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ABSTRACT
During the past few years, speaker diarization has achieved
satisfying accuracy in terms of speaker Diarization Error Rate
(DER). The most successful approaches, based on agglome-
rative clustering, however, exhibit an inherent computational
complexity which makes real-time processing, especially in
combination with further processing steps, almost impossi-
ble. In this article we present a framework to speed up agg-
lomerative clustering speaker diarization. The basic idea is
to adopt a computationally cheap method to reduce the hy-
pothesis space of the more expensive and accurate model se-
lection via Bayesian Information Criterion (BIC). Two strate-
gies based on the pitch-correlogram and the unscented-trans-
form based approximation of KL-divergence are used inde-
pendently as a fast-match approach to select the most likely
clusters to merge. We performed the experiments using the
existing ICSI speaker diarization system. The new system us-
ing KL-divergence fast-match strategy only performs 14% of
total BIC comparisons needed in the baseline system, speeds
up the system by 41% without affecting the speaker Diariza-
tion Error Rate (DER). The result is a robust and faster than
real-time speaker diarization system.

Index Terms— Speaker diarization, fast-match, pitch-cor-
relogram, BIC, KL-divergence

1. INTRODUCTION

The goal of speaker diarization is to segment audio into spea-
ker-homogeneous regions with the ultimate goal of answer-
ing the question “who spoke when?” [1]. Many state-of-
the-art systems use a combination of agglomerative cluster-
ing with Bayesian Information Criterion (BIC) [2] and Gaus-
sian Mixture Models (GMMs) of frame-based cepstral fea-
tures (MFCCs) [1][3]. These systems now obtain satisfac-
tory accuracy in terms of speaker diarization error. How-
ever, the approach adopted in these systems exhibits inherent
complexity due to the iterative cluster merging and sophisti-
cated model selection procedure, which is often several times
slower than real-time [4]. For most of the applications of
speaker diarization, e.g. automatic speech recognition (ASR),

large volume audio retrieval and multi-modal meeting event
detection, faster than real-time performance is required.
In this paper, we present a fast speaker diarization ap-

proach by introducing a fast-match component to largely re-
duce the hypothesis space of the BIC-based model selection.
The basic idea of fast-match is using a computationally cheap
method to reduce the hypothesis space of the more expensive
and accurate search, which has been widely used for word de-
coding in speech recognition [5]. Fast-match is essentially a
search space tailoring technique.
Two fast-match strategies are explored in this work, each

of which can be used separately. The first strategy uses the
pitch-correlogram [6], as a type of prosodic feature, to cap-
ture speaker variances by looking at the pitch patterns. This
technique has been successfully used for fast speaker recog-
nition. In the second strategy we use KL-divergence, as a nat-
ural measurement of the difference between two probabilistic
distributions. Although no closed-form expression exists for
the KL-divergence between two GMMs, we utilize the accu-
rate and efficient unscented-transform based approximation,
which involves only evaluating likelihoods of Gaussian dis-
tributions at a few points and can achieve the approximation
precision up to second order [7].
Based on these two strategies, we implemented two inde-

pendent light-weight scoring schemes to measure how likely
two clusters are to be merged before applying the more ex-
pensive model selection via BIC. Our proposed technique can
reduce the hypothesis space by 86% and speed up the system
by 41%. We achieve faster than real-time speaker diarization
without affecting the speaker diarization error rate using an
existing ICSI diarization system [3], which has obtained ex-
cellent results in past NIST evaluations.
The rest of this article is organized as follows: Section 2

introduces the framework of our fast-match approach for fast
speaker diarization; Section 3 explains the pitch-correlogram
and how it is used for fast-match in speaker diarization; Sec-
tion 4 discusses the fast-match technique using the unscented-
transform based approximation of KL-divergence; Section 5
shows the experiments and presents the results; Section 6 fi-
nally summarizes this article and points out future work.
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Fig. 1. Speaker diarization using agglomerative clustering, as
explained in Section 2.

