
Making Deep Belief Networks Effective for Large
Vocabulary Continuous Speech Recognition

Tara N. Sainath1, Brian Kingsbury1, Bhuvana Ramabhadran1, Petr Fousek2, Petr Novak2, Abdel-rahman Mohamed3

1IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
2IBM Research, Prague, Czech Republic.

3Department of Computer Science, University of Toronto, Canada.
1{tsainath, bedk, bhuvana}@us.ibm.com,

{petr_fousek, petr.novak3}@cz.ibm.com, 3asamir@cs.toronto.edu

Abstract—To date, there has been limited work in applying
Deep Belief Networks (DBNs) for acoustic modeling in LVCSR
tasks, with past work using standard speech features. However,
a typical LVCSR system makes use of both feature and model-
space speaker adaptation and discriminative training. This paper
explores the performance of DBNs in a state-of-the-art LVCSR
system, showing improvements over Multi-Layer Perceptrons
(MLPs) and GMM/HMMs across a variety of features on an
English Broadcast News task. In addition, we provide a recipe
for data parallelization of DBN training, showing that data
parallelization can provide linear speed-up in the number of
machines, without impacting WER.

I. INTRODUCTION

Hidden Markov Models (HMMs) continue to be widely

employed for automatic speech recognition (ASR) tasks.

Typically each HMM state models a speech frame using a

Gaussian Mixture Model (GMM). While the HMM/GMM

system continues to be a popular approach for ASR, this

technique also has limitations. First, GMMs assume that the

data obeys a specific distribution (i.e., Gaussian). Secondly,

the GMM for each HMM state is trained using only the

subset of total training data that aligned to that state, and

thus data across states is not shared [1]. Therefore, training

GMM parameters requires using techniques such as feature

dimensionality reduction, which may throw away potentially

valuable information.

Artificial neural networks (ANNs) have been explored as

an alternative to GMMs [2], addressing the GMM problems

discussed above. Perhaps the most popular ANN to date

in speech recognition is the multi-layer perceptron (MLP),

which organizes non-linear hidden units into layers and has

full weight connectivity between adjacent layers. Significantly,

in training, these weights are initialized with small random

values. MLPs are used to estimate a set of state-based posterior

probabilities, which are used in a variety of ways. In a hybrid

system [2], these probabilities are used the output probabilities

of an HMM. Alternatively, approaches such as TANDEM [3]

and bottleneck features [4] derive a set of features from the

MLP, which are then used as input features into a tradi-

tional GMM/HMM system. Hybrid systems typically perform

slightly worse compared to a GMM/HMM system. While

TANDEM and bottleneck methods have shown to offer im-

provements over GMM/HMM systems with standard features,

they still use GMMs.

One problem with MLPs is that training is initialized from

random weights and the objective function is non-convex, so

training can get stuck in poor local optimum. While this has

not been a serious hindrance for MLPs having one or two

hidden layers that are trained using stochastic gradient descent

[1], it poses a more serious challenge for deeper MLPs.

Recently, Restricted Boltzmann Machines (RBMs) [5] have

been explored to pre-train weights of ANNs in an unsupervised

fashion. This pre-training allows for a much better initial

weight estimate, addressing the problems with MLP training.

An ANN which is pre-trained with RBMs is generally referred

to as a deep belief network (DBN). When DBNs are used in

a hybrid architecture, they have shown improvements over a

GMM/HMM system for various ASR tasks [1], [6].

Most DBN work in speech recognition has focused on

small-vocabulary tasks (i.e., [1], [7]), with results on LVCSR

tasks only having recently been explored [6], [8]. To date,

DBN LVCSR research has used standard speech features,

such as PLPs and MFCCs. However, a typical state-of-the-art

LVCSR system [9], utilizes a specific recipe during acoustic

model training which makes use of speaker adaptation (SA)

and discriminative training (DT). The first goal of this paper is

to explore the performance of DBNs against a state-of-the art

LVCSR recognizer. Specifically, we compare the performance

of DBNs to MLPs and GMM/HMMs with various features.

In addition, LVCSR research using DBNs has been limited

because DBN training is performed serially, and therefore can

be quite slow [6]. Graphical processing units (GPUs) are often

used to accelerate training, though GPU cards are expensive

relative to CPU cards. Motivated by work from the machine

learning community in data parallelization of serially-trained

algorithms on CPUs [10], [11], the second goal of this paper

is to explore data parallelization of DBN training.

