
RASR – The RWTH Aachen University
Open Source Speech Recognition Toolkit

D. Rybach, M. Bisani1, P. Dreuw1, C. Gollan1, S. Hahn, G. Heigold1, B. Hoffmeister1, S. Kanthak1, P. Lehnen,

J. Lööf1, D. Nolden, M. Pitz1, M. Sundermeyer, Z. Tüske, S. Wiesler, A. Zolnay1, R. Schlüter, H. Ney

Human Language Technology and Pattern Recognition,
Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany

rasr@i6.informatik.rwth-aachen.de
www.hltpr.rwth-aachen.de/rasr

Abstract—RASR is the open source version of the well-proven
speech recognition toolkit developed and used at RWTH Aachen
University. The current version of the package includes state of
the art speech recognition technology for acoustic model training
and decoding. Speaker adaptation, speaker adaptive training,
unsupervised training, discriminative training, lattice processing
tools, flexible signal analysis, a finite state automata library, and
an efficient dynamic network decoder are notable components.
Comprehensive documentation, example setups for training and
recognition, and tutorials are provided to support newcomers.

I. INTRODUCTION

The interest in speech recognition technology has grown

over the last years. For researchers it requires a lot of effort

to develop a speech recognition system from scratch, which

impedes innovations. Publicly available toolkits, often pub-

lished under an open source license, facilitate the introduction

to research in this area. A couple of open source system are

available, for example CMU Sphinx [1], the HTK Toolkit [2],

Julius [3], and Kaldi [4].

RASR (short for RWTH ASR) has been designed for the

special requirements of research applications. On the one hand

it should be very flexible, to allow for rapid integration of new

methods, and on the other hand it has to be efficient, so that

new methods can be studied on real-life tasks in reasonable

time and system tuning is feasible. The flexibility is achieved

by a modular design, where most components are decoupled

from each other and can be replaced at runtime. The API is

subdivided into several modules and allows for an integration

of (high and low level) methods in external applications.

The applicability of our toolkit to real-life tasks has been

proven by building several competitive large vocabulary sys-

tems in recent international research projects, for example TC-

STAR (European English and Spanish) [5], GALE (Arabic,

Mandarin) [6], [7], and Quaero (English, French, German,

Polish, and Spanish) [8]. For some of these systems, we have

to deal with huge vocabularies and need to process thousands

of hours of speech data.

The flexibility of the toolkit allows for the rapid devel-

opment of applications also in other domains, for example

continuous sign language recognition using video input [9] and

1Former staff members

optical character recognition (OCR), in particular handwriting

recognition [10]. The OCR system is publicly available, too

(cf. Section VIII).

An important aspect for developing a system for a large

vocabulary task is the support for grid-computing. Nearly all

processing steps for acoustic model training and decoding can

be distributed in a cluster computer environment. The paral-

lelization scales very well, because we divide the computations

on the segment level, which requires synchronization only at

the end of the computation.

The toolkit is available for download on our website 2.

We publish our toolkit under an open source license, called

“RWTH ASR License”, which is derived from the Q Public

License v1.0 This license grants free usage including re-

distribution and modification for non-commercial use. Pub-

lications of results obtained through the use of original or

modified versions of the software have to cite our paper [11].

RASR runs on Linux and Mac OS X.

The RASR website also offers comprehensive documenta-

tion, tutorials, and recipes for system development. Support is

offered in form of a forum as part of the website. Furthermore,

we offer a ready-to-use recognizer for English.

In the remainder of this paper we describe the individual

parts of the framework. First we depict the acoustic front-end

and the used models. Then we present the decoder, lattice

processing tools, the finite-state automata library, extensions,

and finally the documentation and supplementary materials.

II. SIGNAL ANALYSIS

Methods for signal analysis are implemented in a generic

framework, called Flow, which is described in the next section.

The predefined acoustic features computed using this frame-

work are defined in the following section.

A. Flow Networks

The Flow module offers a generic framework for data

processing. The data flow is modeled by links connecting

several data processing nodes to a network. The networks

are created at runtime based on a network definition in XML

2http://www.hltpr.rwth-aachen.de/rasr

documents, which makes it possible to implement or modify

data processing tasks without modifying the software.