2. FAST-MATCH FRAMEWORK FOR FAST
SPEAKER DIARIZATION

The agglomerative clustering approach used by many speaker
diarization systems starts with a large number of initial clus-
ters and proceeds by an iterative procedure of cluster merging,
model re-training and re-alignment, as depicted in Figure 1.
A more detailed description can be found in [7] [3].
In the cluster merging step, a merge score, which mea-

sures the goodness of model fitting using one merged model
or two separate models based on Bayesian Information Crite-
rion (BIC), is calculated between each two merge candidates.
This measurement is then used to determine which two clus-
ters should be merged or whether the merge should terminate.
It terminates when no merging will improve the BIC score.
The computational load of such a system can be decom-

posed into three components: (1) find the best merge pair
and merge; (2) model re-training and re-alignment; (3) other
costs. At each iteration, new models are to be trained and
compared after re-alignment of speech frames. After profiling
the run-time distribution of an existing ICSI speaker diariza-
tion system [3], we find that the BIC score calculation takes
62% of the total run-time, as depicted in Table 1.

Component Run-time
Find Best Merge Pair and Merge 62 %
Model Re-training/Re-alignment 28 %
Other 10 %
Total 100 %

Table 1. Run-time distribution of the ICSI speaker diarization
system.

Analyzing how the best merge hypothesis is found, the
reason for the high cost of the BIC score calculation can be
identified. Let Da and Db represent the data belonging to
cluster a and cluster b, which are modeled by θa and θb, re-
spectively. D represents the data after merging a and b, i.e.
D = Da∪Db, which is parameterized by θ. The Merge Score
(MS) is calculated as Eq. (1) [7]:

MS(θa, θb) = log p(D|θ)− (log p(Da|θa) + log p(Db|θb))
(1)

Fig. 2. Fast-match framework of efficient cluster merging for
fast speaker diarization, as explained in Section 2.

For each merge hypothesis a and b, a new GMM (θ) needs to
be trained. When the system is configured to use more initial
clusters, which is preferable for better initial cluster purity,
the computational load becomes prohibitive.
After identifying the BIC score calculation as the bottle-

neck for the whole system, we use a fast-match approach by
introducing a new light-weight component in the clustering
merging to speed up the system as shown in Figure 2. This
component is used as an intermediate step to determine the
most likely merge hypotheses and only these merge hypothe-
ses are passed to the more expensive BIC merge score calcu-
lation.
In the rest of this article, two strategies based on the pitch-

correlogram and the unscented transform approximation of
KL divergence between GMMs will be introduced. We would
also like to point out that this framework is general and many
other fast-match strategies can be used for speeding up a di-
arization system using agglomerative clusteringwith Bayesian
Information Criterion. The main requirements are: the strat-
egy should generate scores which roughly correlate with BIC
scoring and it should be computationally efficient.

3. PITCH-CORRELOGRAM FAST-MATCH
APPROACH

Speech is normally thought of as a physical process consist-
ing of a sound source (i.e. the vocal chords) and a channel,
which includes the vocal tract, the tongue, lips and etc. This
is also known as the speech production model [8]. Pitch anal-
ysis tries to capture the fundamental frequency of the sound
source. A pitch-correlogram [6] can be used to capture the
variations of pitch dynamics among different speakers when
sufficient data is available.
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3.1. Pitch-correlogram

The pitch-correlogram is used to capture pitch dynamics by
looking at the statistics of pitch patterns at frame level dis-
tance [6]. Specifically, a pitch-correlogram (H) is the joint
distribution of quantized pitch bands explored at certain frame
level distances (k). When k is set to 1, the pitch-correlogram
is a 2-dimensional table H = [hij ], which basically collects
the bigram statistics of the quantized pitch of neighboring
frames as shown in Eq. (2):

hi,j = #(i,j)
n−1 ,

∑M
i,j=1 hi,j = 1, (2)

where #(i, j) counts the occurrences of the i-th band fol-
lowed by the j-th band among all neighboring frames and n
is the total number of frames. Unvoiced frames are mapped
to a single pitch bin.
Pitch varies by 2% − 10% in successive voiced frames,

which implies that the transition of the pitch bands between
neighboring voiced frames is lazy in the sense that they are
dominated by small band change. H turns out to be a very
sparse matrix with a lot of zero values on off-diagonal en-
tries. Human pitch roughly ranges between 50-500 Hz (or in
logarithm pitch domain log 50− log500). We use 110 bins to
linearly quantize this pitch region (or logarithm of this pitch
region).
The pitch-correlogram generation only involves counting

bigrams of pitch bands and can be calculated efficiently. The
rest of this section will discuss three different kinds of dis-
tance used to measure the distance between two pitch-corre-
lograms.

