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Abstract—Based on speaker dependent eigenphone estimation,
a novel speaker adaptation technique is proposed in this paper.
Different from conventional speaker adaptation approaches, the
proposed method explicitly models the phone variations for each
speaker through subspace modeling in the phone space. The
phone coordinate, which is shared by all speakers, contains cor-
relation information between different phones. During speaker
adaptation, two schemes for estimation of the new speaker specific
phone variation bases (namely eigenphones) are derived under
maximum likelihood (ML) criterion and maximum a posteriori
(MAP) criterion respectively. Supervised speaker adaptation ex-
periments on a Mandarin Chinese continuous speech recognition
task show that the new method outperforms both eigenvoice and
maximum likelihood linear regression (MLLR) methods when
sufficient adaptation data is available.

I. INTRODUCTION

In conventional speech recognition system, a set of speaker-

independent (SI) Hidden Markov Models (HMMs) are trained

on a multi-style database which contains different speech vari-

ation examples. Speaker adaptation is usually performed to ob-

tain speaker dependent (SD) models from the SI models with

small amount of adaptation data. To deal with the sparseness

of the adaptation data, some prior or correlation information

must be used to constrain the SD model parameters. There are

two categories of correlation information presented in human

speech: the inter-speaker correlation which is the correlation

between different speakers (SD models), and the intra-speaker

correlation which is the correlation between different phone

pronunciations of a specific speaker.

Current speaker adaptation methods can generally be clas-

sified into three major categories: maximum a posteriori

(MAP) [1] , maximum likelihood linear regression (MLLR)

[2] and speaker clustering [3]. In conventional MAP adaptation

method, a prior distribution over the SD model parameters

is assumed, and the SD model parameters is estimated using

maximum a posteriori criterion. Besides its limitation of large

data requirement, the main advantage of MAP adaptation is

its good asymptotic property, which means that the MAP

estimate approaches the ML estimate when the adaptation data

is sufficient. Different from MAP, MLLR obtain the SD model

through estimating a set of linear transformation matrices. A

regression class tree is usually built to capture the intra-speaker

phone correlations, thus phones belonging to the same class

can share the same transformation matrix. While in speaker

clustering method, the inter-speaker correlation information

is modeled explicitly by speaker clustering or by finding a

speaker subspace for the SD model parameters. During speaker

adaptation, the new SD model is obtained through a linear

combination of some reference speakers (reference speaker

weighting, RSW [4]) or by estimating the new speaker’s

coordinate under the speaker subspace using the maximum

likelihood criterion (eigenvoice adaptation [3]).

In this paper, a novel speaker adaptation method through

subspace modeling of the intra-speaker information is pro-

posed. The phone variations for a particular speaker are

assumed to be in a low dimensional subspace, which is

called phone variation subspace. A set of phone variation

bases, called eigenphones, which best represent the phone

variation patterns for each speaker, can be obtained by princi-

pal component analysis (PCA). Different from conventional

subspace-based adaptation methods, the new method keeps

the coordinate of each phone fixed, and estimates the bases

for each speaker. The coordinate matrix of the whole phone

set implicitly contains the intra-speaker phone correlation

information, which can be used as constraint for new SD

models. During adaptation, the eigenphones for a new speaker

can be estimated using maximum likelihood (ML) criterion.

With a Gaussian prior assumption, an adaptation scheme based

on maximum a posteriori (MAP) criterion can also be derived.

This paper is organized as follows. In the next section,

subspace modeling of the phone variations is decribed, and

the concept of eigenphones and their relations to conventional

methods are presented. Two schemes for speaker adaptation

based on eigenphone estimation are derived in Section III.

Experimental results on supervised adaptation are presented

in Section IV. In Section V the conclusions are given.

II. SUBSPACE MODELING IN PHONE VARIATION SPACE

Suppose there are a set of speaker independent HMMs con-

taining a total of M mixture components and a training speaker

population comprising S speakers using D dimensional feature
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vector. For mixture component m, let μm and Σm denote

the speaker independent mean vector and covariance matrix

respectively. For speaker s and mixture component m, let

μ(m, s) denote the speaker dependent mean vector. In this

paper, we only discuss the adaptation of the mean vectors.