Experiments are conducted on a 50 hour English Broadcast

News (BN) transcription task [12]. First, we show that the

hybrid DBN system offers improvements over the MLP and

GMM/HMM systems for a variety of feature spaces including

SA and DT features. Second, we show that data parallelization

30978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

methods provide a speed-up linear in the number of parallel

machines used, without impacting final WER.

The rest of this paper is organized as follows. Section

II discusses the DBNs architectures explored in this paper.

Parallelization of DBN training is presented in Section III.

Section IV summarizes the experiments performed, while the

results for different feature sets and using parallelization are

presented in Sections V and VI respectively. Finally, Section

VII concludes the paper and discusses future work.

II. TRAINING DEEP BELIEF NETWORKS

In this section, we review the steps in training DBNs.

A. Restricted Boltzmann Machine

An RBM is a bipartite graph where visible units v, rep-

resenting observations, are connected via undirected weights

to hidden units h. Since speech observations are real-valued,

we consider RBMs with Gaussian visible units and Bernoulli

hidden units. Thus the energy of the Gaussian-Bernoulli con-

figuration between v and h is defined by Equation 1, where

θ = (w,b,a) defines the parameters of the RBM including

weights w, visible bias b and hidden bias a.

E(v,h; θ) =
V∑

i=1

(vi − bi)
2

2
−

V∑
i=1

H∑
j=1

wijvihj−
H∑
j=1

ajhj (1)

wij ∈ w represents the connected weight between visible

unit i and hidden unit j, while bi ∈ b and aj ∈ a are their

bias terms. V and H are the total visible and hidden units.

The probability that the model assigns to a visible vector v
is given by Equation 2:

p(v; θ) =

∑
h e−E(v,h)∑

u

∑
h e−E(u,h)

(2)

The RBM is trained via steepest ascent, where the gradient

of the log likelihood of the training data with respect to the

weights is given as follows:

∂

∂wij
log p(v; θ) = 〈vihj〉data − 〈vihj〉model (3)

The first term in Equation 3 〈vihj〉data represents the

conditional expectation of h given v, and is relatively straight-

forward to compute. The second term 〈vihj〉model represents

the expectation under the distribution of the model over all

joint configurations (v,h), and takes exponential time to

compute exactly. Therefore, the Contrastive Divergence (CD)

method [5] is often used to estimate this second term.

B. Deep Belief Networks

An RBM is used to learn the weights for one layer of a

NN in an unsupervised fashion. Once the weights are learned,

the outputs from this layer are used as input features to train

another RBM that learns a higher level feature representation.

This greedy, layer-wise training scheme is both fast and

effective [5]. After a stack of RBMs has been trained, the

layers are connected together to form what is referred to as

a DBN. This process of learning DBN weights is known as

pre-training. Supervised fine-tuning is then performed using

the initial weights, as described next.

C. Fine-Tuning

During fine-tuning, each frame is labeled with a target class

label. Given a DBN and a set of learned initial weights,

fine-tuning is performed via back-propagation to retrain the

weights such that the loss between the target and hypothesized

class probabilities is minimized. In this paper, we explore two

different loss functions. First, we use the cross-entropy loss

[2], commonly used in NN training. One problem with cross-

entropy is that it is frame-level discriminative, meaning that

the loss is computed per input frame without information from

neighboring frames. Because speech recognition is a sequence-

level problem, frame-discriminative methods can cause certain

frames to have over-emphasized probabilities, leading to po-

tentially poor recognition hypotheses.

Alternatively, [12] proposes the use of a sequence classifi-

cation criterion for fine-tuning. The benefit of this approach

is that it is sequence-level discriminative, and more closely

matches the overall objective of speech recognition. Exper-

imentally, it has also been shown to outperform the cross-

entropy criterion. One drawback of the sequence criterion is

that it is computationally much more expensive to compute

relative to the cross-entropy criterion.

III. TRAINING DBNS FOR LVCSR

Most algorithms which are trained via stochastic gradient

descent (i.e., NNs, RBMs), sequentially process the data.

