
Frame-level AnyBoost for LVCSR
with the MMI Criterion

Ryuki Tachibana1, Takashi Fukuda1, Upendra Chaudhari2, Bhuvana Ramabhadran2, and Puming Zhan3

1 IBM Research – Tokyo, IBM Japan Ltd, Yamato, Japan
{ryuki,fukuda1}@jp.ibm.com

2 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
{uvc, bhuvana}@us.ibm.com

3 Nuance Communications Inc., Boston, MA, USA
Puming.Zhan@nuance.com

Abstract—This paper propose a variant of AnyBoost for a
large vocabulary continuous speech recognition (LVCSR) task.
AnyBoost is an efficient algorithm to train an ensemble of weak
learners by gradient descent for an objective function. We present
a novel training procedure that trains acoustic models via the
MMI criterion using data that is weighted proportional to the
summation of the posterior functions of previous round of weak
learners. Optimized for system combination by n-best ROVER at
runtime, data weights for a new weak learner are computed as a
weighted summation of posteriors of previous weak learners. We
compare a frame-based version and a sentence-based version of
our proposed algorithm with a frame-based AdaBoost algorithm.
We will present results on a voice search task trained with
different amounts of data with gains of 5.1% to 7.5% relative in
WER can be obtained by three rounds of boosting.

I. INTRODUCTION

A review of learning algorithms that construct an ensem-

ble of classifiers and subsequently use a weighted vote of

their decisions for classifying test data is given in [1], [2].

For the ensemble to be better than any of the individual

classifiers, they need to be accurate and diverse. Random

Forests, introduced by Breiman [3] belong to this family of

ensemble methods. The main principle here is to combine

many binary decision trees, built by randomly choosing at

each node a subset of predictors. The randomized decision

tree based approach to build an ensemble of classifiers was

introduced in [4] and successfully applied to large vocabulary

continuous speech recognition (LVCSR) in [5]. In Bootstrap

Aggregating, known as Bagging [6], multiple versions of a

predictor (classifier) are used to get an aggregated predictor.

Each of the classifier’s are trained using the same amount

of data obtained by sampling with replacement. Bagging

improves performance of unstable classifiers. Boosting is yet

another technique [7] that uses all of the training data for each

classifier but weights the data to reflect its importance such

that each classifier focuses on a different aspect of the data

yielding diverse classifiers. All these approaches are aimed at

combining classifiers to further improve the performance of

each individual classifier.

Boosting algorithms have been popular in the field of

machine learning, and recently they have gained popularity in

large vocabulary continuous speech recognition (LVCSR) [8].

Boosting is a technique to generate an accurate statistical

model based on the combination of many simple and less accu-

rate models, which are usually called base or weak learners [9].

One of the most popular boosting algorithms, AdaBoost [7]

uses the classification accuracy of the models learnt at each

training iteration of the boosting algorithm to reweight the

training samples for the successive round of training. The

Gradient Boosting algorithm [10] isolates the base learners

from the loss function, by fitting the base learners to the

negative functional gradient of the loss function in the least

square sense. This allows for a wide variety of loss functions.

Recently, gradient boosting has been applied in the context of

robust training of Hidden Markov Models for ASR [11], [12].

Stochastic gradient boosting [13] introduces another degree of

freedom by randomly subsampling the training data at each

iteration of the training process.

Zhang et al. presented AnyBoost-based training scheme [14]

that uses the MCE discriminative criterion for constructing

ensembles [11]. The proposed method derived the weights of

the data that decreases the MCE-based loss function using

gradient descent. Successive models in the ensemble were

trained based on the weighted data distribution. Saon and

Soltau [12] proposed a method based on AdaBoost, where

the weights of each data sample in the training data were

determined based on whether or not the previous ensemble

chose the correct hypothesis for the frame. The acoustic

models thus obtained were then discriminatively trained using

the boosted MMI criterion [15] with the newly weighted data.

In this paper, we present a gradient boosting algorithm based

on the MMI discriminative criterion for the training of an

ensemble of acoustic models.