Flow networks are used to compute acoustic features as

well as to generate and process dynamic time alignments,

i.e. mappings from acoustic features to HMM states. Using

a caching mechanism, which is also implemented as a node,

acoustic features and alignments can be re-used in processing

steps requiring multiple iterations.

B. Acoustic Features

The basic nodes in a Flow network implement the reading of

waveforms from audio files, computing an FFT, miscellaneous

vector operations, and different types of signal normalization.

The networks included in the toolkit compute MFCC features

and a voicing feature [12]. Temporal context can be incorpo-

rated by using derivatives of the acoustic features or an LDA

transformation [13].

The flexibility of the Flow module allows for an easy

implementation of other acoustic features as well as for the

integration of externally computed features.

III. ACOUSTIC MODELING

The acoustic model consists of the transition, the emission,

and the pronunciation model. The pronunciation model gives

for each word in the vocabulary a list of pronunciations

together with a probability of the occurrence. A pronunciation

is modelled by a sequence of context dependent phonemes.

In the current version, the context is limited to triphones,

including context across words.

Strict left-to-right HMM topologies are supported, each

representing a context dependent phoneme. Except for silence,

which is modeled by a single state, all HMMs consist of the

same number of states. The transition model implements loop,

forward, and skip transitions. The existing toolkit supports a

global transition model which distinguishes only the silence

state. Transitions leaving a word are penalized with an extra

cost, the word penalty.

The emission probability of an HMM state is represented

by a Gaussian mixture model. By default, globally pooled

variances are used. However, several other tying schemes,

including density-specific diagonal covariance matrices, are

supported. The acoustic model score computations are opti-

mized for globally pooled variances though.

We provide tools to convert HTK acoustic models to RASR

models. However, not all parameters of the HTK models can

be used, especially the state dependent transition probabilities.

A. State Tying: Phonetic Decision Trees

RASR includes tools to train classification and regression

trees (CART) for phonetic decision trees [14]. The configura-

tion of the CART training is flexible and supports a variety

of phonetic decision tree based tyings. For example, English

systems usually perform best when estimating a separate

tree for each combination of central phoneme and HMM

state. On the other hand, languages like Mandarin benefit

from applying a less strict separation. In addition, the CART

software supports randomization to generate several acoustic

models for subsequent system combination.

State tying definitions from external tools can be imported

by using look-up tables stored in simple text files.

B. Confidence Scores

The relation between the competing hypotheses in a word

graph can be computed by estimating the lattice link posterior

probabilities [15]. Depending on the lattice link labels and the

structure of the lattice it is possible to compute confidence

scores for different units, e.g. word, pronunciation, or HMM

state confidence scores.

For the unsupervised refinement or re-estimation of the

acoustic model parameters (unsupervised training) the toolkit

supports the generation and processing of confidence weighted

state alignments. Confidence thresholding on state level is

supported for unsupervised training as well as for unsupervised

adaptation methods. The toolkit supports different types of

state confidence scores, all described in [16]. The emission

model can be re-estimated based on the automatically anno-

tated observations and their assigned confidence weights, as

presented in [17].

C. Speaker Normalization and Adaptation

RASR supports several methods for speaker normalization

and adaptation: Vocal tract length normalization (VTLN) [18],

maximum likelihood linear regression (MLLR) [19], feature

space MLLR (fMLLR, also known as constrained MLLR,

CMLLR) [20], and dimension reducing affine transforms [21].

VTLN is implemented as a parametric linear warping of

the MFCC filter bank, as described in [22]. The parameter is

estimated using maximum likelihood. Support for one pass, or

so called fast VTLN [18], is also included, by using Gaussian

mixture model classifiers for choosing the warping factors.

Both, VTLN and fMLLR are implemented in the feature

extraction front-end, allowing for use in both recognition and

in training, thus supporting speaker adaptive training.

For MLLR, a regression class tree approach [23] is used

to adjust the number of regression classes to the amount of

adaptation data available. As a variation, it is possible to do

adaptation using only the offset part (and not the matrix part)

of the affine transform.

All the adaptation methods can be utilized for both un-

supervised and supervised adaptation. fMLLR as well as

MLLR estimation can make use of weighted observations,

as produced by the confidence measures described in the

previous section, allowing for confidence based unsupervised

adaptation.

