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Abstract—We present a novel automatic speech recognition
(ASR) front-end that unites Long Short-Term Memory context
modeling, bidirectional speech processing, and bottleneck (BN)
networks for enhanced Tandem speech feature generation. Bidi-
rectional Long Short-Term Memory (BLSTM) networks were
shown to be well suited for phoneme recognition and probabilistic
feature extraction since they efficiently incorporate a flexible
amount of long-range temporal context, leading to better ASR
results than conventional recurrent networks or multi-layer per-
ceptrons. Combining BLSTM modeling and bottleneck feature
generation allows us to produce feature vectors of arbitrary size,
independent of the network training targets. Experiments on
the COSINE and the Buckeye corpora containing spontaneous,
conversational speech show that the proposed BN-BLSTM front-
end leads to better ASR accuracies than previously proposed
BLSTM-based Tandem and multi-stream systems.

I. INTRODUCTION

The accuracy of systems for automatic speech recognition

(ASR) heavily depends on the quality of the features extracted

from the speech signal. Thus, during the last decades, a variety

of methods were proposed to enhance commonly used Mel-

Frequency Cepstral Coefficient (MFCC) or Perceptual Linear

Prediction (PLP) features, especially in noisy conditions. A

popular technique that has become state-of-the-art in mod-

ern ASR systems, is to apply a neural network to generate

phoneme or phoneme state posteriors which in turn can be

used as ‘Tandem’ features [1].

While first experiments on Tandem ASR systems concen-

trated on using the logarithmized and decorrelated activations

of the output layer of recurrent neural networks (RNN) or

multi-layer perceptrons (MLP) as probabilistic features, recent

studies report performance gains when extracting the activa-

tions of a narrow hidden layer within the network as so-called

‘bottleneck’ (BN) features [2]. This implies the advantage that

the size of the feature space can be chosen by defining the size

of the network’s bottleneck layer which makes the dimension

of the feature vectors independent of the number of network

training targets. The linear outputs of the bottleneck layer are

usually well decorrelated and do not have to be logarithmized.

Since human speech is highly context-sensitive, both, the

ASR front- and back-end need to account for contextual

information in order to produce acceptable recognition results.

Standard recognizer back-ends consider context by applying

triphones, using language models, and via the Markov assump-

tion in Hidden Markov Models (HMM) or general Graphical

Models [3]. Feature-level context is usually modeled by ap-

pending derivatives of low-level features and by presenting

a number of successive stacked feature frames to the neural

network for Tandem feature extraction. Furthermore, the ex-

traction of long-term features is an active area of research [4].

In Tandem systems, context can also be modeled within the

neural network, e. g., by using recurrent connections. Studies

on phoneme recognition [5] reveal that a very effective way to

exploit long-range context for ASR is to apply the Long Short-

Term Memory (LSTM) architecture originally introduced in

[6] and extended to bidirectional LSTM (BLSTM) in [5].

LSTM overcomes the vanishing gradient problem of conven-

tional RNNs and models a self-learned amount of context via

memory blocks in the hidden layer.

After first successes in using BLSTM for speech-based

recognition tasks such as phoneme recognition [5] and key-

word spotting [7], the first system incorporating BLSTM for

continuous ASR was presented in [8] and refined in [9] and

[10]. In this paper, we show how bidirectional LSTM networks

can be combined with the bottleneck principle to design a

robust and efficient ASR front-end for context-sensitive fea-

ture extraction. We propose a novel BN-BLSTM system and

evaluate it on the COSINE and the Buckeye database, which

contain disfluent, spontaneous, conversational, and partly noisy

speech recorded during natural conversations.

In Section II we outline the theoretical background of

LSTM networks and explain previous attempts to use LSTM

for continuous speech recognition. Section III continues with

the description of our BN-BLSTM front-end. The applied

databases are briefly introduced in Section IV before we

present our experiments and results in Section V.

