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Abstract—This paper presents a method to incorporate mix-
ture density splitting into the acoustic model discriminative
log-linear training. The standard method is to obtain a high
resolution model by maximum likelihood training and density
splitting, and then further training this model discriminatively.
For a single Gaussian density per state the log-linear MMI
optimization is a global maximum problem, and by further
splitting and discriminative training of this model we can get
a higher complexity model. The mixture training is not a global
maximum problem, nevertheless experimentally we achieve large
gains in the objective function and corresponding moderate gains
in the word error rate on a large vocabulary corpus

I. INTRODUCTION

In a typical speech recognition system, the feature extraction

phase is modeled such that it should only retain that part of

the audio signal that is relevant to the phonetic content. The

irrelevant information i.e. speaker specific and environmental

content should be removed as much as possible. Popular

feature extraction schemes like the Mel frequency cepstral co-

efficients (MFCC) do capture sufficient phonetic information,

yet they still contain a lot of extra information. A proof of this

is the fact that MFCC are also used for speaker identification

tasks [1]. To model this variability we use a mixture of

Gaussians to represent each phone class (usually a triphone

state in a large vocabulary speech recognition system). In a

generative maximum likelihood hidden Markov model based

system, a single Gaussian is trained for each triphone state,

and then it is iteratively split into a large number of Gaussians,

to better fit the training data. The details of such a process can

be found in [2].

Discriminative training [3] of mixture models has generally

resulted in better word error rates (WER) than the conventional

ML training [2]. Contrary to ML, the discriminative training

strives to maximize the separation between different classes,

so that they are more readily distinguishable. In this case

the actual likelihood of the data is not important. However,

experiments show that the gains due to discriminative training

are particularly high for low complexity models i.e. a small

number of Gaussians per triphone state. For a large number

of Gaussians per state the performance of a discriminatively

trained system is only slightly better than a ML system.

The discriminative criteria like maximum mutual information

(MMI) are optimized by iterative methods like gradient de-

scent or extended Baum-Welch, which only guarantee a local

optimum.

The Gaussian parameter splitting may also be accomplished

discriminatively to obtain better fitting models, as in [4]

where results on a digit recognition task are presented. The

emphasis there is to retain the performance of a good system

while successively reducing the number of parameters. In [5],

a measure of classification error is used to determine the

candidate densities to be split. In [6], the mixture densities

are split discriminatively, and then further trained by ML

estimation.

In this work we shall follow a consistently discriminative

path as much as possible; using a simple single density

acoustic model from a ML estimate, followed by a combined

training and splitting, both done discriminatively while opti-

mizing the MMI objective function. Our emphasis is to train a

large vocabulary system with several million parameters. We

use log-linear discriminative training as explained in section

II-A, because it guarantees a global maximum for a single

density per triphone state.

The rest of this paper is organized as follows. Section

II introduces the conversion of Gaussian mixture models to

log-linear form, and the discriminative training procedure.

Section III describes discriminative splitting. In Section IV,

experiments and their results on a large vocabulary corpus

are presented. Finally, Section V provides the conclusion and

future outlook.

II. LOG-LINEAR MIXTURE MODEL

In [7] it has been shown that the posterior form of Gaussian

HMM can be represented as a heteroscedastic conditional

random field. This simplifies to a conditional random field

(CRF) or log-linear model for the case of a pooled covariance

HMM. The optimization of a log-linear model is a convex

problem according to the maximum entropy principle [8]. For

a fixed alignment between the feature vectors and the HMM

states, and a single density per state, the corresponding log-

linear model has a global maximum, that can be reached

regardless of the intial values of parameters. This has also

been shown experimentally in [9]. Another similar work is

[10] although it assumes a different structure of the HMM. A

7978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011



useful property of the log-linear models is that they can be

used to combine features from different knowledge sources

[11], as the optimization is robust to feature scaling and linear

dependencies between different features.

Let the speech feature vectors xT
1 belong to one of s =

1, ..., S generalized triphone classes, derived from classifica-

tion and regression trees (CART); each class with Gaussian

parameter set θs = {μs, Σs}. After expanding pθ(x|s) in its

Gaussian form and collecting the terms of x, the posterior

probability becomes

pθ(s|x) =
p(s)pθ(x|s)∑
s′ p(s′)pθ(x|s′)

=
exp(x�Λsx + λ�

s x + αs)∑
s′ exp(x�Λs′x + λ�

s′x + αs′)

(1)

In Equation 1, the new parameters Λs ∈ RD×D, λs ∈ RD

and αs ∈ R are present in log-quadratic form. Note that here

the posterior probability is directly modeled. The numerator

is not normalized and therefore does not conform to the

constraints of a probability distribution.

