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ABSTRACT
We report results on speaker diarization of telephone conver-
sations. This speaker diarization process is similar to the mul-
tistage segmentation and clustering system used in broadcast
news. It consists of an initial acoustic change point detection
algorithm, iterative Viterbi re-segmentation, gender labeling,
agglomerative clustering using a Bayesian information crite-
rion (BIC), followed by agglomerative clustering using state-
of-the-art speaker identification methods (SID) and Viterbi re-
segmentation using Gaussian mixture models (GMMs). The
Viterbi re-segmentation using GMMs is new, and it reduces
the diarization error rate (DER) by 10%. We repeat these
multistage segmentation and clustering steps twice: once with
MFCCs as feature parameters for the GMMs used in gender
labeling, SID and Viterbi re-segmentation steps, and another
time with Gaussianized MFCCs as feature parameters for the
GMMs used in these three steps. The resulting clusters from
the parallel runs are combined in a novel way that leads to a
significant reduction in the DER. On a development set con-
taining 30 telephone conversations, this combination step re-
duced the DER by 20%. On another test set containing 30
telephone conversations, this step reduced the DER by 13%.
The best error rate we have achieved is 6.7% on the develop-
ment set, and 9.0% on the test set.

Index Terms— speaker diarization, speaker segmenta-
tion and clustering, BIC clustering, SID clustering.

1. INTRODUCTION

Speaker diarization is the task of automatically partitioning
an input audio stream into homogeneous segments and as-
signing these segments to sources. In speaker diarization,
these sources generally include particular speakers, music, or
background noise. The speaker diarization task is relative to
a given show or audio file and there is no prior knowledge
of the number of speakers involved. The speaker labels pro-
duced are relative to the audio recording. They show which
audio segments were spoken by the same speaker, but do not
indicate the true identity of the speaker.

This work was partly funded by the Canadian Department of National
Defence.

Speaker diarization has many applications. Some well-
known applications include tracking speakers through various
recordings, speaker-based indexing of data, speaker adapta-
tion in speech recognition, etc. This paper focuses on speaker
diarization of telephone conversations. A potential applica-
tion of speaker diarization of telephone conversations is the
automated recording of target speakers. In general, law en-
forcement officials can get permission to record calls when
a particular person is involved in these conversations. To re-
spect the court order that only calls containing this speaker
be recorded, speaker diarization followed by speaker identi-
fication are necessary steps. This process can eventually be
followed by automated transcription of the audio segments of
the speaker of interest.
A constraint imposed by our funder was that the speaker

diarization task on telephone conversations should not be re-
stricted to two speakers. For this reason, we concatenated
telephone conversations to generate recordings with more
than two speakers, and pursued algorithms that do not assume
a fixed number of speakers.
Some initial work on speaker segmentation of telephone

conversations was done at AT&T [5] on cutomer care conver-
sations. Recent work on speaker diarization for NIST Rich
Transcription has primarily focused on broadcast news. Tran-
ter and Reynolds [6] give a good overview of speaker diariza-
tion for broadcast news. Several methods of combining dif-
ferent diarization systems exist. One example is the piped
system [7] [8] where the segmentation from the CLIPS sys-
tem is piped to the LIA system for better initialization. An-
other example is the cluster voting scheme [9] that combines
the clusters from two speaker diarization systems. Here, we
have merged the outputs of our diarization system using two
different feature parameters to lower the diarization error rate
(DER).
To get good speaker diarization results on telephone con-

versations, we implemented multi-stage speaker diarization
that gave good results for broadcast news audio [1] [2]. The
philosophy is to first use a fast acoustic change point detection
algorithm that over-segments the data, followed by an itera-
tive Viterbi re-segmentation to refine the segment boundaries.
The ensuing BIC agglomerative clustering combines the seg-
ments into bigger clusters. These bigger clusters can then be
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modeled by more complex models for further clustering. We
added a Viterbi re-segmentation stage using GMMs to this
multi-stage system in order to improve this system even fur-
ther. This new stage reduced the overall diarization error rate
(DER) by 10%. Another contribution here is in combining
speaker clusters using two different feature parameters to get
even lower DER.
In speaker recognition, Gaussianized MFCCs (also