II. LSTM MODELING FOR ASR

A. Long Short-Term Memory

The analysis of the error flow in conventional recurrent

neural nets resulted in the finding that long-range context

is inaccessible to standard RNNs since the backpropagated

error either blows up or decays over time (vanishing gradient
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problem [11]). Thus, only context sizes in the order of 10

frames can be captured via conventional RNNs [5]. One of the

most effective techniques to overcome the vanishing gradient

problem is the Long Short-Term Memory architecture [6],

which is able to store information in linear memory cells over

a longer period of time and can learn the optimal amount of

contextual information relevant for the classification task. An

LSTM hidden layer is composed of multiple recurrently con-

nected subnets which will be referred to as memory blocks in

the following. Every memory block consists of self-connected

memory cells and three multiplicative gate units (input, output,

and forget gates). Since these gates allow for write, read, and

reset operations within a memory block, an LSTM block can

be interpreted as (differentiable) memory chip in a digital

computer.

If αin
t denotes the activation of the input gate at time t before

the activation function fg has been applied and βin
t represents

the activation after application of the activation function, the

input gate activations (forward pass) can be written as

αin
t =

I∑

i=1

ηi,inxi
t +

H∑

h=1

ηh,inβh
t−1 +

C∑

c=1

ηc,insct−1 (1)

and

βin
t = fg(α

in
t ), (2)

respectively. The variable ηij corresponds to the weight of the

connection from unit i to unit j while ‘in’, ‘for’, and ‘out’
refer to input gate, forget gate, and output gate, respectively

(see equations 3 and 7). Indices i, h, and c count the inputs

xi
t, the cell outputs from other blocks in the hidden layer,

and the memory cells, while I , H , and C are the number of

inputs, the number of cells in the hidden layer, and the number

of memory cells in one block. Finally, sct corresponds to the

state of a cell c at time t, meaning the activation of the linear

cell unit.

Similarly, the activation of the forget gates before and after

applying fg can be calculated as follows:

αfor
t =

I∑

i=1

ηi,forxi
t +

H∑

h=1

ηh,forβh
t−1 +

C∑

c=1

ηc,forsct−1 (3)

βfor
t = fg(α

for
t ). (4)

The memory cell value αc
t is a weighted sum of inputs at time

t and hidden unit activations at time t− 1:

αc
t =

I∑

i=1

ηi,cxi
t +

H∑

h=1

ηh,cβh
t−1. (5)

To determine the current state of a cell c, we scale the previous

state by the activation of the forget gate and the input fi(α
c
t)

by the activation of the input gate:

sct = βfor
t sct−1 + βin

t fi(α
c
t). (6)

The computation of the output gate activations follows the

same principle as the calculation of the input and forget gate

activations, however, this time we consider the current state

sct , rather than the state from the previous time step:

αout
t =

I∑

i=1

ηi,outxi
t +

H∑

h=1

ηh,outβh
t−1 +

C∑

c=1

ηc,outsct (7)

βout
t = fg(α

out
t ). (8)

Finally, the memory cell output is determined as

βc
t = βout

t fo(s
c
t). (9)

The overall effect of the gate units is that the LSTM memory

cells can store and access information over long periods of

time and thus avoid the vanishing gradient problem.

B. Bidirectional LSTM

A further shortcoming of standard RNNs is that they have

access to past but not to future context. This can be over-

come by using bidirectional RNNs [12], where two separate

recurrent hidden layers scan the input sequences in opposite

directions. The two hidden layers are connected to the same

output layer, which therefore has access to context information

in both directions. For our Bottleneck-BLSTM front-end, we

use a combination of the principle of bidirectional networks

and the LSTM technique (i. e., bidirectional LSTM). Of course

the usage of bidirectional context implies a short look-ahead

buffer, meaning that recognition cannot be performed truly

on-line. However, for many speech recognition tasks it is

sufficient to obtain an output, e. g., at the end of an utterance,

so that both, forward and backward context can be used during

decoding.

C. Previous Approaches

Previous approaches towards continuous speech recognition

exploiting BLSTM context-modeling concentrated on append-

ing a discrete BLSTM feature to the (continuous) acoustic

feature vector. This additional feature bt encodes the frame-

wise phoneme prediction generated via a BLSTM network,

i. e., it corresponds to the index of the most active output

activation which in turn corresponds to a certain phoneme at a

given time step (see [8] for formulas). Applying the resulting

extended feature vector yt = [xt; bt], that contains MFCC

features xt and the BLSTM phoneme estimate bt, was shown

to boost recognition performance of keyword detectors [7] and

continuous ASR systems [8]. Further performance gains could

be obtained by employing a multi-stream HMM to model

xt and bt as two independent data streams [9] which allows

to introduce different stream weights for low-level acoustic

features and BLSTM phoneme predictions. Modeling long-

range feature-level context via bidirectional Long Short-Term

Memory could outperform simple feature frame stacking, as

it is done in conventional Tandem ASR systems [10]. Thus,

the application of BLSTM appears to be a promising method

to generate enhanced Tandem features for speech recognition.
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Fig. 1. Bottleneck-BLSTM front-end incorporated into an HMM-based ASR system.