3.2. Distance measure

Since the pitch-correlogram is essentially a histogram of quan-
tized pitch bigrams, as mentioned before, the quantitativemea-
sure of their dissimilarity can be calculated using bin-by-bin
histogram dissimilarity measurements as summarized in [9].
Three different kinds of bin-by-bin dissimilarity measure-

ments are adopted, i.e. Minkowsky-form distance (dLr
) ,

histogram intersection distance (d̂T) and Jeffrey divergence
(dJ ), with details in [9]. We empirically found the Jeffrey di-
vergence (dJ ) performs best as will be shown in Section 5.4.
SupposeHi andHj are the pitch-correlogramfor cluster i and
j, h(k)

i is the k-th bin of the histogramHi. Jeffrey divergence
(dJ ) is calculated as:

dJ (Hi, Hj) =
∑

k

(h
(k)
i log

h
(k)
i

m(k)
+ h

(k)
j log

h
(k)
j

m(k)
), (3)

wherem(k) =
h
(k)
i

+h
(k)
j

2 .

3.3. Limitation of the pitch-correlogram

The pitch-correlogram exhibits certain speaker discriminabi-
lity and captures speaker variances. It is well suited for our

fast-match framework for fast speaker diarization or speaker
grouping for hierarchical speaker recognition. However, it is
not recommended to use it as a standalone speaker indexing
feature in applications where a large pool of speaker impos-
tors exists as described in [6].

4. KL-DIVERGENCE FAST-MATCH APPROACH

Our second proposed strategy, instead of utilizing new fea-
tures (eg. prosodic), as in our first approach, uses the original
low-level cepstral features with Gaussian mixture modeling.
It measures how likely it is that two models are to be merged
by asking the question, “how different are these two distribu-
tions” via KL-divergence between two GMMs approximated
using the highly accurate and efficient unscented transform.

4.1. KL-divergence

The KL-divergence of two distributions is defined as

KL(f(x)||g(x)) =

∫
f(x) log

f(x)

g(x)
dx (4)

and the symmetric version is

K̂L(f(x)||g(x)) = KL(f(x)||g(x)) + KL(g(x)||f(x)).
(5)

When f(x) and g(x) are Gaussian mixture distributions, there
is no closed-form expression. To solve the integration in Eq.
(4), sampling methods, such as Monte-Carlo simulation, can
be used. The Monte-Carlo method generates a sequence of
sampling points, simulating the distribution, and approximates
the integration by performing summation over this simulated
sequence. However, this is computationally expensive and
does not suit our need for efficiency.

4.2. Efficient and highly accurate approximationusing the
unscented-transform

The unscented transformation is a method for calculating statis-
tics of a random variable undergoing a nonlinear transform
[10], which looks similar to Monte-Carlo sampling since it
also generates sampling points, but is fundamentally different
in that the samples are generated in a completely determinis-
tic fashion.
Suppose X is a d-dimensional random variable with ex-

pectation μX and xs are the sigma points chosen fromX ac-
cording to Eq. (6), whose sample mean equals μX and sample
covariance equals

∑
X :

xs(k) = μX ±
√

d[
∑

X ]k, k = 1, · · · , d, (6)

where [
∑

X ]k is the k-th column of the covariance matrix∑
X .
If Y is a new random variable generated by applying a

nonlinear transformation Q to X , i.e. Y = Q(X), then μY
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can be approximated by the sample mean of ys, which are the
nonlinear transform of the sigma point xs, i.e. ys = Q(xs),
and this approximation is precise up to second order [10]. The
approximation of KL-divergence between Gaussian mixture
models based on the unscented-transform has been used in
speaker recognition applications [11].
Applying the unscented transform,

∫
f(x) log g(x)dx can

be approximated using Eq. (7) [11], which is sufficient for
illustrating the approximation for Eq. (5):

∫
f(x) log g(x)dx =

1

2d

n∑
i=1

αi

2d∑
k=1

log g(xi,k). (7)

Since a diagonal covariancematrix is used (as in our speaker
diarization system), i.e.

∑
i = diag(σ2

i,1, · · · , σ2
i,d), the sigma

points are simply:

xi,k = μi ±
√

dσi,kek, i = 1, · · · , n, k = 1, · · · , d,
(8)

where ek is a d-dimensional indicator vector and has all zero
components except one only at the k-th entry. This approxi-
mation is precise up to second order from the theorem of the
unscented-transform [10]. Since it only involves evaluating
the likelihood of Gaussian at a few sigma points, it is compu-
tationally efficient.