D. Acoustic Model Training

RASR includes tools for the estimation of Gaussian mixture

models by both standard maximum likelihood training and

discriminative training using the minimum phone error (MPE)

criterion [24]. All training steps can be parallelized in a cluster

computer environment, which is indispensable for state-of-the-

art amounts of training data.

The offered documentation (cf. Section IX) includes training

recipes (configuration files and shell scripts), which can be

easily adapted for other tasks.

IV. LANGUAGE MODELING

The toolkit does not include tools for the estimation of

language models. However, the decoder supports N-gram lan-

guage models in the ARPA format, produced e.g. by the SRI

Language Modeling Toolkit [25]. The order of the language

model is not limited by the decoder. Class language models,

defined on word classes instead of words, are supported as

well. Alternatively, a weighted finite state automaton repre-

senting a (weighted) grammar can be used.

V. DECODER

The decoder included in our toolkit is based on the history

conditioned lexical tree (HCLT) search [26]. HCLT search

is a one-pass dynamic programming algorithm which uses

a pre-compiled lexical prefix tree as representation of the

pronunciation dictionary. The search space is constructed

dynamically by integrating parts of the LM as needed during

search. Thereby the decoder can deal with huge vocabularies

and complex language models in a memory efficient way [27].

The beam search strategy retains for every time step only

the most promising hypotheses. Hypotheses with a too low

score compared to the best state hypothesis are eliminated by

acoustic pruning. The beam width, i.e. the number of surviving

hypotheses, is defined by a threshold. Language model pruning
is applied to the word start hypotheses after applying the

language model, which further decreases the active search

space. In addition, histogram pruning restricts the absolute

number of active hypotheses.

The acoustic pruning can be refined by incorporating the

language model probabilities as early as possible using a

language model look-ahead [28]. The anticipated language

model probability for a certain state in the tree is approximated

by the best word end reachable.

The tree lexicon is constructed from the tied HMM-state

sequences of the pronunciations of the words in the vocabulary.

Across-word context dependent models are supported by the

decoder as well [29].

The decoder can generate word graphs (lattices) which is a

compact representation of the set of alternative word sequences

with corresponding word boundaries [30]. This word graph can

be used in later processing steps. Our system produces word

graphs as finite-state automata with attached word boundaries

or alternatively in the HTK standard lattice format.

The computation of acoustic likelihoods can be optionally

accelerated by the use of SIMD instructions [31], batched

computations, and density pre-selection. Scalar quantization

can be applied to both acoustic feature vectors and means of

the mixture models, thus reducing the score computation to

integer operations.

VI. LATTICE PROCESSING

Lattice processing tools can be used for the post-processing

of the word graphs generated by the decoder. RASR includes a

feature-rich framework for lattice processing. Major methods

implemented in this framework are: several techniques for

confusion network (CN) construction, CN decoding, lattice-

and CN-based system combination [32], n-best list generation,

and word confidence score estimation.

The individual methods can be combined with basic opera-

tions (e.g. lattice pruning, file operations, format conversion)

to form a data processing network similar to Flow (cf. Sec-

tion II-A), yielding an implementation of a complete post-

processing pipeline.

VII. FINITE-STATE AUTOMATA

RASR uses finite-state automata for several tasks. The

computation of dynamic time alignments, required for acoustic

model training and speaker adaptation, uses automata for the

construction and representation of the search space. Further-

more, the word lattices generated by the speech recognizer

are represented by finite-state automata. Therefore, the lattices

generated can easily be post-processed by algorithms defined

on weighted finite state transducers.

Finite-state automata are handled by the included RWTH

FSA Toolkit [33], which is also available separately under an

open source license.

VIII. EXTENSIONS

RWTH OCR 3 is an add-on for RASR which adds support

for image (sequence) processing and can be used to develop

competitive handwriting recognition systems [10].

For educational purposes, we offer a small add-on contain-

ing two basic and simple decoders, which can be used in lab

courses for example.

IX. DOCUMENTATION

The documentation is organized in a wiki 4 and covers all

steps of the acoustic model training, multi-pass recognition,

and describes the common concepts of the software and the

used file formats. Emerging questions are answered by our

developers in a support forum.