III. BOTTLENECK-BLSTM FRONT-END

The Bottleneck-BLSTM feature extractor investigated in

this paper can be seen as a combination of bidirectional LSTM

modeling for improved context-sensitive Tandem feature gen-

eration and bottleneck front-ends. The bottleneck principle

allows to generate Tandem feature vectors of arbitrary size

by using the activations of the hidden (bottleneck) layer as

features – rather than the logarithmized output activations

corresponding to the estimated phoneme or phoneme state

posteriors. Since we focus on bidirectional processing, we

have two bottleneck layers: one within the network processing

the speech sequence in forward direction and one within the

network for backward processing. Figure 1 shows the system

flowchart of our ASR system based on BN-BLSTM features.

39 cepstral mean and variance normalized MFCC features

(including deltas and double deltas) are extracted from the

speech signal every 10 ms using a window size of 25 ms.

These features serve as input for a BN-BLSTM network

that is trained on framewise phoneme targets. During feature

extraction, the activations of the output layer are ignored; only

the activations of the forward and backward bottleneck layer

are processed (i. e., the memory block outputs of the bottleneck

layers). Together with the original MFCC features, the forward

and backward bottleneck layer activations are concatenated to

one large feature vector which is then decorrelated by Principal

Component Analysis (PCA). In our experiments, we evaluated

feature vectors with and without the original MFCC features,

which is indicated by the dashed line in Figure 1. Finally,

the decorrelated BN-BLSTM features are used as input for an

HMM system computing the ASR word hypothesis.

Figure 2 illustrates the detailed structure of the applied

Bottleneck-BLSTM front-end. The input activations of the

network correspond to the normalized MFCC features. Three

hidden LSTM layers are used per input direction. As will

be shown in Section V, best performance could be obtained

when using a hidden layer of size 78 (two times the number

of MFCC features) as first hidden LSTM layer, a second

hidden layer of size 128, and a comparably narrow third

hidden layer, representing the bottleneck (size 20 to 80).

The connections between the bottleneck layers and the output

layer are depicted in grey, indicating that the activations of

the output layer (ot) are only used during network training

and not during BN-BLSTM feature extraction. To obtain the

final decorrelated feature vectors, PCA is applied on the joint

feature vectors consisting of forward and backward bottleneck

layer activations and MFCC features xt.

Fig. 2. Architecture of the Bottleneck-BLSTM front-end.

To compare the performance of BN-BLSTM features to

probabilistic features obtained from the output activations of a

BLSTM network (i. e., a conventional Tandem structure based

on BLSTM networks) we also implemented a Tandem BLSTM

system as shown in Figure 3. Since the output layer uses a

softmax activation function, the BLSTM features are approxi-

mately gaussianized by conversion to the logarithmic domain

before they are decorrelated via PCA. Again, Tandem feature

vectors with and without appended MFCCs are evaluated.

However, for the sake of better comparability, all front-ends

used the same number of principal components as final feature

vectors for the HMM system.

IV. DATABASES

In order to enable comparisons between the proposed

BN-BLSTM system and previously introduced concepts for

BLSTM modeling of spontaneous speech, we used the ‘COn-

versational Speech In Noisy Environments’ (COSINE) corpus
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Fig. 3. Tandem BLSTM front-end incorporated into an HMM-based ASR system.

[13] which has also been used in [8], [9], and [10]. In addi-

tion, experiments with the best configurations were repeated

applying the Buckeye corpus [14] to verify whether the main

findings also hold for other spontaneous speech scenarios.

A. COSINE

The COSINE corpus [13] is a relatively new database

containing multi-party conversations recorded in real world

environments. The recordings were captured on a wearable

recording system so that the speakers were able to walk

around during recording. Since the participants were asked

to speak about anything they liked and to walk to various

noisy locations, the corpus consists of natural, spontaneous,

and highly disfluent speaking styles partly masked by indoor

and outdoor noise sources such as crowds, vehicles, and wind.