The rest of this paper is organized as follows. We first

review n-best ROVER, AdaBoost, and AnyBoost which are the

bases of our method in Section II. Based on these algorithms,

we describe our version of gradient boosting in Section III.

12978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

Section IV describes the experiments and demonstrates the

effectiveness of the proposed algorithm using corpora of two

different sizes. We draw conclusions in Section V.

II. BACKGROUND

Our objective is to reduce the WER of an LVCSR system

by using an ensemble of acoustic models. While increasing the

number of acoustic models in the ensemble generally leads to

WER reduction to some extent, it also increases the amount of

necessary computational resources both for training and test

conditions. This is problematic especially when the training

corpus is huge or when the run-time system requirements

impose time and memory constraints. To achieve a maximal

WER reduction with a limited number of the models in

the ensemble, the models should be designed so that the

mutual complementarity of the models is optimal for system

combination techniques to be used at run-time. We design our

boosting algorithm so that the models optimally work with the

n-best ROVER algorithm [16]. In this section, after reviewing

the ROVER algorithm, we review two important boosting

algorithms which are the bases of our algorithm, AdaBoost

and AnyBoost.

A. n-best ROVER

ROVER [17] is a system combination technique that aims to

reduce word error rates by exploiting differences in the errors

made by multiple ASR systems. While the standard ROVER

algorithm uses only the 1-best hypotheses of the multiple

systems, the “n-best ROVER” algorithm [16] combines the

n-best lists of the systems. It first estimates word posterior

probabilities by normalizing the likelihood of the hypothesis

over those of all hypotheses.

Pt(y|x) =
Pt(x|y)P (y)∑
ŷ Pt(x|ŷ)P (ŷ)

, (1)

where x is a sequence of acoustic feature vectors, y is a

hypothesis, and t is the index of the systems to be combined.

Then, it computes a combined posterior as a linear combina-

tion of the posteriors using

P (y|x) =
∑

t

αtPt(y|x), (2)

where αt are system weights. As in the case of 1-best ROVER,

complementarity (diversity) of the component systems is the

key factor for successful combination by the n-best ROVER

algorithm.

B. AdaBoost

Saon and Soltau applied the AdaBoost algorithm to LVCSR

[12]. Each round of boosting trained a new weak learner based

on a training data distribution modified by multiplying data

weights. A weak learner is a full acoustic model including

a phonetic decision tree. The algorithm worked at the frame

level; it assigned a data weight to each frame of the training

data. After each round of boosting, all the utterances in the

training corpus were decoded with the latest weak learner.

Then, the data weight, Dt(i), of each frame was increased or

decreased depending on whether the decoding result for the

frame was incorrect or correct.

Dt+1(i) =
Dt(i)
Zt

·
{

β, (if ht(xi) = yi)
1, (otherwise) , (3)

where β is a constant weight decaying factor, which was tuned

on a held-out set. ht(xi) is the decoding result for the i-
th frame by the t-th weak learner. Zt normalizes Dt+1. The

next round of boosting trains the next weak learner with this

updated data distribution.
The decoding performances of the weak learners on the

training corpus were also used to determine the system

weights, αt, of the weak learners, which were calculated by

αt =
1
2

log
(

1 − εt

εt

)
, (4)

where εt is the frame error rate of the t-th weak learner.

During decoding of the test data (run-time), the algorithm

combines the weak learners by calculating the weighted sum-

mation of the acoustic scores from the weak learners using

these system weights. While 4-system combinations by the

algorithm reduced the WER by 4.0% relative for models

trained via the maximum-likelihood (ML) criterion and by

4.8% relative for the discriminatively-trained models, the WER

reductions for a 2,000 hour training corpus were limited to

3.1% and 1.9% relative for ML and discriminatively-trained

models respectively.

C. AnyBoost
The AnyBoost algorithm described in [14], [11] trains

an ensemble, FT (x, y) that minimizes a given loss function

L(FT). The ensemble is defined as a weighted summation of

weak learners, ft(x, y).