known as feature-warped MFCCs) [4] give lower error rates
than MFCCs. These Gaussianized MFCCs have been suc-
cessfully used for speaker diarization of broadcast news [1]
[2]. We used these Gaussianized MFCCs as feature param-
eters for the GMMs used in gender labeling, SID cluster-
ing and in Viterbi re-segmentation using GMMs. We re-
peat these steps in parallel using MFCCs instead of Gaus-
sianized MFCCs in gender labeling, in SID clustering, and
in Viterbi re-segmentation using GMMs, and combine the
resulting clusters from the two systems. This combination
reduces the DER by another 10% to 20%. The combina-
tion steps are shown in Figs. 1 and 2. For the two sepa-
rate clusterings of the acoustic data, we first find the com-
mon clusters. The common clusters are the cluster segments
where the corresponding cluster labels match. For each clus-
ter in these resulting common clusters, we generate a MAP-
adapted GMM. For the remaining segments, we use these
MAP-adapted GMMs to classify each segment as belonging
to the cluster giving the highest likelihood. Overall, this com-
bination reduced the DER for the development set by 20%,
and for the test set by 13%.
The paper is organized as follows: Sec. 2 gives the

overview of the system, Sec. 3 describes the data used for
the telephone conversations, Sec. 4 discusses the effect of rel-
evant modules and the experiments carried out to optimize the
modules. Sec. 5 gives the conclusions.

2. SPEAKER DIARIZATION SYSTEM OVERVIEW

A flowchart of our speaker diarization system is shown in
Fig. 1. It consists of an acoustic change point detection step
(CPD) that uses a symmetric Kullback-Leibler (KL2) metric,
and a 13-dimensional feature vector (12 MFCCs + energy)
with diagonal covariance matrix [3]. This is followed by an
iterative Viterbi re-segmentation stage that models each seg-
ment by its mean and variance and finds the optimal bound-
aries between segments. The next stage is gender determina-
tion that labels each segment from the previous step as male
or female. The resulting male/female segments are clustered
separately using BIC agglomerative clustering that uses a 13-
dimensional feature vector (12 MFCCs + energy) with full
covariance matrix [1]. In this step, the clustering threshold is
set so as to under-cluster the segments. The next step is sepa-
rate male/female speaker identification-style (SID) clustering
that uses more complex models of the clusters for final clus-
tering. This is followed by iterated Viterbi re-segmentation
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Fig. 1. Multistage speaker diarization algorithm combining
clusters from Gaussianized and non-Gaussianized features.

using adapted GMM models for each cluster from the SID
clustering stage.

The novelty here is the use of two different features in
the GMMs used to carry out speaker diarization as shown in
the left and right flowcharts of Fig. 1. The two separate fea-
tures are 26 MFCCs (12 MFCCs + energy + their first dif-
ferences), and their Gaussianized versions [4] using an incre-
mental 3-sec window. The resulting clusters from the Gaus-
sianized and non-Gaussianized features are then combined.
The combination results in common clusters and audio seg-
ments that are marked for re-classification (see Fig. 2). We
generate adapted GMMs (from male/female UBMs) for the
common clusters, and classify the remaining segments using
these cluster-adapted GMMs.
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3. DATA SET FOR TELEPHONE CONVERSATIONS

For speaker diarization of telephone conversations, we
need recorded telephone conversations with well-marked
speaker segment boundaries. Such recordings are available
from NIST RT-2004 conversational telephone speech (CTS)
recordings. We only had access to the RT-2004 training set,
not the development or the evaluation set. We took 30 conver-
sations from the RT-2004 CTS training set and labeled them
as a development set. We concatenated pairs of calls to create
calls with four speakers per audio file. This was done in or-
der to avoid tuning the algorithms to two speakers per audio
file. We refer to this set as DEV2Calls. DEV2Calls contains
15 audio files of 20 minute duration each. We took another
set of 30 calls from the RT-2004 CTS training set (disjoint
fromDEV2Calls) and created 15 audio files with 2 calls each.
We call this set TEST2Calls. Two of these audio files had a
common speaker in the two calls they contain. Therefore, 13
audio files have four speakers each, and two audio files have
three speakers each. All the audio recordings use summed
sides (a.k.a. two-wire).
We manually determined the gender of the speakers in

another set of 25 calls from the RT-2004 CTS training set
(disjoint from DEV2Calls and TEST2Calls), and used these
as a training set for male/female Gaussian mixture models
(GMM) used as universal background models (UBM). We
call these audio files TRAIN. TRAIN contains 20 female and
30 male speakers, for a total of roughly 4 hours of speech.