The recordings were captured using multiple microphones

simultaneously, however, to match most application scenar-

ios, we exclusively used speech recorded by a close-talking

microphone (Sennheiser ME-3).

We used all ten transcribed sessions, containing 11.40

hours of pairwise conversations and group discussions. All

37 speakers are fluent, but not necessarily native English

speakers. For our experiments, we used the recommended test

set (sessions 3 and 10) which comprises 1.81 hours of speech.

Sessions 1 and 8 were used as validation set (2.72 h of speech)

and the remaining six sessions made up the training set. The

vocabulary size is 4.8 k, whereas the out-of-vocabulary (OOV)

rate in the test set is 3.4 %.

B. Buckeye

The Buckeye corpus contains recordings of interviews with

40 subjects, who were told that they were in a linguistic

study on how people express their opinions. The corpus

was originally intended to study phonetic variation among

speakers, and has been used for a variety of phonetic studies

as well as for ASR experiments [15]. Similar to the COSINE

database, the contained speech is highly spontaneous. The 255

recording sessions, each of which is approximately 10 min

long, were subdivided into turns by cutting whenever the

subject’s speech was interrupted by the interviewer, or once a

silence segment of more than 0.5 s length occurred. We used

the same speaker independent training, validation, and test sets

as defined in [15]. The lengths of the three sets are 20.7 h,

2.4 h, and 2.6 h, respectively, and the vocabulary size is 9.1 k.

V. EXPERIMENTS AND RESULTS

A. Network Training and Evaluation

For Tandem and bottleneck feature generation, we trained

different recurrent and LSTM networks on framewise

phoneme targets obtained via HMM-based forced alignment of

the COSINE training set. We evaluated four different network

types: conventional recurrent neural networks, bidirectional

neural networks (BRNN), unidirectional LSTM networks, and

bidirectional LSTM networks. All networks consisted of three

hidden layers (per input direction) and each LSTM memory

block contained one memory cell.

The networks were trained on the standard (CMU) set

of 39 different English phonemes with additional targets for

silence and short pause. Training was aborted as soon as no

improvement on the validation set (sessions 1 and 8) could

be observed for at least 50 epochs, and we chose the network

that achieved the best framewise phoneme error rate on the

validation set.

In conformance with [10], the three hidden layers for

Tandem feature generation had a size of 78, 128, and 80,

respectively. For bottleneck feature extraction, we evaluated

a number of alternative network topologies that are listed in

the second column of Table I, e.g., we investigated the effect

of decreasing the size of the bottleneck layer from 80 to 20.

Prior to using the Tandem and bottleneck features for

continuous ASR, we evaluated the framewise phoneme recog-

nition accuracy of the underlying neural network architectures.

As can be seen in the third column of Table I, the differences

between the phoneme recognition rates of the various BLSTM

networks are relatively small (around 70 % recognition rate for

all BLSTM topologies). However, we can see that bidirectional

LSTM networks perform notably better than unidirectional

LSTM nets and that LSTM architectures outperform conven-

tional RNNs.

B. Tandem Feature Extraction

Applying the trained networks, Tandem and bottleneck fea-

tures were extracted according to the ASR system flowcharts

depicted in Figures 1 and 3, respectively. The second column

of Table I shows the sizes of five layers building the (B)LSTM

and (B)RNN networks (one input, three hidden, and one output

layer). The layers whose activations are used as features are

indicated as numbers in boldface. For the first three BN-

BLSTM configurations we employed networks containing a

bottleneck layer as second hidden layer (sizes 20, 40, and

80), whereas for the remaining bottleneck experiments we
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TABLE I
COSINE TEST SET: FRAMEWISE PHONEME RECOGNITION RATES AND WORD ACCURACIES FOR DIFFERENT NETWORK TOPOLOGIES AND RECOGNITION

SYSTEMS PROCESSING CONTINUOUS (CONT.) OR COMBINED CONTINUOUS-DISCRETE (CONT./DISC.) TANDEM FEATURES. LAYER SIZES IN BOLDFACE

INDICATE THE LAYER WHOSE ACTIVATIONS ARE USED AS FEATURES.