A. Eigenphones

Let u(m, s) = μ(m, s)−μm, which denotes the difference

vector of mixture component m between the SI model and the

SD model of training speaker s. In order to find the speaker

independent correlation between different phone variations,

all speaker specific vectors {u(m, s)}Ss=1 are concatenated to

form a supervector, called the phone supervector of mixture

component m, which is denoted by

u(m) = [u(m, 1)
T
,u(m, 2)

T
, · · · ,u(m,S)

T
]T . (1)

It can be observed that u(m) lies in an S · D dimensional

space and there are M mixture components, so min(M,S ·D)
orthogonal bases of the phone supervector space can be found

using PCA. As a dual of eigenvoice [3], these basis vectors

(denoted by vn, n = 1, 2, · · · ,min(M,S · D)) are called

eigenphones in this paper. If we confine the phone supervectors

to be located in an N -dimensional subspace which is spanned

by the first N eigenphones, an approximation of the phone

supervectors {u(m)}Mm=1 can be obtained by

⎡
⎢⎢⎢⎣
u(1)T

u(2)T

...

u(M)T

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣
vT
0

vT
0
...

vT
0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
l11 l12 . . . l1N
l21 l22 . . . l2N
...

... . . .
...

lM1 lM2 . . . lMN

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
vT
1

vT
2
...

vT
N

⎤
⎥⎥⎥⎦ ,

(2)

where v0 denotes the mean of all the phone supervectors

v0 = 1
M

∑M
m=1 u(m) and can be viewed as a special eigen-

phone which determines the origin of the phone supervector

space, lmn denotes the mth phone supervector’s coordinate

with respect to the nth eigenphone vn.

Similar to (1), v0 and vn can be rearranged as partitioned

block vectors, where each block is a subvector corresponding

to a specific training speaker, i.e. we can write

v0 = [v(0, 1)T ,v(0, 2)T , · · · ,v(0, S)T ]T ,

vn = [v(n, 1)T ,v(n, 2)T , · · · ,v(n, S)T ]T ,

where v(0, s) and {v(n, s)}Nn=1 compromise the origin and the

bases of the phone variation subspace of speaker s respectively.

Then (2) can be written in terms of each speaker as

U(s) = [u(1, s)T ,u(2, s)T , · · · ,u(M, s)T ]T

≈

⎡
⎢⎢⎢⎣
v(0, s)T

v(0, s)T

...

v(0, s)T

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
l11 l12 . . . l1N
l21 l22 . . . l2N
...

... . . .
...

lM1 lM2 . . . lMN

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
v(1, s)T

v(2, s)T

...

v(N, s)T

⎤
⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎣
l11 l12 . . . l1N 1
l21 l22 . . . l2N 1
...

... . . .
...

...

lM1 lM2 . . . lMN 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v(1, s)T

v(2, s)T

...

v(N, s)T

v(0, s)T

⎤
⎥⎥⎥⎥⎥⎦

= L · V (s), (3)

where matrix L is speaker independent and contains relative

position of each phone in the phone variation subspace of all

speakers, and implicitly reflects the speaker independent intra-

speaker correlation information.

The left hand side of (3) is related to the conventional

speaker supervector y(s), which is the concatenation of the

mean vectors {μ(m, s)}Mm=1 for speaker s, by

y(s) = μ+ rvec (U(s)) , (4)

where μ denotes the concatenation of the SI mean vectors,

and rvec(·) is a row vectorization operator by which

rvec (U(s)) = [u(1, s)T ,u(2, s)T , · · · ,u(M, s)T ]T . (5)

Substituting (3) to (4) yields

y(s) = μ+ rvec (LV (s)) = μ+
(
L
⊗

I
)
· rvec (V (s)) .

(6)

Define

L̂ = L
⊗

I =

⎡
⎢⎢⎢⎣
l11I l12I . . . l1NI I
l21I l22I . . . l2NI I

...
...

. . .
...