When processing hundreds of hours of data, common in

many LVCSR tasks, it is computationally infeasible to process

data sequentially. We motivate this further by the following

example. Using the RBM training recipe in [1], [6] and [13],

roughly 50 epochs are used for training the first layer and 25

epochs for subsequent layers. While this training recipe works

well for tasks where the amount of training data is small, it

is very slow for larger amounts of data [6]. For example, to

train an 8-layer DBN with 1,024 hidden units per layer on 50

hours of data takes roughly 267 hours (11 days).

A recent area of machine learning has focused on distributed

stochastic gradient training strategies. One popular class of

algorithms, which has also been explored for parallelizing

NN training [14], involves a distributed computation of the

gradient, though [11] argues that the communication network

cost of these methods is very high, and therefore these al-

gorithms are computationally wasteful. Alternatively, [10] and

[11] explore training separate models on subsets of the data in

parallel, and combining models from different machines. Mo-

tivated by these previous distributed training methodologies, in

this section we explore data parallelization for training RBMs.

A. Challenges

There are two difficulties with data parallelization for RBM

training. Many distributed training algorithms [11] focus on

parallelization methods for convex objective functions, and are

31

therefore able to prove convergence. However, since the RBM

objective function is non-convex, proving convergence with

data parallelization is difficult. Nevertheless past work [10] has

successfully explored data parallelization for the the structured

perceptron, also a non-convex loss function.

Secondly, in RBM training, the hidden units are sampled

during the Constrastive Divergence (CD) step. This sampling

is done stochastically and thus different hidden units are

activated for different RBMs. This could make combining

weights from RBMs trained on different subsets of the data

difficult. However, in Section VI we show empirically that data

used for training RBMs on each parallel machine is somewhat

homogeneous and results in the activation of the same hidden

units across the different RBMs. This justifies the combination

of weights estimated on different machines.

B. Training Strategies

In this section, we describe various RBM training algo-

rithms we explore to minimize training time.

1) Parallel Training - Mixing Per Epoch : The parameter

mixing per epoch method, originally proposed in [10] for

the structured perceptron, is outlined by Algorithm 1. In this

method, we assume that training data T is divided into c
disjoint subsets T = {T1, T2, . . . , Tc}. An RBM is trained

on each slave computer i ∈ c using corresponding training

subset Ti. Because the RBM loss function is non-convex, if

different initial weights are provided to each slave, there is

a higher chance that the final weights on each slave will be

very different. To minimize these differences, we assume that

the same initial weight is provided to each slave when RBM

training starts. After one epoch of training data is completed on

each slave computer, a master computer averages all weights

together and recommunicates the weights back to all slave

computer. This process continues for NumEpochs.

Algorithm 1 Parameter Mixing Per Epoch

1: Generate random initial weight w0

2: for n = 1 → NumEpochs do
3: Randomly split T into c sets T = {T1, T2, . . . , Tc}
4: for all i ∈ {1, . . . , c} do
5: wn

i = RBM(Ti, w
n−1)

6: end for
7: Aggregate from all computers wn = 1

c

∑c
i=1 w

n
i

8: end for

2) Parallel Training - Mixing At End: One problem with

the Mixing Per Epoch method is that each epoch of training

requires that all slaves finish training before the weights can

be updated. Thus, the training time at each epoch is always

dictated by the slave which finishes last. An alternative method

proposed in [11] looks at reducing master-slave communica-

tion time by averaging weight updates once per RBM training,

though the problem is explored for convex objective functions.

This algorithm assumes that for each epoch, each computer

i ∈ c randomly samples a subset of training data Ti from all

training data T , independent of the data randomly sampled

on other computers. This implies that subsets belonging to

two different computers Ti and Tj could contain overlapping

data. [11] suggests that by randomly sampling the data per

epoch, this proposed parallelization method is much faster but

remains competitive in performance to the Mixing Per Epoch

technique discussed in Section III-B1.

The mixing at end parallelization method is outlined in

Algorithm 2. Specifically, an RBM is trained on each slave

computer i ∈ c using subset Ti. After one epoch of training is

completed on each slave computer i, a subset of data Ti ∈ T is

again randomly sampled and used to estimate weights for the

second epoch. After each slave runs NumEpochs of training,

the weights from all slaves are averaged together.