4. EXPERIMENTS AND RESULTS

We carried out many experiments to measureDER on both the
DEV2Calls and TEST2Calls data sets. The philosophywas to
measure the effect on overall performance of the system when
we perturb the parameters for one single module. In the text,
we refer to the flowchart on the left as the Gaussianized sys-
tem, and the flowchart on the right as the non-Gaussianized
system.

4.1. Diarization Error Rate

The main metric of performance is the diarization error rate
(DER) as defined by NIST in the RT-04 Fall evaluation
[10]. The DER is the sum of three errors: missed speech
(speech in the reference but not in the hypothesis), false alarm
speech (speech in the hypothesis but not in the reference), and
speakermatch error (reference and hypothesized speakers dif-
fer). We used the md-eval-v17.pl Perl script from the NIST
website to estimate this DER.

4.2. Gaussianized and non-Gaussianized Systems

Here, we outline in detail the features pertinent to this paper.
Some of the details are also given in [11]. As outlined in

Sec. 2, the CPD algorithm [3] looks for a maximum in over-
lapping n second windows, and classifies this maximum as
a change point if the KL2 metric exceeds a distance thresh-
old. This scanning window length n is important, as it has a
significant effect on the overall DER.
The GMMs used in SID agglomerative clustering and in

Viterbi re-segmentation are generated by adapting universal
background models (UBM) with the corresponding cluster
data. The male/female UBMs with 256 diagonal Gaussians
are trained on the TRAIN and the development data. For the
development data, we used the segments labeled as male or
female after the gender labeling step. For adaptation, we used
variable-priorMAP adaptation (VP-MAP) [2] since this adap-
tation gave us the best results.
In agglomerative BIC clustering, the overall DER is sen-

sitive to the λ used to compute the Bayesian Information Cri-
terion (ΔBIC) [1] [2]. The optimal value of λ was 3.0 for
the Gaussianized system, and 3.5 for non-Gaussianized sys-
tem. In SID agglomerative clustering, the DER was sensitive
to the threshold δ [1] used for stopping the clustering pro-
cess (optimal δ = -0.05). With the optimized parameters for
DEV2Calls, we got 8.4% DER for the Gaussianized system,
and 8.3% DER for the non-Gaussianized system.

4.3. Viterbi Re-segmentation using GMMs

The initial change point detection algorithm is followed by
Viterbi re-segmentation. The segment boundaries obtained
from Viterbi re-segmentation step are carried over all the way
to SID clustering. These segment boundaries were obtained
with segment means and variances, while the SID clustering
uses much more complex models. It seemed obvious that us-
ing the more complex models from the last stage of SID clus-
tering should lead to better segment boundaries, so we used
the adapted GMMs for each cluster to perform Viterbi re-
segmentation again. We carried out iterative re-segmentation
until convergence or for a maximum of 6 iterations. After
each iteration, we re-computed the adapted GMMs using the
new segment boundaries. The number of segments and their
association to clusters was not changed. We also imposed a
1 second minimum duration for segment boundaries between
any two consecutive segments. For the Gaussianized system,
this process reduced the overall DER for DEV2Calls from
9.5% to 8.4%. For the test set TEST2Calls also, Viterbi re-
segmentation reduced the DER for the Gaussianized system
from 11.5% to 10.4%.

4.4. Merging Clusters from Gaussianized and non-
Gaussianized Systems

We combine the clusters from the Gaussianized and non-
Gaussianized systems to reduce the DER even further. The
overriding principle in combining clusters from the two di-
arization systems is to keep the clusters common to both
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Fig. 2. Flowchart of process for combining clusters resulting
from Gaussianized and non-Gaussianized systems.