FT (x, y) =
T∑

t=1

αtft(x, y). (5)

Each round of AnyBoost trains a new weak learner, ft, in

the direction in which the loss function, L(Ft−1 + αtft),
decreases most rapidly. Here, where Ft−1 is the ensemble

of the weak learners trained in the previous rounds. The

direction is sought by training the new weak learner ft+1 that

maximizes, 〈−∇L(Ft−1), ft〉, the inner product of the new

learner with the gradient of the loss function. Since the loss

function is defined as the summation of the loss functions of

the training data,

L(Ft) =
1
N

N∑
i=1

Li(Ft(xi, yi)), (6)

the inner product determines the data weights wt(i) for the

next round.

〈−∇L(Ft−1), ft〉

= −
N∑

i=1

[
∂Li(Ft−1)

∂Ft−1(xi, yi)
ft(xi, yi)

]
(7)

=
N∑

i=1

[wt−1(i)ft(xi, yi)] . (8)

13

After training the new weak learner, its system weight, αt+1,

is determined via a line search.

In [11], Zhang et al. use the MCE discriminative objective

function as the loss function, and the posterior probability

P (y|x) of an acoustic model as the weak learner, f(x, y). This

definition of the weak learner as the posterior probability is a

good match with the subsequent ROVER combination strategy.

The definition of the ensemble F (x, y) is given below:

FT (x, y) =
T∑

t=1

αtPt(y|x) (9)

=
T∑

t=1

αt
Pt(x|y)P (y)∑

ŷ∈Y Pt(x|ŷ)P (ŷ)
(10)

The experimental results in [11] based on a relatively small

training corpus with 30k utterances showed 3.7 % relative

reduction in WER after six rounds of the AnyBoost algorithm.

This was not significantly better than the gains from the

AdaBoost algorithm despite the use of functional gradient

descent for the MCE criterion. It may be possible that the

data weighting at the sentence level impairs the advantages of

the AnyBoost algorithm.

III. BOOSTING ALGORITHMS

We apply the AnyBoost algorithm to LVCSR at the frame

level. We assume that acoustic models to be combined are

discriminatively trained using the MMI criterion [15] and that

n-best ROVER is used to combine the acoustic models at run-

time. The definition of the ensemble in [11] as the weighted

summation of the posterior functions (Eq. (9)) matches very

well with our posterior-based ROVER (Eq. (1)) and the MMI-

trained models. Although, the MCE loss function in [11]

should have better discriminative power as it discriminates

sequences, we use a simpler loss function in this paper,

L(Ft) =
N∑

i=1

− log Ft(xi, yi). (11)

This function is motivated by the following equations and

experimental results, which show that the discriminative power

is derived from the use of posterior functions alone, without a

discriminative loss function. In addition, the derived weights

for our proposed algorithm match well with MMI train-

ing [15]. Since the functional derivative of the loss function

is written as

∂Li(F)
∂Ft(xi, yi)

= − 1
Ft(xi, yi)

, (12)

Fig. 1. Process flow.

the inner product (Eq. (7)) of the nabla of the loss function

and a new weak leaner becomes

〈−∇L(Ft−1), ft〉

=
N∑

i=1

1
Ft−1(xi, yi)

ft(xi, yi) (13)

=
N∑

i=1

1
Ft−1(xi, yi)

Pt(xi|yi)P (yi)
Pt(xi)

(14)

=
N∑

i=1

wt−1(i)
Pt(xi|yi)P (yi)∑
ŷi

Pt(xi|ŷi)P (ŷi)
. (15)

This implies that training an acoustic model via the MMI

criterion and the data weights, wt−1(i) ≡ 1/Ft−1(xi, yi),
which is calculated based on the weighted summation of the

posterior functions by the previous weak learners (Eq. (9)).

When applying this formula to LVCSR, the following points

should be considered.

A. Competing hypothesis generation

Our AnyBoost algorithm requires a set of competing hy-

potheses for the calculation of the data weights wt(n). Mean-

while, the original procedure of MMI training also uses

competing hypotheses, ŷi, for calculating
∑

ŷi
Pt(xi|ŷi)P (ŷi)

in the denominator of the MMI criterion [15]. One recipe

that works very well uses lattices produced by decoding the

training corpus with an ML acoustic model and a unigram

language model [15]. We can use the lattices generated for the

MMI training also for the data weight calculation of boosting.