Algorithm 2 Parameter Mixing At End

1: Generate random initial weight w0

2: for n = 1 → NumEpochs do
3: for all i ∈ {1, . . . , c} do
4: Randomly sample Ti ∈ T
5: wn

i = RBM(Ti, w
n−1
i)

6: end for
7: end for
8: Aggregate from all computers

wNumEpochs =
1

c

c∑

i=1

wNumEpochs
i

3) Serial Training - Fixed Smaller Subset: To study if av-

eraging weights from RBMs computed on different machines

has any benefits, we perform a controlled experiment where

we train a fixed subset of data serially on one computer, similar

to [10]. At each epoch, the same fixed subset is used, and the

size of the subset matches the size of the data presented to

one computer during parallel training.

IV. EXPERIMENTS

A. Corpora

The LVCSR experiments are conducted on an English

broadcast news task [12]. The acoustic models are trained on

50 hours of data from the 1996 and 1997 English Broadcast

News Speech Corpora. Results are reported on 101 speakers

in the EARS Dev-04f set1 and RT-04 test set. An LVCSR

recipe described in [9] is used to create speaker-independent

(SI), speaker-adapted (SAT) and discriminatively trained (DT)

features. Specifically, given initial PLP features, first a set of

SI features are created using Linear Discriminative Analysis

(LDA). Further processing of LDA features is performed to

create SAT features using vocal tract length normalization

(VTLN) followed by feature space Maximum Likelihood

Linear Regression (fMLLR). Finally, discriminative training is

applied using the the Boosted Maximum Mutual Information

(BMMI) or Minimum Phone Error (MPE) criterion.

B. DBN Training

All DBNs are pre-trained using the recipe outlined in [13].

More specifically, for the first layer, a Gaussian-Bernoulli

1One speaker has been removed from this Dev-04f set for faster decoding.

32

RBM is trained for 50 epochs. The feature input into the first

layer uses a context of 9 frames, while 1,024 output features

are computed. For all subsequent layers, Bernoulli-Bernoulli

RBMs are trained for 25 epochs and contain 1,024 hidden

units. For both RBM types, after 5 epochs of training, the

momentum term is increased [13]. One key difference from

[13] is that weight updates are performed per utterance, rather

than a fixed mini-batch set of frames.

During fine-tuning, the final output layer is a softmax non-

linearity with the number of output targets equal to context-

dependent HMM states. Unless otherwise noted, we use 384

output targets in both DBN and MLP experiments, obtained by

clustering the 2,220 states in the GMM/HMM system. Weight

updates are again performed per utterance. After one pass

through the data, loss is measured on a held-out set and the

learning rate is annealed (i.e. reduced) by a factor of 2 if the

held-out loss has grown from the previous iteration [2]. Unless

otherwise noted, all DBN results are reported using the cross-

entropy criterion, due to computational benefits. Experiments

with the sequence criterion utilize the MPE objective function.

V. RESULTS WITH LVCSR FEATURES

In this section, we analyze the performance of DBNs with

different types of features, as well as different numbers of

layers and output targets. In addition, we compare DBN perfor-

mance to both randomly initialized MLPs and GMM/HMMs.

A. DBN Performance With Different Feature Sets

Figure 1 shows the DBN performance on Dev-04f with

different feature sets as the number of layers is increased. Note

for all of these experiments, the number of output targets was

384. The figure shows that increasing the number of layers

improves performance, though adding more than 6 layers does

not allow for additional improvements, a trend also observed

in other DBN tasks [1]. We hypothesize that after a certain

number of layers (i.e., 6) most of the higher-order information

in the data is captured by the DBN, and adding more layers

does not help to capture additional information.

4 6 8 9
21

22

23

24

25

26

27

Number of Layers

W
E

R

LDA

VTLN

FSA

SAT+fMMI

Fig. 1. WER For Different Features and Number of Layers

B. Further Analysis of SAT+fBMMI Features

Since the SAT+fBMMI features perform best, additional

analysis is performed to see if WER can be further improved.

1) Increasing Output Targets: Figure 1 shows that the WER

for SAT+fBMMI is within 1% absolute of the SAT features,

while there is typically more than a 3% absolute difference

between SAT and SAT+fBMMI for a GMM/HMM trained

on 50 hours of BN [9]. An HMM captures variability in the

data through thousands of context-dependent states, while a

DBN typically chooses output targets equal to a much smaller

number of states (i.e., 384). However, since these DBN target

probabilities are in a hybrid HMM system during decoding, we

explore increasing the number of output targets. Table I shows

that as the number of targets increases, the WER improves up

to 2,220, the number of CD states in the GMM/HMM system.