...

lM1I lM2I . . . lMNI I

⎤
⎥⎥⎥⎦ , (7)

and

v(s) = rvec (V (s)) , (8)

which is the concatenation of the SD eigenphones

{v(n, s)}Nn=1 and the subspace origin v(0, s), then (6) can

be rewritten as

y(s) = μ+ L̂v(s). (9)

v(s) is called speaker dependent eigenphone supervector in

this paper. Formulation in this way will make the adaptation

process similar to that of the eigenvoice method and simplify

the derivation of the adaptation formula. A comparison of

the eigenvoice decomposition method and the proposed eigen-

phone decomposition method is shown in Fig.1 and Fig.2.
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Fig. 1. Eigenvoice decomposition of the training speaker supervectors. e(k) denotes the kth eigenvoice, y is the mean of the training speaker supervectors
and w(s) is the speaker factor of speaker s. The rightmost matrix (the green part) shows speaker independent eigenvoices and the first rows of the left and
middle matrices (the blue part) indicate the decomposition of the first training speaker.

Fig. 2. Eigenphone decomposition of the training speaker phone supervectors. The middle matrix (the green part) is the speaker independent phone coordinate
matrix and the first columns of the left and right matrices (the blue part) indicate the decomposition of the first training speaker.

B. Relations to MLLR and 2DPCA-based method

The conventional MLLR method can be viewed as a special

case of eigenphone adaptation if we change our viewpoint

of its formulation. Let’s consider the case in which there is

a global maximum likelihood transformation matrix. For a

particular speaker s, let A(s) denote the global transformation

matrix and b(s) denote the transformation bias vector. The

phone variation u(m, s) of this speaker is given by

u(m, s) = μ(m, s)− μm = (A(s)− I)μm + b(s). (10)

From (10), it can be observed that if we view b(s) as the

origin of the speaker dependent phone variation subspace and

the columns of A(s)−I as D eigenphones, the corresponding

phone coordinate of the mth mixture is given by the SI mean

vector μm. So the estimation of the transformation matrix and

the bias vector are just same as the estimation of (D+1) ·D
dimensional eigenphone supervector .

Our method also has some relationships with the recently

2DPCA-based method in [5]. In fact, the phone coordinate

matrix L plays the the same role as the fixed matrix obtained

by 2DPCA (the Φ matrix of [5]). But our method is easier to

interpret and implement.

III. SPEAKER ADAPTATION BASED ON SPEAKER

DEPENDENT EIGENPHONE ESTIMATION

The eigenphones proposed in Section II are different from

those of [6], which represent the bases of the phone space
instead of the phone variation space. Those phone space bases

are fixed in [6] and the phone coordinates are adapted to obtain

SD models for speakers in a closed population. Because the

bases are inherently speaker dependent, speaker adaptation to

a previously unseen speaker cannot be pursued in this manner.

In this section, we propose another speaker adaptation

method based on the SD eigenphone decomposition (11).

Different from [6], the new method constrains the phone

coordinate matrix L to be fixed and estimates a speaker

dependent eigenphone supervector v(s′) for each new speaker

s′, which is equivalent to performing an affine transformation

of the phone space while keeping the relative position of each

phone unchanged. Two estimation methods are proposed, one

is based on the maximum likelihood criteria, and the other is

based on the maximum posteriori estimation where a Gaussian

prior over the eigenphones is assumed.

A. Maximum likelihood estimation scheme

Let O = {o1,o2, · · · ,oT } denotes the sequence of feature

vectors of the adaptation data, M = {m1,m2, · · · ,mT }
represents the corresponding mixture sequences. Using

expectation-maximization (EM) algorithm, the auxiliary func-

tion to be optimized under the maximum likelihood criterion

is given as follows

R(y(n),y(n−1)) = E
[
log p(O,M)|y(n−1)

]
=
∑
t

∑
m

γm(t) log p(o(t)|ym(s′)(n)), (11)

where ym(s′)(n) denotes the SD mean vector of mixture m,

γm(t) is the posterior probability of being in mixture m at time

t given the observation sequence O and current estimation of

SD model y(n−1).

Let L̂m denotes the part of (7) corresponding to the mth

mixture, that is,

L̂m =
[
lm1I lm2I . . . lmNI I

]
, (12)

then

p (o(t) | ym(s′)) = N
(
o(t) | L̂mv(s′) + μm,Σm

)
. (13)
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Substituting (13) to (11) yields

R(v(s′)(n)) = −1

2

∑
t

∑
m

γm(t)
[
o(t)− L̂mv(s′)− μm

]T
Σ−1

m

[
o(t)− L̂mv(s′)− μm

]
. (14)

Setting the derivative of (14) with respect to v(s′) to zero, we

can get

v(s′) =

[∑
m

(∑
t

γm(t)

)
L̂

T

mΣ−1
m L̂m

]−1

[∑
m

L̂
T

mΣ−1
m

∑
t

(γm(t) (o(t)− μm))

]
. (15)

B. Maximum a posteriori estimation scheme

When the amount of the adaptation data is limited, maxi-

mum likelihood criteria cannot generate reliable estimations.