For a quick introduction, we created a step-by-step recipe

for the development of a small (100 words) recognizer based

on the freely available CMU Census Database. A more verbose

tutorial describes the development of an open vocabulary

ASR system from scratch, including acoustic model training,

language model training, grapheme to phoneme conversion,

and system evaluation based on RASR and other open source

software tools [34]. Both tutorials can be found in the wiki.

In addition, we offer the acoustic model (triphones, 900K

densities), the 4-gram language model (7.5M multi-grams),

and the pronunciation dictionary (60K words) developed for

our EPPS English system together with a ready-to-use one-

pass recognition setup.

3http://www.hltpr.rwth-aachen.de/rwth-ocr
4http://www.hltpr.rwth-aachen.de/rasr/manual

REFERENCES

[1] W. Walker, P. Lamere, P. Kwok, R. S. Bhiksha Raj, E. Gouvea, P. Wolf,
and J. Woelfel, “Sphinx-4: A flexible open source framework for speech
recognition,” Sun Microsystems, Inc, Tech. Rep. SMLI TR-2004-139,
Nov. 2004.

[2] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Woodland,
The HTK Book. Cambridge University Engineering Department, 2006.

[3] A. Lee, T. Kawahara, and K. Shikano, “Julius – an open source real-
time large vocabulary recognition engine,” in EUROSPEECH, Aalborg,
Denmark, Sep. 2001, pp. 1691–1694.

[4] D. Povey et al., “The Kaldi speech recognition toolkit,” in ASRU, Big
Island, Hawaii, USA, Dec. 2011.

[5] J. Lööf, C. Gollan, S. Hahn, G. Heigold, B. Hoffmeister, C. Plahl, D. Ry-
bach, R. Schlüter, and H. Ney, “The RWTH 2007 TC-STAR evaluation
system for European English and Spanish,” in INTERSPEECH, Antwerp,
Belgium, Aug. 2007, pp. 2145–2148.

[6] D. Rybach, S. Hahn, C. Gollan, R. Schlüter, and H. Ney, “Advances in
Arabic broadcast news transcription at RWTH,” in ASRU, Kyoto, Japan,
Dec. 2007, pp. 449–454.

[7] C. Plahl, B. Hoffmeister, M.-Y. Hwang, D. Lu, G. Heigold, J. Lööf,
R. Schlüter, and H. Ney, “Recent improvements of the RWTH GALE
Mandarin LVCSR system,” in INTERSPEECH, Brisbane, Australia, Sep.
2008, pp. 2426–2429.

[8] M. Sundermeyer, M. Nußbaum-Thom, S. Wiesler, C. Plahl, A. El-
Desoky Mousa, S. Hahn, D. Nolden, R. Schlüter, and H. Ney, “The
RWTH 2010 Quaero ASR evaluation system for English, French, and
German,” in ICASSP, Prague, Czech Republic, May 2011, pp. 2212–
2215.

[9] P. Dreuw, D. Rybach, T. Deselaers, M. Zahedi, and H. Ney, “Speech
recognition techniques for a sign language recognition system,” in
INTERSPEECH, Antwerp, Belgium, Aug. 2007, pp. 2513–2516.

[10] P. Dreuw, D. Rybach, G. Heigold, and H. Ney, RWTH OCR: A Large
Vocabulary Optical Character Recognition System for Arabic Scripts.
London, UK: Springer, Apr. 2011, ch. Part I: Development.

[11] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf, R. Schlüter,
and H. Ney, “The RWTH Aachen University open source speech
recognition system,” in INTERSPEECH, Brighton, U.K., Sep. 2009, pp.
2111–2114.

[12] A. Zolnay, R. Schlüter, and H. Ney, “Extraction methods of voicing
feature for robust speech recognition,” in European Conference on
Speech Communication and Technology, vol. 1, Geneva, Switzerland,
Sep. 2003, pp. 497–500.

[13] R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for im-
proved large vocabulary continuous speech recognition,” in ICASSP,
vol. 1, San Francisco, CA, USA, Mar. 1992, p. 1316.