Of course, it is possible to separately generate another set of

lattices by using the discriminatively trained acoustic models,

and that is expected to better reflect the true performances of

the previous weak learners. However, since lattice generation

for a large training corpus takes very long time, there is a trade-

off between the training time and the quality of the generated

lattices. The entire process flow of our AnyBoost algorithm

sharing the lattices for the two purpose is illustrated in Fig. 1

and in Algorithm 1.

B. Sentence-level and frame-level boosting

We can apply Eq. (15) to LVCSR either at the sentence

level or the frame level. If we apply it at the sentence level, yi

denotes a sentence hypothesis, P (xi|yi) the cumulative acous-

tic likelihood throughout the sentence, P (yi) the cumulative

linguistic likelihood. If we use weighting at the frame level

14

Algorithm 1 AnyBoost for LVCSR

Input: Training data {(xi, yi)}N
i=1

Initialize: w0(i) = 1/N .

1: for t = 1 to T do
2: Train ML model using data weights wt−1(i).
3: Generate lattices using the ML model.

4: Train DT model ft using the lattices and the data

weights.

5: Choose system weight αt for ft.

6: Let Ft = Ft−1 + αtft.

7: Calculate new data weights wt(i) using the lattices and

the trained model ft.

8: end for

instead, xi denotes the acoustic feature vector of a frame.

We define yi as a leaf of the phonetic decision tree. By

approximating every yi having the same linguistic probability

P (yi), the weak learner in Eq. 9 is rewritten as

ft(xi, yi) ≈ Pt(xi|yi)∑
ŷ∈Y

i,den

Pt(xi|ŷ)
(16)

≈

∑
ŷ∈Yi,num

Pt(xi|ŷ)

∑
ŷ∈Y

i,den

Pt(xi|ŷ)
, (17)

in which a summation of likelihoods is also calculated for

the numerator lattices since the exactly correct phonetic align-

ments is unknown. We generate the numerator lattices by using

the correct transcript of the sentence. Pt(x|y) is a likelihood

of the acoustic feature vector x with respect to the GMM that

corresponds to the context-dependent state y of the phonetic

decision tree of the t-th model. Yi is a set of such states

assigned to the i-th frame. To ensure that the denominator

state set Yi,den always be larger than the numerator state set

Yi,num, the context-dependent states in the numerator should

be added to the denominator state set.

C. Dynamic range of data weights

An example of the distribution of the data weights calculated

by Eq. (14) for the frame-level AnyBoost is shown in Fig. 2.

First, we can see from the figure that the majority of the frames

are given a weight of 1. This is because even for the hypotheses

that are wrong at the sentence level, the number of the frames

contained in wrong word hypotheses is limited. We can also

see in the figure that the distribution has a very long tail. This

may cause a handful of frames to have very large weights

and that majority of the frames to have relatively very small

weights. This is expected to significantly reduce robustness

against wrong transcriptions in the training corpus. Therefore,

to avoid this, we use a scaling factor, γ, and a threshold, Tw.

Fig. 2. Distribution of data weights before scaling, shown by (1 −
(cumulative probability)).

With these parameters, the data weights are adjusted by

w′
t(i) =

{
wt(i)γ (wt(i) ≤ Tw)
T γ

w otherwise
. (18)

IV. EXPERIMENTS

A. Baseline Models

The experiments presented in this paper are all based on

speaker independent models that are discriminatively trained

on a large vocabulary continuous speech recognition task,

namely, voice search. We present results on an in-house test

set for voice search in English. To date, no standardized

test exists in the community to benchmark systems for the

voice search task. However, similar tasks have been studied in

the literature [18], [19] where the baseline systems range in

WER’s from 16% to 25%. The acoustic models are built on

data from several hundreds of speakers with the data ranging

from a few seconds to few hours per speaker.