In this case, prior information has to be applied to constrain

the variation of the estimation parameters. For simplicity,

we assume the prior distribution of the SD eigenphones is

Gaussian with zero mean and diagonal variance σ2I . Then

the auxiliary function of the EM algorithm is

R(v(s′)(n)) = −1

2

∑
t

∑
m

γm(t)
[
o(t)− L̂mv(s′)− μm

]T

Σ−1
m

[
o(t)− L̂mv(s′)− μm

]
− 1

2σ2
v(s′)Tv(s′). (16)

Setting the derivative of (16) with respect to v(s′) to zero

yields

v(s′) =

[∑
m

(∑
t

γm(t)

)
L̂

T

mΣ−1
m L̂m + σ2I

]−1

[∑
m

L̂
T

mΣ−1
m

∑
t

(γm(t) (o(t)− μm))

]
. (17)

IV. EXPERIMENTS

Performance of the proposed method was evaluated with

Mandarin Chinese continuous speech recognition experiments

on the Microsoft speech database [7]. Utterances from 100

male speakers comprised the training data set and those from

the other 25 male speakers were used for evaluation. Each

training speaker contributed 200 sentences for training (about

33 hours in total) and each test speaker has 20 sentences,

from which 10 sentences were drawn for adaptation and the

other 10 were reserved for testing (the average duration of

each sentence is about 5 seconds). The frame length and

frame step were set as 25ms and 10ms, respectively. Each

speech frame was parameterized by a 39-dimensional feature

vector consisting of 13 Mel-frequency cepstral coefficients

and their first-order and second-order time derivatives. Each

Mandarin tonal syllable was modeled by a 3-state left-to-right

HMM without skips. The SI model was trained using the

HTK (v 3.4.1) [8] tool set. After state clustering, there were

2392 different Gaussian mixtures in the system. Then each

TABLE I
AVERAGE TONAL SYLLABLE RECOGNITION RATE (%) AFTER SPEAKER

ADAPTATION USING CONVENTIONAL METHODS

Methods Settings Number of adaptation sentences
2 4 6 8 10

MAP τ = 10 52.33 52.48 52.37 53.17 53.15
τ = 20 52.27 52.60 52.62 53.27 53.50
τ = 40 52.37 52.60 52.39 53.11 53.15

MLLR-diagonal RC = 16 53.52 54.45 54.34 54.41 54.55
RC = 32 53.52 54.45 54.34 54.41 54.62
RC = 64 53.52 54.45 54.34 54.41 54.62

MLLR-block RC = 16 54.68 57.41 57.81 58.81 58.92
RC = 32 54.68 57.41 57.93 58.83 58.98
RC = 64 54.68 57.41 57.81 58.83 58.92

MLLR-full RC = 16 53.04 56.57 57.93 58.31 58.75
RC = 32 53.04 56.57 57.93 58.35 58.79
RC = 64 53.04 56.57 57.93 58.35 58.79

Eigenvoice K = 20 56.38 56.61 56.90 57.11 57.05
K = 40 56.59 57.03 57.26 57.62 57.45
K = 60 57.01 57.15 57.36 57.87 57.95
K = 80 56.97 57.39 57.45 58.14 58.18
K = 100 57.11 57.24 57.53 57.91 58.39

TABLE II
AVERAGE TONAL SYLLABLE RECOGNITION RATE (%) AFTER SPEAKER

ADAPTATION BASED ON ML EIGENPHONE ESTIMATION

Eigenphone Number of adaptation sentences
Num. 2 4 6 8 10

10 56.71 56.95 57.41 57.87 58.12
25 55.73 57.99 59.36 59.34 59.57
50 51.38 58.16 59.00 59.84 60.62
100 41.46 54.30 57.91 59.44 60.13

mixture is incrementally split to have 8 Gaussian components.