TABLE I
WER VS. OUTPUT TARGETS, DEV-04F

Number of Output Targets WER
384 21.3
512 20.8

1,024 19.4
2,220 18.5

2) Training Criterion: Second, we compare using the cross-

entropy and sequence criteria, as shown in Table II for the Dev-

04f set. Even using the best performing fBMMI+SAT features,

the sequence-level discrimination criterion offers improve-

ments over the frame-discriminative cross-entropy criterion,

demonstrating the importance of using an objective function

which matches the sequence problem of speech recognition.

TABLE II
WER VS. TRAINING CRITERION, DEV-04F

Training Criteria WER
Cross Entropy 18.5

Sequence 17.0

C. Comparison of DBNs to Other Methods

In this section, we explore the performance of DBNs, MLPs

and GMM/HMMs. First, Table III compares DBNs to MLPs

trained with the same architecture, namely 6 layers with 1,024

hidden units per layer. For the VTLN, LDA and SAT features,

we use 384 output targets, while with the fBMMI features we

explore 2,220 output targets. The table shows that pre-training

improves the WER over the MLP for all feature sets.

TABLE III
COMPARISON OF DBNS AND MLPS

Dev-04f RT-04
Feature DBN MLP DBN MLP
VTLN 25.3 26.0 25.5 26.5
LDA 25.2 26.5 25.5 26.7
SAT 21.9 22.5 22.8 23.7

SAT+fBMMI (2,220 targets) 18.5 21.9 19.8 23.6

Second, Table IV compares the performance of

GMM/HMMs to DBNs for different features. DBN results

are shown for 4 layers, where the number of DBN parameters

matches the GMM/HMM system, as well as for 6 layers,

which is the best performing DBN system. For both Dev-04f

and RT-04, the DBN system with 4 layers offers improvements

over the GMM/HMM system with the LDA and SAT features.

33

With FSA+fBMMI features, DBN performance is only better

than the GMM/HMM system for 6 layers. After applying

model-space BMMI discriminative training and speaker

adaptation via MLLR to the GMM/HMM system, the DBN

system using sequence criteria offers better performance.

TABLE IV
COMPARISON OF DBNS AND HMMS

Dev-04f
Feature GMM/HMM DBN - 4 DBN - 6
LDA 30.7 26.3 25.2
SAT 23.2 22.4 21.9

SAT+fBMMI 19.0 19.9 18.5
+BMMI: 18.0 +Seq.: 17.0
+MLLR: 17.2

RT-04
Feature GMM/HMM DBN - 4 DBN - 6
LDA 31.0 27.3 25.5
SAT 24.0 23.8 22.8

SAT+fBMMI 19.8 20.4 19.7
+BMMI: 18.5 - +Seq.: 17.7
+MLLR: 18.1

VI. ANALYSIS OF DBN TRAINING

In this section, we explore the behavior of different tech-

niques discussed in Section III for improving DBN training

speed. Recall that the three training methods explored are

Parallel - Mixing Per Epoch, Parallel - Mixing at End and

Serial - Fixed Smaller Subset. For both parallelization meth-

ods, we compare the performance when 10, 25, and 50 parallel

machines are used. This means that for each epoch, 50 hours of

data is split across the appropriate number of machines. For

example, when using 10 machines, 5 hours of data is used

to train an RBM on each machine per epoch. To compare

the serial training method to the parallel methods, the same

amount of data on one parallel machine is used to train one

epoch for serial training. For all training methods, we follow

the same strategy used for full serial training (outlined in

Section IV-B), including learning rates and number of epochs.

A. Parallelization Analysis

In this section, we empirically analyze the nature of the

data and activations on different parallel computers, in order

to justify the proposed RBM parallelization methods.

1) Exploration of Input Data: First, we explore if the data

provided to each parallel computer is somewhat homogenous.

If similar data is provided to each computer, then intuitively

similar weights are learned on each machine. Since all data

belonging to a specific speaker is somewhat homogenous,

ideally we would like to show that each computer contains

utterances from the same speaker. However, in the 50 Hour

BN corpus, over 50% speakers contain two or less utterances.

Alternatively, we can look at clusters of similar speak-

ers, and analyze if the distribution of number of utterances

belonging to a cluster is similar across parallel computers.