The raw acoustic features for transcription are 13-

dimensional PLP features, including c0. Utterance level mean

normalization, where the statistics are calculated only on the

speech regions of the data, is used throughout the Maximum

Likelihood (ML) and discriminative training process. This is

because a significant portion of the data was non-speech, with

about 40% silence. In ML training, LDA+MLLT transforms

are generated by splicing 9 frames of PLP features and re-

ducing the feature vector to the 40-dimensional feature space.

We build two sets of acoustic models trained from different

quantities of data. Training set A comprises of about 150

hours and training set B comprises of an order of magnitude

more data i.e. over 5000 hours (Table I). The ML models for

set A contain roughly 150K Gaussians with 5000 quinphone

context-dependent states while the ML models for set B

contain roughly 600K Gaussians with 20K states. After ML

training, the models are discriminatively trained using the

boosted MMI criterion [15]. Results are presented on 2 test

sets: Dev, and Eval with approximately 4K and 70K words.

We limit our experiments in this paper to three rounds of

gradient boosting given that the computational time required

for training increases almost proportionally to the number of

the weak learners. N-best ROVER [16] was used to combine

the acoustic models.

Table I tabulates the baseline performance. Consistent with

what has been reported in the literature, an order of magnitude

15

TABLE I
BASELINE WER ON DISCRIMINATIVELY TRAINED MODELS.

WER%
Training Sets Dev Eval

Set A 24.0 25.3
Set B 20.8 21.4

TABLE II
SYSTEM WEIGHTS AND THEIR RESULTS FOR VARIOUS CONDITIONS.

AdaW AnyW
Weights αt WER% Weights αt WER%

Cond. 1 {0.70, 0.30} 24.4 {0.79, 0.21} 24.4
Cond. 2 {0.73, 0.27} 24.0 {0.82, 0.18} 24.1
Cond. 3 {0.53, 0.23, 0.24} 24.0 {0.70, 0.16, 0.14} 24.4

increase in the amount of training data leads to approximately

14 to 15.5% relative improvement in the Word Error Rate

(WER). Several training methodologies to derive benefits from

additional training data have been presented in the literature

with a consistent message that one has to carefully select the

most beneficial parts and find a model that best represents the

selected data.

B. Preliminary Experiments

We conducted a few preliminary experiments to help set

parameters in the proposed algorithm and held-out data. Based

on these experiments, the scaling parameter γ and the thresh-

old Tw were set to be 1.

1) System weights : While our algorithm determines data

weights using AnyBoost, we can choose a system weight

computation strategy independently. In this first set of pre-

liminary experiments presented in Table II, we compare the

performances of two strategies of computing system weights.

The first strategy (AdaW) computes the system weights by

using Eq. (4) of AdaBoost. It is based on the frame error rates

of the weak learners on the training corpus. The second strat-

egy (AnyW) calculates the optimal αt that maximizes Eq. (5)

based on the numerator scores and the denominator scores of

the weak learners in the training corpus. We compared the two

strategies for various conditions. Examples of the experimental

results are shown in Table II.

As we can see in the table, AnyW tends to give extreme

weights for the weak learners in these experiments. The results

of AdaW were equal or better than those of AnyW in most

cases. Therefore, we decided to use AdaW for the following

experiments. Since additional computational time to calculate

the frame error rate for the entire training corpus is expensive,

we used a random subset of the training corpus for these

computations.

2) Complementarity : In the next set of preliminary ex-

periments, we investigated the complementarity of the trained

models. We decoded a subset of the training corpus by each

of the three weak learners and analyzed the overlap in the

decoded errors. Fig. 3 illustrates the distribution of the frame

errors by the three weak learners (f1,f2,and f3) for (a) frame-

level AdaBoost and (b) frame-level AnyBoost. The number

in a circle is the percentages of the frames which the weak

Fig. 3. Frame error rates [%] of the weak learners, ft.

learner failed to decode. For example, we can see in Fig. 3b

that, the percentage of the frames which f1 could not correctly

decoded was 2.2 + 1.5 + 5.7 + 0.8 = 10.2%. While neither

f2 nor f3 could not decode 5.7% frames among these frames,

remaining 2.2+1.5+0.8 = 4.5% was successfully covered by

either or both of f2 and f3. Although it is difficult to compare

which of the two algorithms, AdaBoost and AnyBoost is

better in generating complementary models based solely on

these numbers, we can see that AnyBoost also succeeded

in capturing many frame errors made by the previous weak

learners, even though AnyBoost does not explicitly use frame

errors in data weight calculation.