A standard regression class tree based MLLR method was

used to obtain the 100 SD HMM models for the training

speakers. In the recognition experiments, HVite was used as

the decoder without any language models. We drew 2, 4, 6, 8

or 10 sentences from each testing speaker for adaptation, tonal

syllable recognition rate is averaged among the remaining 10

sentences.

Speaker adaptation experiments were performed in su-

pervised mode. For the purpose of comparison, we carried

out three comparative experiments using conventional MAP,

MLLR and eigenvoice adaptation methods respectively. For

conventional MAP adaptation, the weighting factor of the

SI model (τ ) was varied between 10 and 40. For MLLR,

three types of transformation matrix (a diagonal matrix, a 3-

block-diagonal matrix and a full matrix) with different number

of regression classes (RC) are evaluated. For eigenvoice

adaptation, K eigenvoices were obtained from the 100 training

speaker supervectors using PCA, and the maximum likelihood

eigen decomposition (MLED) formula [3] was adopted for

adaptation. For our speaker dependent eigenphone adaptation

method, the phone subspace dimension of 10, 25, 50, 100 were

tested. Adaptation experiment results of the three conventional

methods are shown in Table I, and those based on the

ML eigenphone adaptation are summarized in Table II. The

recognition accuracy of the SI model is 53.04% (the baseline

reference result reported in [7] is 51.21%).
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TABLE III
AVERAGE TONAL SYLLABLE RECOGNITION RATE (%) AFTER SPEAKER

ADAPTATION BASED ON MAP EIGENPHONE ESTIMATION

Eigenphone σ2 Number of adaptation sentences
Num. 2 4 6 8 10

0.5 56.32 57.83 59.30 59.30 59.61
25 0.1 56.34 57.99 59.11 59.13 59.32

0.05 56.19 57.68 58.88 58.88 59.21

0.5 52.14 58.13 59.23 59.82 60.60
50 0.1 53.67 58.43 59.11 59.78 60.45

0.05 53.71 58.31 59.17 59.86 60.34

From Table I, it can be seen that for conventional MAP

adaptation methods, recognition results have little improve-

ment over the SI model for the limited adaptation data

available. For MLLR method, best results are obtained when

3-block-diagonal transformation matrix is used with 32 re-

gression classes, and the performance is consistently improved

when more adaptation data is available. Speaker adaptation us-

ing eigenvoice method yields best recognition result when the

adaptation data is limited to 2 sentences (about 10 seconds).

From Table II, it can be observed that the ML speaker de-

pendent eigenphone adaptation shows better performance than

the other three methods when the amount of the adaptation

data is sufficient, with best results obtained at a 50 dimension

setting; but when the adaptation data is limited, smaller sub-

space is preferred as better SD model can be obtained if there

are fewer free parameters to be estimated. However in this

low dimensional subspace setting (e.g. N = 10), performance

is not better than the conventional MLLR method when there

are 6 or more sentences for adaptation.

One drawback of the ML eigenphone adaptation is that, in

the case of limited adaptation data, the recognition result is

worse than for the SI model when the number of eigenphones

become large. This may be due to the unconstrained estimation

manner of the ML criterion. So we perform the MAP adap-

tation scheme proposed in Section III-B, and the recognition

results are presented in Table III with different settings of

the prior variance (σ2). If the amount of the adaptation data

is limited, it can be shown that the MAP adaptation scheme

achieves comparable performance to the eigenvoice method

when the dimension of the phone subspace is set to 25, and the

recognition rate can be prevented from degenerating compared

to the baseline SI system when the dimension of the phone

subspace is set to 50. In both cases, high recognition rates are

maintained when sufficient adaptation data is provided.

V. CONCLUSION

We have proposed a new speaker adaptation approach for

speech recognition through estimation of a set of speaker

dependent eigenphones. These eigenphones represent the main

phone variation patterns for a specific speaker. The coordi-

nation matrix of the whole phone set is fixed across differ-

ent speakers, which contains the intra-speaker coordination

information. With a Gaussian prior assumption, the speaker

dependent eigenphones can be estimated under the MAP

criterion. Experimental results show that the new method

has better performance than conventional ones. Future work

will look at using speaker adaptative training to obtain the

phone coordination matrix and incorporating the inter-speaker

information to further improve the adaptation performance.
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