[14] K. Beulen, E. Bransch, and H. Ney, “State-tying for context dependent
phoneme models,” in EUROSPEECH, vol. 3, Rhodes, Greece, Sep.
1997, pp. 1179–1182.

[15] G. Evermann and P. Woodland, “Large vocabulary decoding and
confidence estimation using word posterior probabilities,” in ICASSP,
Istanbul, Turkey, Jun. 2000, pp. 1655 – 1658.

[16] C. Gollan and M. Bacchiani, “Confidence scores for acoustic model
adaptation,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing, Las Vegas, NV, USA, Apr. 2008, pp. 4289–4292.

[17] C. Gollan and H. Ney, “Towards automatic learning in LVCSR: Rapid
development of a Persian broadcast transcription system,” in Interspeech,
Brisbane, Australia, Sep. 2008, pp. 1441–1444.

[18] L. Welling, S. Kanthak, and H. Ney, “Improved methods for vocal tract
normalization,” in ICASSP, vol. 2, Phoenix, AZ, USA, Mar. 1999, pp.
761 – 764.

[19] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden markov
models,” Computer Speech and Language, vol. 9, no. 2, pp. 171 – 185,
Apr. 1995.

[20] M. J. F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech and Language, vol. 12,
no. 2, pp. 75 – 98, Apr. 1998.

[21] J. Lööf, R. Schlüter, and H. Ney, “Efficient estimation of speaker-specific
projecting feature transforms,” in ICSLP, Antwerp, Belgium, Aug. 2007,
pp. 1557 – 1560.

[22] E. Eide and H. Gish, “A parametric approach to vocal tract length
normalization,” in ICASSP, vol. 1, Atlanta, GA, USA, May 1996, pp.
346 – 349.

[23] C. Leggetter and P. Woodland, “Flexible speaker adaptation using
maximum likelihood linear regression,” in ARPA Spoken Language
Technology Workshop, Austin, TX, USA, Jan. 1995, pp. 104 – 109.

[24] D. Povey and P. Woodland, “Minimum phone error and I-smoothing for
improved discriminative training,” in ICASSP, Orlando, FL, USA, May
2002, pp. 105–108.

[25] A. Stolcke, “SRILM - an extensible language modeling toolkit,” in
ICSLP, Denver, CA, USA, Sep. 2002.

[26] H. Ney and S. Ortmanns, “Progress in dynamic programming search for
LVCSR,” Proceedings of the IEEE, vol. 88, no. 8, pp. 1224–1240, Aug.
2000.

[27] D. Rybach, R. Schüter, and H. Ney, “A comparative analysis of dynamic
network decoding,” in ICASSP, Prague, Czech Republic, May 2011, pp.
5184–5187.

[28] S. Ortmanns and H. Ney, “Look-ahead techniques for fast beam search,”
Computer Speech and Language, vol. 14, no. 1, pp. 15–32, Jan. 2000.

[29] A. Sixtus and H. Ney, “From within-word model search to across-
word model search in large vocabulary continuous speech recognition,”
Computer Speech and Language, vol. 16, no. 2, pp. 245–271, May 2002.

[30] S. Ortmanns, H. Ney, and X. Aubert, “A word graph algorithm for
large vocabulary continuous speech recognition,” Computer Speech and
Language, vol. 11, no. 1, pp. 43–72, Jan. 1997.

[31] S. Kanthak, K. Schütz, and H. Ney, “Using SIMD instructions for fast
likelihood calculation in LVCSR,” in ICASSP, Istanbul, Turkey, Jun.
2000, pp. 1531–1534.

[32] B. Hoffmeister, “Bayes risk decoding and its application to system
combination,” Ph.D. dissertation, RWTH Aachen University, Aachen,
Germany, Jul. 2011.

[33] S. Kanthak and H. Ney, “FSA: An efficient and flexible C++ toolkit for
finite state automata using on-demand computation,” in ACL, Barcelona,
Spain, Jul. 2004, pp. 510–517.

[34] S. Hahn and D. Rybach, “Building an open vocabulary ASR system
using open source software,” in INTERSPEECH, Florence, Italy, Aug.
2011, Tutorial M3.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Acro8.recommended.6Dec2006_FontEmb\(1.7\)'] Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