C. Experiments with Training Set A

We compared the performances of models trained using Set

A via the three boosting methods: (1) frame-level AdaBoost,

(2) sentence-level AnyBoost, and our proposed algorithm, (3)

frame-level AnyBoost. These methods were only different in

the equations presented in Section III to calculate the weights

of the data. We used only three boosting rounds for each of the

algorithms. This was because the amount of the computational

time required for both of the training and the runtime increases

almost proportionally to the number of the weak learners.

The n-best ROVER [20] was used to combine the acoustic

models. Since the first rounds of these algorithms effectively

train a boosted MMI model based on the training corpus with

all the data weighted equally (or unweighted data), we used

the baseline model as the first model in these algorithms and

train subsequent rounds of boosting. The results are shown in

Table III. The numbers in the Sngl columns are the WERs

of the weak learners trained in each round of boosting. The

numbers in the nRV columns, which are more important, are

the WERs obtained after system combination of the baseline

system with the weak learners up to the mentioned rounds of

boosting. These systems were combined using n-best ROVER.

For example, we can see that frame-level AnyBoost has a

WER of 22.2% after nbest ROVER using three rounds of

gradient boosting on the development test set, which is 7.5%

relative improvement over the baseline model (24.0%).

We also compared two strategies for generating competing

hypothesis for the frame-level AnyBoost algorithm: (1) lattices

generated by using ML models and shared with boosted

MMI training, and (2) lattices generated using discriminatively

trained models exclusively for calculating AnyBoost data

weights. The WERs for the two strategies were almost the

16

same. Hence, we can share the lattices to save computational

time without a significant increase in WER.

TABLE III
COMPARISON OF THREE BOOSTING ALGORITHMS FOR THE DEVELOPMENT

SET. Sngl ARE WERS OF SINGLE SYSTEMS, WHILE nRV ARE OF N-BEST

ROVER.

Frame-level Sentence-level Frame-level
AdaBoost AnyBoost AnyBoost

Sngl nRV Sngl nRV Sngl nRV
Round 1 24.0 - 24.0 - 24.0 -
Round 2 25.1 23.2 25.7 23.4 24.8 22.7
Round 3 24.6 23.2 26.0 23.6 24.6 22.2

D. Experiments with Training Set B

To validate the effectiveness of the frame-level AnyBoost

for larger training data, we conducted experiments using the

larger training corpus with an order of magnitude more data.

Recall that the baseline model is the first round model in the

boosting step. The number of iterations used for discriminative

training (BMMI) was tuned on the development set. While

we used four iterations for boosted MMI training in the

experiments with Training Set A, we used more iterations with

Training set B until no significant improvement in performance

was obtained. The WERs of the single systems are also shown

in the Sngl columns. The proposed algorithm achieved 6.3%

and 5.1% relative reductions in WER compared to the baseline

boosted MMI model for Dev and Eval sets, respectively. These

experimental results show that the algorithm is effective for

larger training data sets and scales well.

TABLE IV
RESULTS OF FRAME-LEVEL ANYBOOST TRAINED ON SET B. Sngl ARE

WERS OF SINGLE SYSTEMS, WHILE nRV ARE OF N-BEST ROVER.

Dev Eval
Sngl nRV Sngl nRV

Round 1 20.8 - 21.4 -
Round 2 21.2 20.0 21.6 20.7
Round 3 20.3 19.5 21.0 20.3

V. CONCLUSION

The objective of this research work is to reduce the WER

of an LVCSR system through an ensemble of a small number

of weak learners. In this paper, we reported that a frame-level

AnyBoost algorithm achieved 7.5% WER reduction after three

rounds of boosting and outperformed frame-level AdaBoost

and sentence-level AnyBoost for a smaller training corpus. The

experiments with a larger corpus validated the effectiveness

of the algorithm also for large corpora. The improvement

reached 6.3% by increasing the number of MMI iterations.