phon. accuracy word accuracy [%]
model architecture network topology (framewise) [%] w/o MFCC w/ MFCC
BN-BLSTM (Tandem, cont.) 39-128-20-128-41 69.11 43.79 44.05
BN-BLSTM (Tandem, cont.) 39-128-40-128-41 69.21 43.34 43.63
BN-BLSTM (Tandem, cont.) 39-128-80-128-41 70.12 44.95 45.86
BN-BLSTM (Tandem, cont.) 39-78-128-20-41 69.54 43.00 47.09
BN-BLSTM (Tandem, cont.) 39-78-128-40-41 69.75 43.73 49.17
BN-BLSTM (Tandem, cont.) 39-78-128-80-41 69.96 44.35 49.92
BN-LSTM (Tandem, cont.) 39-78-128-80-41 61.79 41.16 45.94
BN-BRNN (Tandem, cont.) 39-78-128-80-41 56.93 30.37 41.39
BN-RNN (Tandem, cont.) 39-78-128-80-41 48.88 27.01 40.74
BLSTM (Tandem, cont.) 39-78-128-80-41 69.96 44.41 48.23
LSTM (Tandem, cont.) 39-78-128-80-41 61.79 41.37 46.68
BRNN (Tandem, cont.) 39-78-128-80-41 56.93 30.86 40.67
RNN (Tandem, cont.) 39-78-128-80-41 48.88 27.97 40.14
multi-stream BLSTM-HMM (cont./disc.) [10] 39-78-128-80-41 69.96 - 48.01
multi-stream BLSTM-HMM (cont./disc.) [9] 39-78-128-80-41 66.41 - 46.50
BLSTM (Tandem, cont./disc.) [8] 39-78-128-80-41 66.41 - 45.04
triphone HMM - 56.91 - 43.36

used activations of third hidden layer, focusing on the 78-

128-XX hidden layer topology that was proven to give good

results for LSTM-based phoneme recognition [8], [9], [10]

(see also Figure 2). We found that best ASR performance can

be obtained when taking only the first 39 principal components

as final feature vectors. Thus, the results shown in Table I are

all based on feature vectors of size 39 (except for the results

taken from [8], [9], and [10], which are obtained using 39+1

features, see Section II-C).

C. Tandem ASR

The HMM system applied for processing the Tandem and

BN-BLSTM features generated according to Figures 1 and 3

was identical to the back-end used to determine the baseline

HMM results in [9]: Each phoneme is represented by three

emitting states (left-to-right HMMs) with 16 Gaussian mix-

tures. The initial monophone HMMs were mapped to tied-

state cross-word triphone models with shared state transition

probabilities. Two Baum-Welch iterations were performed for

re-estimation of the triphone models. Finally, the number of

mixture components of the triphone models was increased

to 16 in four successive rounds of mixture doubling and

re-estimation (four iterations in every round). Both, acoustic

models and a back-off bigram language model were trained

on the training set of the COSINE corpus.

D. Results

The last two columns of Table I show the word accuracies

obtained for the various BLSTM-based bottleneck and Tan-

dem systems trained and evaluated on the COSINE corpus.

For each configuration better results are reached when the

original MFCC features are appended to the probabilistic

feature vector prior to PCA. Increasing the size of the for-

ward and backward bottleneck BLSTM layer from 20 to 80

raises word accuracies from 44.05 to 45.86 % for the 128-

XX-128 hidden layer topology and from 47.09 to 49.92 %

for the 78-128-XX topology. When applying bidirectional

processing, front-ends using bottleneck activations from the

third hidden layer outperform Tandem systems processing

the logarithmized output activations. For both front-end types

RNN architectures cannot compete with LSTM architectures,

which shows the importance of long-range context modeling

in challenging spontaneous and disfluent speech scenarios.

Best performance is reached when applying a BN-BLSTM

network consisting of a comparably large third hidden layer

with 80 memory blocks, representing the bottleneck (49.92 %).

This system prevails over a comparable BLSTM system using

continuous output activations as features (48.23 %), as well

as over the best multi-stream BLSTM-HMM technique [10]

applying combined continuous-discrete modeling of MFCC

features and BLSTM phoneme predictions (48.01 %). For

comparison, the last two rows of Table I show the performance

of the continuous-discrete BLSTM Tandem system introduced

in [8] (45.04 %) and the word accuracy of a baseline HMM

processing only MFCC features (43.36 %).