A pooled covariance matrix Σ leads to

pθ(s|x) =
exp(λ�

s x + αs)∑
s′ exp(λ�

s′x + αs′)
(2)

which is log-linear with respect to the parameter x.

In case of mixture densities, a hidden variable for the

mixture components need to be introduced. The corresponding

posterior probability is

pθ(s|x) =

∑
l exp(λ�

s,lx + αs,l)∑
s′,l exp(λ�

s′,lx + αs′,l)
(3)

for l = 1...Ls mixture parameters in each class s.

A. Discriminative Training of Log-Linear Parameters

The frame level objective function is

F (frame)(Λ) = −τΛ||Λ||2

+
R∑

r=1

Tr∑
t=1

ws log pΛ(st|xt)
(4)

pΛ(st|xt) =
exp

(
λ�

st
xt + α̂st

)

∑
s′ exp

(
λ�

s′xt + α̂s′
) (5)

for a fixed alignment sT
1 where the state parameters are

Λs = {λs, αs}. τΛ is the regularization parameter to increase

robustness and avoid over-fitting. ws are state weights which

could be tuned to give less weight to some states e.g. silence

which occupies a large number of states in the alignment.

α̂s = αs + log p(s), p(s) is the prior probability of state s
and R is the total number of sentences in the training corpus.

The state priors are later subtracted from α̂s for recognition,

because for recognition we use language model priors instead

of state priors. The objective function is frame-level Maximum

Mutual Information (MMI), with an extra regularization term.

The MMI optimization may also be done at sentence level, by

using language-model probabilities as priors.

B. Optimization Procedure

For the optimization of the objective function in Equation

4 we use the general purpose RPROP algorithm [12]. RPROP

is a first order optimization algorithm that takes only the

sign of the partial derivatives into account. The weights for

parameters are increased if there was no sign change in the

partial derivatives in the last iteration, and vice versa. In all

the following experiments in Section IV the RPROP algorithm

is used for optimization.

The MMI optimization on a large training corpus can be

computationally expensive. A remedy is to use the Viterbi

approximation for the optimization of mixture densities. This

means for each p(x|s) using the score of the highest scoring

density instead of the sum of all the densities. In practice

it was found to be detrimental for the optimization process.

When the Viterbi option is enabled, only those feature vectors

contribute to the partial derivatives of λs,l which lie closer

to it than all other λs,l′ . Therefore if a particular λs,l strays

away from the solution due to a large step size, it will not be

brought back towards the solution because there are no feature

vectors to contribute towards its partial derivatives. This leads

to discontinuities in the partial derivatives. For this reason we

calculate the sum of all the densities where possible. However,

for a very large number of λs,l parameters per state, calculating

the sum does not remain feasible due to its computational

requirement. Therefore in that case we have to resort to the

maximum approximation. With proper limiting of the RPROP

step sizes to increase its robustness, it can also give reasonable

gains in the objective function.

III. DISCRIMINATIVE SPLITTING

The log-linear training is only convex for a single density

per state s. For mixture density training this presents chal-

lenges as the initial guess is very important and can influence

the final results for the objective function and WER. Therefore

we need a method to specify a better initial guess to the

training of mixture densities, so that the WER is at least as

good as the word error rate of a similar but less complex

model. To solve this problem we adopt an approach similar

to the iterative density splitting algorithm used in a maximum

likelihood framework, but applied to the log-linear parameters

λs,l instead of the means, as in the Gaussian mixtures case.

All the λs,l in state s are duplicated and a small offset is

added to both new lambdas to pull them apart. The log-linear

model is covariance normalized), therefore the direction of the

offset is not important. Subsequent training of this newly split

model causes an increase in the objective function as the new

lambdas discriminatively adapt themselves to the training data.

IV. EXPERIMENTS AND RESULTS

A. Speech Corpus and Baseline System

For the performance analysis of discriminative splitting, the

large vocabulary continuous speech recognition task European
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Fig. 1. Flow diagram of the combined discriminative training and splitting
process

Parliament Plenary Sessions (EPPS) is used. It is a part of

2006 TC-STAR ASR evaluation campaign. It is composed

of recorded speeches of the European Parliament in British

English under clean conditions. The training corpus is 40.8

hours and the evaluation corpus is 3.5 hours. The newer

versions of the EPPS English corpus contain more than 100

hours of training data.

The acoustic model of the baseline system uses cross-word

triphones. The lexicon contains 54k words and a trigram

language model is used. The initial features are 16 MFCC

features and with one energy and one voicedness feature.

Nine such consecutive frames are concatenated together, and

then projected by a classical LDA matrix to 45 dimensions.