The experimental results and the derivation of the data weights

for boosting proved to be an excellent combination for the n-

best ROVER algorithm, the AnyBoost algorithm, and acoustic

models trained with the MMI criterion. Our future work

will include comparisons with other loss functions such as

the MCE criterion. We would also like to explore a less

heuristic method for determining the scaling parameter and

the threshold for converting acoustic scores to data weights.

REFERENCES

[1] T. G. Dietterich, “An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and random-
ization,” in Bagging, boosting, and randomization. Machine Learning,
1998, pp. 139–157.

[2] ——, “Ensemble methods in machine learning,” in Proc. First Interna-
tional Workshop on Multiple Classifier Systems, 2000, pp. 1–15.

[3] L. Breiman and E. Schapire, “Random forests,” in Machine Learning,
vol. 45, no. 1, 2001, pp. 5–32.

[4] O. Siohan, B. Ramabhadran, and B. Kingsbury, “Constructing ensembles
of asr systems using randomized decision trees,” in Proc. ICASSP, 2005,
pp. 197–200.

[5] B. Ramabhadran, O. Siohan, L. Mangu, G. Zweig, M. Westphal,
H. Schulz, and A. Soneiro, “The IBM 2006 speech transcription sys-
tem for European parliamentary speeches,” in TC-STAR Workshop on
Speech-to-Speech Translation, Barcelona, Spain, Jun. 2006, pp. 111–
116.

[6] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[7] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” pp. 148–156, 1996.

[8] G. Saon, H. Soltau, U. Chaudhari, S. Chu, and B. Kingsbury, “The IBM
2008 GALE arabic speech transcription system,” in Proc. ICASSP, 2010,
pp. 4378–4381.

[9] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, pp. 119–139, August 1997. [Online].
Available: http://portal.acm.org/citation.cfm?id=261540.261549

[10] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[11] R. Zhang and A. I. Rudnicky, “Investigations of issues for using multiple
acoustic models to improve continuous speech recognition,” in Proc.
Interspeech, 2006, pp. 529–533.

[12] G. Saon and H. Soltau, “Boosting Systems for LVCSR,” in Proc.
Interspeech, 2010, pp. 1341–1344.

[13] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics
& Data Analysis, vol. 38, no. 4, pp. 367 – 378, 2002.

[14] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent,” in Advances in Neural Information Processing
Systems 12. MIT Press, 2000, pp. 512–518.

[15] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon,
and K. Visweswariah, “Boosted MMI for model and feature-space
discriminative training,” in ICASSP, 2008, pp. 4057–4060.

[16] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. R. R. Gadde,
M. Plauche’, C. Richey, E. Shriberg, K. So”nmez, F. Weng, and J. Zheng,
“The SRI March 2000 Hub-5 conversational speech transcription sys-
tem,” in Proc. NIST Speech Transcription Workshop, 2000.

[17] J. G. Fiscus, “A Post-Processing System To Yield Reduced Word Error
Rates: Recognizer Output Voting Error Reduction (ROVER),” in Proc.
IEEE ASRU Workshop, 1997, pp. 347–352.

[18] C. Chelba, J. Schalkwyk, T. Brants, V. Ha, B. Harb, W. Neveitt,
C. Parada, and P. Xu, “Query language modeling for voice search,”
in Proc. IEEE Workshop on Spoken Language Technology, 2010.

[19] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-trained
Deep Neural Networks for Large Vocabulary Speech Recognition,” IEEE
TSAP, 2011.

[20] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. R. R. Gadde,
M. Plauche’, C. Richey, E. Shriberg, K. So”nmez, F. Weng, and J. Zheng,
“The SRI March 2000 Hub-5 conversational speech transcription sys-
tem,” in Proc. NIST Speech Transcription Workshop, 2000.

17