During the VTLN estimation process, speakers which behave

similarly are transformed by the same warp factor (WF). We

can calculate the percentage of utterances belonging to each

WF, given the data assigned to specific parallel computer and

epoch. Homogeneity can be approximated by seeing if this

WF distribution is similar across different computers. Figure 2

plots the mean and standard deviation of the WF distribution

across different computers after 50 epochs, the final set of

weights learned from pre-training. The figure indicates that

the WF distribution across different machines is very similar,

as noted by the small standard deviation error bars, suggesting

that data per parallel machine is somewhat homogenous.2

5 10 15 20
0

0.1

0.2

Mix Once − 10 Machines

5 10 15 20
0

0.1

0.2

Mix Once − 25 Machines

5 10 15 20
0

0.1

0.2

Mix Once − 50 Machines

Warp FactorsM
ea

n/
S

td
 %

 W
F

 P
re

se
nt

5 10 15 20
0

0.1

0.2

Mix Per Epoch − 10 Machines

5 10 15 20
0

0.1

0.2

Mix Per Epoch − 25 Machines

5 10 15 20
0

0.1

0.2

Mix Per Epoch − 50 Machines

Fig. 2. Mean/Std of Warp Factor Distribution Across Machines

2) Activation Analysis: We can further justify weight av-

eraging by analyzing if the activations calculated by RBMs

trained on different machines are similar. Given the same data

vi, we calculate activations p(h1|vi) and p(h2|vi) using the

RBM weights learned from machines 1 and 2 respectively. We

define the root-mean-square error (RMSE) between activations

computed from these machines by Equation 4, where hj refers

to hidden unit j. Note that since p(hj |vi) ∈ {0, 1}, the

maximum RMSE value between two machines is always 1.

RMSE1,2(vi) =

√∑N
j=1(p(h

1
j |vi)− p(h2

j |vi))2
N

(4)

For every frame vi, the RMSE(k,l)(vi) is computed be-

tween all pairs of parallel computers k and l. This pair-wise

RMSE(k,l)(vi) is then computed for all frames vi ∈ V in a

5-hour held out set, and averaged together to produce a final

RMSE per epoch, as given by Equation 5.

RMSE = average

[
V∑
i=1

p∑
k=1

p∑
l=k+1

RMSE(k,l)(vi))

]
(5)

Table V shows the final RMSE value for the first layer

of the DBN after 50 epochs of training. Two key trends can

be observed. First, the RMSE when averaging per epoch is

much lower than when averaging at the end, since averaging

per epoch allows for variations in weights between different

2While this analysis is only done for VTLN features, other features such
at SAT, SAT+fBMMI contain the VTLN stage in the feature creation.

34

computers to be smoothed out more frequently. Second, the

RMSE for all parallelization methods is quite small compared

to the maximum RMSE value of 1, justifying that weights can

be averaged from different parallel machines.

TABLE V
FINAL RMSE FOR DIFFERENT PARALLELIZATION METHODS

Parallel Machines Mixing Per Epoch Mixing At End
10 0.009 0.096
25 0.010 0.078
50 0.010 0.064

B. Performance
Now that we have justified the RBM parallelization meth-

ods, in this section we compare the performance of the parallel

and serial methods. The experiments are performed with

VTLN features. First, Figure 3 shows the total computation

time of pre-training an 8 layer DBN as a function of the

hours of training data used per computer and per epoch. Note

that the total training time for full serial training is 267 hours

for 8 layers, as stated earlier. The figure shows that training

time linearly decreases as less data is used for training on

each machine. The slowest method is the Parallel - Mix Per

Epoch technique, where weights are averaged per epoch and

the computation time is always driven by the slowest machine.

Parallel - Mix At End is more than two times faster than

Parallel - Mix Per Epoch since weights are averaged once.

However, since averaging occurs once in Parallel - Mix at the

end, it is slightly slower than the Serial - Fixed Subset method.

1 1.5 2 2.5 3 3.5 4 4.5 5
5

10

15

20

25

30

35

40

45

50

Hours of Data For Training

C
om

pu
ta

tio
n

T
im

e
(H

rs
)

Serial − Fixed Subset

Parallel − Mix Per Epoch

Parallel − Mix At End

Fig. 3. Computation Time (Hours) for Different Parallelization Methods

Given that the Parallel - Mix at End and Serial - Fixed

Subset techniques are much faster than Parallel - Mix Per

Epoch, we focus on analyzing the WER of these faster

methods. Table VI shows the WER as a function of hours

of training data used per machine per epoch. The WER of

50-hour full serial training is given for reference.