systems, since we have more confidence in the correct as-
signment of these common clusters. We generate VP-MAP
adapted GMMs for these clusters. These GMMs are used
to re-classify the remaining segments. The remaining seg-
ments are the segments not common to the two systems. The
flowchart for this cluster combination is shown in Fig. 2. We
explain the algorithm for combining the clusters using a sim-
ple example.
Suppose that the Gaussianized system results in 2 clus-

ters and 10 segments (11 segment boundaries). Assume that
the non-Gaussianized system results in 3 clusters and 15 seg-
ments (16 segment boundaries). If all the segment boundaries
are different (except for the first and the last), then when we
pool the boundaries, there will be 25 segment boundaries or
24 segments altogether. If there are some common bound-
aries, then there will be between 15 and 24 segments after
pooling. Each of these segments is labeled with the corre-
sponding cluster IDs from both systems. This pooling of seg-
ments simplifies the implementation of the rest of the steps.
For example, to compute the overlap of cluster 0 from the
Gaussianized system and cluster 1 from the non-Gaussianized
system, we simply go through all the segments and add the
durations of the segments that belong to cluster 0 of the Gaus-
sianized system and cluster 1 of the non-Gaussianized system.
As shown in Fig. 2, we start with the largest cluster in

the Gaussianized system. We find the corresponding cluster
in the non-Gaussianized system with the maximum number

of frames in common with this cluster. All the common seg-
ments in the two corresponding clusters form the first output
cluster. The segments that are not common between these
two clusters are marked for re-classification. These two clus-
ters are then removed from further consideration. We proceed
similarly to find the largest remaining cluster in the Gaussian-
ized system and find the corresponding cluster in the non-
Gaussianized system with the maximum overlap. In the end,
for the example given, we will probably end up with two out-
put clusters and many segments that need re-classification.
Sometimes, near the end, some of the smaller Gaussian-

ized clusters may have no matching non-Gaussianized clus-
ter. This can happen if all the segments for this Gaussianized
cluster correspond to the segments of the non-Gaussianized
clusters that have already been matched to bigger Gaussian-
ized clusters. In that case, these smaller Gaussianized clusters
are lost (all the segments for these clusters have been marked
for re-classification). This actually reduces diarization error
rate, since in most cases, these clusters happen to be spurious
clusters.
The re-classification of the segments is done as follows.

We first remove all the silence frames from the output clusters
and the segments to be reclassified. The silence frames are the
frames that have been tagged as silence by the voice activity
detector. These silence frames are assigned to a new cluster
labeled as silence. We generate one VP-MAP-adapted GMM
for each output cluster, and the silence cluster. If the cluster is
male, we use the male UBM for adaptation, and we proceed
similarly for female clusters. (For silence, we used the male
UBM for adaptation.) We re-label each segment that has been
tagged for re-classification using these GMMs: the segment
is given the label of the cluster with the highest likelihood. A
simple example of cluster merging is shown in Fig. 3.

Gaussian
clusters silence spkr1 spkr2 spkr1 spkr2 spkr3 silence

silenceSP2SP1SP2SP1silenceMFCC
clusters

combined
clusters silence S1 X S2 X S1 X S2 X silence

Fig. 3. Example showing combination of clusters from Gaus-
sianized and non-Gaussianized (MFCC) systems. Segments
marked X in the combined cluster are reclassified using
adapted GMMs for S1, S2 and silence.

While optimizing the DER for DEV2Calls with the com-
bination of the two systems as outlined above, we realized
that the DER is sensitive to the scanning window length used
for change point detection. We varied the scanning length for
both the Gaussianized and the non-Gaussianized systems and
measured the combined DER. Table 1 shows that for all com-
binations of scanning lengths, we get the lowest DER with
the combined system. The lowest DER is 6.7% for a scan-
ning length of 1.9 sec for the Gaussianized system and 1.3
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sec for the non-Gaussianized system. Compared to the lowest
DER for any scanning length for the single system (8.3%),
this is a reduction of 20% in DER. For this combination, the
missed speech is 0.8%, the false alarm speech is 1.7%, and the
speaker match error is 4.2%. The primary difference for the
combined system is the lowering of the speaker match error
rate from 5.7% to 4.2%, a reduction of 26% in speaker match
error rate.
The silence models seem to have little impact on the

missed speech and the false alarm speech rates. What could
have made a difference is if we used two different sensitiv-
ity levels for the voice activity detector. Then there would
have been more silent segments (that were potentially speech
segments) that needed reclassification.

