptation performance

by changing only a small fraction of the parameters of an

TABLE VI
MINIMUM WORD ERROR RATES FOR �0 AND �1 SPARSITY PENALTIES

COMBINED WITH MAP AT A 95% SPARSITY LEVEL.

Penalty τ λ WER sparsity

�0 MV 50 2.0 11.0% 95.1%
�0 EFV 50 2.0 11.0% 95.2%
�1 MV 50 0.325 11.3% 95.2%
�1 EFV 50 25000 11.0% 95.2%

acoustic model. This allows for the compression of speaker-

dependent models: a capability that has important implications

for systems with millions of users. We also observed some

improvements in word error rate, but these gains are too

small to be considered statistically significant. The work, as

presented, has three main shortcomings: 1) it does not allow

different rates of smoothing for means and variances (not

updating the variance is known to be good for MAP adaptation

with small data amounts), 2) it is not invariant to simultaneous

scaling of the training and adaptation data, and 3), it has not

combined the �0 and �1 regularizers. We plan to address these

issues in future research.
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