TABLE VI
WER FOR DIFFERENT DBN TRAINING STRATEGIES, DEV-04F

Method 5 Hours 2 Hours 1 Hour
Serial - Fixed Subset 25.2 25.2 25.5
Parallel - Mix at End 25.0 25.2 25.4
Full Serial Training 25.3 25.3 25.3

Notice that across different cluster sizes, on average the

Parallel - Mix At End method performs better than Serial -

Fixed subset, particularly when a small amount of data (i.e.,

1 hour) is used to train an RBM on each machine. A similar

trend was also observed in [10] for data parallelization of the

structured perceptron. The Parallel - Mix At End sees all of

the data at each epoch across the parallel machines, whereas

the Serial - Fixed Subset sees only a small fraction of the data.

This allows for a more reliable estimate of the weights in the

parallel method, resulting in better performance. Overall, both

Figure 3 and Table VI illustrate that the Parallel - Mix At End

method can provide linear speed-up in the number of machines

compared to full serial training, without impacting WER.

VII. CONCLUSIONS

In this paper, we explored the use of DBNs on a large

vocabulary task with a state-of-the-art LVCSR system. Specif-

ically, we demonstrated that pre-training the weights of DBNs

improves performance over MLPs and GMM/HMMs for a

variety of feature spaces. In addition, we provide a recipe for

the parallel training of DBNs, making them a computationally

feasible option for LVCSR without impacting final WER. In

the future, we would like to expand this DBN work to even

larger tasks with thousands of hours of data.

ACKNOWLEDGEMENTS

Thank you to Hagen Soltau, George Saon and Stanley Chen
for their contributions towards the IBM toolkit and recognizer
utilized in this paper. In addition, thank you to Geoff Hinton
and Karel Vesely for useful discussions related to DBNs.

REFERENCES

[1] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Context-Dependent Pre-
trained Deep Neural Networks for Large Vocabulary Speech Recogni-
tion,” IEEE TSAP, 2011.

[2] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A
Hybrid Approach. H. Bourlard and N. Morgan, 1993.

[3] D. P. W. Ellis, R. Singh, and S. Sivadas, “Tandem Acoustic Modeling
in Large-Vocabulary Recognition,” in Proc. ICASSP, 2001.

[4] F. Grezl and P. Fousek, “Optimizing Bottle-neck Features for LVCSR,”
in Proc. ICASSP, 2008.

[5] G. E. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for
Deep Belief Nets,” Neural Computation, vol. 18, pp. 1527–1554, 2006.

[6] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-trained
Deep Neural Networks for Large Vocabulary Speech Recognition,” IEEE
TSAP, 2011.

[7] G. E. Dahl, M. Ranzato, A. Mohamed, and G. E. Hinton, “Phone
Recognition with the Mean-Covariance Restricted Boltzmann Machine,”
in Proc. NIPS, 2010.

[8] F. Seide, G. Li, and D. Yu, “Conversational Speech Transcription Using
Context-Dependent Deep Neural Networks,” in to appear in Proc.
Interspeech, 2011.

[9] G. Saon, G. Zweig, B. Kingsbury, L. Mangu, and U. Chaudhari, “An
Architecture for Rapid Decoding of Large Vocabulary Conversational
Speech,” in Proc. Eurospeech, 2003.

[10] R. McDonald, K. Hall, and G. Mann, “Distributed Training Strategies
for the Structured Perceptron,” in Proc. HLT-NAACL, 2010.

[11] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized
Stochastic Gradient Descent,” in Proc. NIPS, 2010.

[12] B. Kingsbury, “Lattice-Based Optimization of Sequence Classification
Criteria for Neural-Network Acoustic Modeling,” in Proc. ICASSP,
2009.

[13] G. E. Hinton, “A Practical Guide to Training Restricted Boltzmann
Machines,” Machine Learning Group, University of Toronto, Tech. Rep.
2010-003, 2010.

[14] K. Vesely, L. Burget, and F. Grezl, “Parallel Training of Neural Networks
for Speech Recognition,” in Proc. Interspeech, 2010.

35