The classes are 4501 triphone CART leaves and a pooled

covariance is used.

B. Log-linear Training

A flow diagram of the training process is shown in Fig. 1.

The initial alignment between the training acoustic data and its

transcription is obtained by training a Gaussian generative ML

system with 256 densities per triphone state. This alignment

is kept fixed during the later stage of discriminative training,

as it was experimentally found that updating it had virtually

no effect on the optimization procedure.
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Fig. 2. EPPS: Ascent of MMI objective function versus number of training
iterations. The density splitting events are marked by *

The single density Gaussian acoustic model is initialized

by maximum likelihood training. This model is trained log-

linearly to optimize the MMI frame-level criterion. While

this is not the best criterion in terms of WER performance

(sentence level MMI and MPE give better WERs), we choose

frame-level MMI because it guarantees a global maximum

for single densities. Once the single density optimization

has converged, we split it and hence double the number of

parameters. When this in turn has converged, we split it again.

This process is repeated until we get 64 densities per triphone

state. During the course of this process a steady increase in

the objective function value is observed. For up to 8 densities

per state we use a full sum of all the mixture parameters

λs,l. Since the computation time doubles by doubling the

resolution, therefore for 16 densities it becomes prohibitive

i.e. 20 hours for a single iteration. So from here onwards we

switch to viterbi optimization, and set limits on the step sizes

of the RPROP procedure to increase its robustness.

Fig. 2 illustrates the progress of the objective function

against the number of iterations. The blue * marked on the

figure represent the points where splitting has been done and

consequently the number of λ has doubled. The graph shows

a consistent gain in the objective function, even for a large

number of densities per state! Looking at the graph it seems

that the trend would hold if we further continue splitting the

log-linear models.

C. Integration of SAT MLLR and cMLLR

The baseline recognizer has another version with speaker

adaptive training (SAT) with maximum likelihood linear re-
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gression (MLLR) and constrained MLLR (cMLLR). The

MLLR is a feature linear transform while cMLLR transforms

the parameters of the Gaussian model. Their purpose is to re-

move the speaker specific information. For the EPPS task SAT

gives a WER improvement of 3% absolute. Therefore it should

be helpful to integrate SAT into the log-linear discriminative

training framework. For this purpose a maximum likelihood

SAT MLLR is performed on the training data to obtain speaker

specific transformation matrices. These matrices are added to

the log-linear training pipeline of section IV-B and the rest of

the procedure stays the same. For recognition these log-linear

mixture models are converted back into Gaussian models as

in [7] and then SAT MLLR and cMLLR is performed. The

conversion to Gaussian mixture models is necessary since

cMLLR operates on means and covariances and therefore

requires a Gaussian form of the model.

D. Recognition Results

As shown in Fig. 3 and Fig. 4 , the WER differences

between the single density maximum likelihood and discrim-

inative training are quite large. However, as the number of

densities increases, the difference between both is reduced.

For 64 densities per state this difference is 0.7 % absolute

without SAT and 0.5 % with SAT, small but still significant

in relative terms.

To test the effectiveness of discriminative splitting, we take

a ML Gaussian model already split as 64 densities per state,

and train it discriminatively. This is a model where only the

training of λs,l is done discriminatively, and no splitting is
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Fig. 4. EPPS: Comparison of WER of discriminatively split and ML split
log-linear models, with SAT MLLR and cMLLR

done in between. This way we only get a 0.2 % improvement

over the ML model without SAT and 0.1 % improvement with

SAT. This improvement is significantly smaller than what was

obtained by an integrated splitting and training. The possible

reason for this could be the higher susceptibility of such an

approach to get stuck in a local maximum.

An important point to note here is that the frame-level

MMI criterion is not the best criterion in terms of WER. The

purpose of using it for our experiments was its robustness and

global maximum property (for single densities). What remains

to be seen is whether the WER improvements obtained by

discriminative splitting also hold for more complex criteria

like MMI and MPE, and do they lead to better WER than

frame-level MMI?

V. CONCLUSION

In this paper a technique for discriminative splitting for log-

linear mixture densities is presented. For this purpose a Gaus-

sian acoustic model is converted to log-linear form and then

trained to maximize the frame-level MMI objective function.

Experiments have been performed on the large vocabulary

EPPS English task. The objective function gains using this

approach are large and at recognition time this translates to

moderate but significant gains in WER. The approach proves

to be superior to another model where the Gaussian models are

trained discriminatively but the splitting is done beforehand in

a ML framework. However, this has only been observed on

the frame-level MMI criterion. Further work in this direction

would try to achieve WER gains while integrating such a
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discriminative splitting approach into sentence-level MMI and

MPE optimization procedures.
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