Table 1. Scanning window lengths (SWL) versus DER for
Gaussianized (G), non-Gaussianized (NG), and combined
systems for DEV2Calls.

SWL G SWL NG DER G DER NG DER combined
1.3 1.3 8.6% 9.0% 7.7%
1.5 1.3 8.4% 9.0% 7.5%
1.7 1.3 8.6% 9.0% 7.4%
1.9 1.3 8.6% 9.0% 6.7%
2.1 1.3 8.9% 9.0% 7.9%
1.5 1.5 8.4% 8.3% 7.7%
1.7 1.5 8.6% 8.3% 7.6%
1.9 1.5 8.6% 8.3% 7.3%
2.1 1.5 8.9% 8.3% 8.0%

4.5. Results on the Test Set

We ran the TEST2Calls test set through the same algorithms
using the same thresholds as for DEV2Calls. For this test set,
we created separate male/female UBM models trained from
the training set and the labeled male or female segments in
the test set after the gender labeling step. The scanning win-
dow length was varied in the same fashion as for DEV2Calls.
The DER for the Gaussianized, non-Gaussianized, and the
combined system are shown in Table 2. As we can see, the
best DER for any single system is 10.4%, while the best com-
bined DER is 9.0%, a drop of 13% in DER. For every pair
of scanning lengths for Gaussianized and non-Gaussianized
systems, the DER of the combined system is the lowest. The
boldface row in table 2 shows the results corresponding to the
thresholds for best DEV2Calls results (boldface row in table
1).
We notice from table 2 that for TEST2Calls, the DER for

the Gaussianized system (10.4%) is lower than that for the
non-Gaussianized system (12.3%). For DEV2Calls, the DER
for the Gaussianized system is close to the DER for the non-
Gaussianized system (see table 1). The difference in DER be-
tween the Gaussianized and the non-Gaussianized systems is

not as big as reported for broadcast news [2]. This is probably
because it is the same call (same channel) and the background
noise does not vary much. The difference is much more pro-
nounced in the broadcast news probably due to the varying
music noise in the background.

Table 2. Scanning window lengths (SWL) versus DER for
Gaussianized (G), non-Gaussianized (NG), and combined
systems for TEST2Calls.

SWL G SWL NG DER G DER NG DER combined
1.5 1.3 11.1% 12.5% 10.1%
1.7 1.3 10.4% 12.5% 9.0%
1.9 1.3 11.7% 12.5% 10.0%
1.7 1.1 10.4% 14.0% 9.2%
1.7 1.5 10.4% 12.3% 9.3%
1.7 1.7 10.4% 13.1% 9.5%
1.5 1.5 11.1% 12.3% 10.3%
1.5 1.7 11.1% 13.1% 10.3%

5. CONCLUSIONS

In this paper, we have applied state-of-the-art speaker diariza-
tion algorithms on telephone conversations. These algorithms
are similar to the multistage segmentation and clustering sys-
tems [1] [2] used successfully in broadcast news. We added
a Viterbi re-segmentation stage using GMMs that reduced the
DER by 10%. We have further enhanced these algorithms
by combining the clustering results from two independent
speaker diarization systems: one using Gaussianized feature
parameters and the other using non-Gaussianized feature pa-
rameters. These enhancements result in the reduction of DER
from 8.3% to 6.7% for DEV2Calls, and from 10.4% to 9.0%
for Test2Calls. This is approximately a 20% reduction in error
rate for DEV2Calls and 13% for TEST2Calls. Also, combin-
ing the two systems using different scanning window lengths
is more effective than using the same scanning window length
for the two systems.
One issue is the choice of the two feature sets: the Gaus-

sianized features are considered channel/noise-robust while
theMFCCs are channel/noise-sensitive. This choice results in
significantly different cluster assignments that probably lead
to the improvements that we have observed. Whether other
feature sets will lead to similar improvements can only be an-
swered after extensive experimentation.
The other issue is how our system combination compares

with other system combinations. As far as the ELISA piped
system [7] is concerned, the two systems seem to be comple-
mentary. In theory, we could possibly pipe our segmentation
using the Gaussian features to the HMM-based LIA system
[7] and get clusters with lower DER. We could apply the same
process to the non-Gaussianized system and get clusters with
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lower DER. Combining the two output clusters using our ap-
proach would possibly result in even lower DER.
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