To collect further evidence for the obtainable ASR perfor-

mance gains when applying the proposed Bottleneck-BLSTM

front-end, we repeated our experiments, training and evaluat-

ing the most promising network configurations on the Buckeye

corpus (see Section IV-B). Since the transcriptions of the

Buckeye corpus also contain the events laughter, noise, vocal
noise, and garbage speech, the size of the network output

layers was increased by four from 41 to 45. Thus, we also

increased the size of the third hidden layer from 80 to 90

to have roughly twice as many memory blocks as phoneme

targets in the last hidden layer. As shown in Table II, the

baseline HMM achieves a word accuracy of 50.97 % which is

comparable to the result reported in [15] (49.99 %). Accuracies

for the Buckeye experiment are notably higher than for the

COSINE task since the Buckeye corpus contains speech which

is less disfluent and noisy than in the COSINE database.

Performance can be boosted to up to 58.21 % when applying
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TABLE II
BUCKEYE TEST SET: FRAMEWISE PHONEME RECOGNITION RATES AND WORD ACCURACIES FOR DIFFERENT NETWORK TOPOLOGIES AND

RECOGNITION SYSTEMS PROCESSING CONTINUOUS (CONT.) OR COMBINED CONTINUOUS-DISCRETE (CONT./DISC.) TANDEM FEATURES. LAYER SIZES IN

BOLDFACE INDICATE THE LAYER WHOSE ACTIVATIONS ARE USED AS FEATURES.

phon. accuracy word accuracy [%]
model architecture network topology (framewise) [%] w/o MFCC w/ MFCC
BN-BLSTM (Tandem, cont.) 39-78-128-90-45 69.89 53.93 58.21
BN-LSTM (Tandem, cont.) 39-78-128-90-45 61.52 48.12 52.53
BN-BRNN (Tandem, cont.) 39-78-128-90-45 53.40 38.50 49.28
BN-RNN (Tandem, cont.) 39-78-128-90-45 47.05 35.43 48.78
BLSTM (Tandem, cont.) 39-78-128-90-45 69.89 55.12 57.80
LSTM (Tandem, cont.) 39-78-128-90-45 61.52 48.95 53.86
BRNN (Tandem, cont.) 39-78-128-90-45 53.40 42.11 48.64
RNN (Tandem, cont.) 39-78-128-90-45 47.05 39.59 48.21
multi-stream BLSTM-HMM (cont./disc.) [10] 39-78-128-90-45 69.89 - 56.61
BLSTM (Tandem, cont./disc.) [8] 39-78-128-90-45 69.89 - 55.91
triphone HMM - 53.20 - 50.97

our BN-BLSTM feature extraction. General trends are similar

to the COSINE experiment: Including MFCC features prior

to PCA increases word accuracy and the Bottleneck-BLSTM

principle prevails over the BLSTM multi-stream approach

employed in [10].

VI. CONCLUSION

We proposed a novel context-sensitive feature extraction

scheme employing the principle of bidirectional Long Short-

Term Memory as well as the idea of bottleneck ASR front-

ends. Replacing conventional MLP or RNN front-ends with

BLSTM networks allows us to exploit a self-learned amount of

feature-level context for accurate phoneme predictions in chal-

lenging ASR scenarios. Fusing this concept with the bottleneck

technique enables the generation of a well decorrelated and

compact feature space that carries information complementary

to the original MFCC features. The experiments presented

in this paper focused on the recognition of spontaneous,

conversational, and partly disfluent, emotional, or noisy speech

which usually leads to very poor ASR performance. Our BN-

BLSTM technique is able to increase word accuracies from

43.36 to 49.92 % and from 50.97 to 58.21 % for the COSINE

and the Buckeye task, respectively, and outperforms previous

attempts to use BLSTM for continuous speech recognition as

presented in a series of recent publications [8], [9], [10].

Future research should include the incorporation of delta-

BN-BLSTM features and hierarchical network structures, as

well as the combination of multi-stream HMMs and BN-

BLSTM features. Furthermore, we plan to develop an on-line

version of the proposed ASR front-end as an extension of

the multi-stream ASR framework that is part of our real-time

speech processing toolkit openSMILE [16].
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