5. EXPERIMENTS AND RESULTS

5.1. Baseline system

The baseline system used in our experiments is an existing
ICSIMeeting Evaluation development system [12], which has
three components: Feature Extraction (FE), Speech Activity
Detection (SAD) and Speaker Clustering (SC). The total sys-
tem run-time is the sum of the speaker clustering run-time
(TSC) and the run-time of feature extraction and speech ac-
tivity detection (TFE+SAD). Since the new fast-match sys-
tem does not change the first two components, TFE+SAD is
constant for both systems.
The data set contains 12 meetings and a total of 2.3 hours

(T ) of audio data to be diarized. This is a set we put together
as the development set for NISTMeeting Evaluation 2006[4],
which will be referred to as DEV06 data set in the rest of
this paper. The diarization engine only processes the speech
frames output by SAD with total duration (TSP ).
To better illustrate the effect of our fast-match approach,

we use two real-time measurements for system run-time: (1)
xRT1 = TSC/TSP ; (2) xRT2 = (TSC +TFE+SAD)/T . The
first one measures the real time factor of the speaker diariza-
tion engine for speaker clustering, the second one measures
the real time factor of the whole diarization system. All ex-
periments were performed on an Intel Xeon 2.8 GHz machine
with 512 KB of cache and 3 GB of RAM, which was exclu-
sively reserved for these experiments. The operating system
used was Linux Red Hat Enterprise 4.

The baseline system has a DER of 11.74% and performs
4951 BIC comparisons in total with BIC score based heuristic
pruning described in [12]. Table 2 summarizes this baseline
system:

DER = 11.74, #BIC = 4951
T TSP TSC TFE+SAD xRT1 xRT2

8150s 6972s 11173s 640s 1.60 1.45

Table 2. Summary of the baseline speaker diarization system:
the total meeting time (T ) and the total speech time (TSP );
the run-time for speaker clustering (TSC) and the run-time
for FE and SAD (TFE+SAD); the real-time factor for speaker
clustering (xRT1) and for speaker diarization (xRT2).

5.2. Matching rate (r)

The theoretical number of merge hypotheses at each iteration
is ni(ni − 1)/2, where ni is the number of clusters at the i-th
iteration and ni = ni−1 − 1. The matching rate (r) is used to
control the shrinking rate of the hypothesis space after fast-
match, which is defined as the ratio of the total number of
comparisons needed after and before fast-matching.
Since the hypothesis space decreases after each iteration,

we find it is necessary to dynamically boost the matching rate
so that we start with a more constrainedmatching and become
more “relaxed” as the size of hypothesis space decreases.
Two types of boosting for matching rate (r) are used: the

first one always matches the top m candidates at each itera-
tion, which implicitly increases r since the size of hypothesis
space decreases along iterations; the second approach explic-
itly linearly decreases the matching rate r as in Eq. (9):

ri = r0 + i ∗ (1− r0)

M
, i = 0, · · · , M − 1, (9)

whereM is the initial number of clusters and r0 is the initial
matching rate.

5.3. Average cross ranking percentage (R) and matching
chance (MC)

Besides using the NIST DER to measure the performance of
the diarization system, we also introduce the average cross
ranking percentage (R) and the Matching Chance (MC) to
measure the goodness of the new scoring and the effectiveness
of fast-matching.
The average cross ranking percentage (R) measures the

average ranking percentage of the topm-ranked pairs hypoth-
esized by BIC scoring using the new scoring (F ) as shown in
Eq. (10)

RF,BIC(m) =

∑m
i=1 rankF ([rankBIC ]i)

#cmp
, (10)
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where F denotes the new scoring scheme, rankF is the rank-
ing using F , [rankBIC ]i is the index of the top i-th hypoth-
esis by BIC ranking and #cmp is the total number of BIC-
comparison without fast-matching.
The Matching Chance (MC) is the probability that the

fast-match will not mistakenly exclude the best BIC proposed
hypothesis among all iterations and all meetings.

5.4. Results

In order to choose the distance measurement for pitch-corre-
lograms, we experimented with three different distance mea-
surements: Minkowsky-form distance (dLr

), symmetric his-
togram intersection distance (d̂T) and Jeffrey divergence (dJ ),
as introduced in Section 3.2. The linear boosting of matching
rate as shown in Eq. (9) is used with the initial matching
rate set to 10%. Table 3 shows the diarization results of fast-
match using pitch-correlogram. Jeffrey divergence (dJ ) per-
forms better than the other distance measurements in terms
of DER and is used as the distance measurement for pitch-
correlograms in the rest of this paper.

Distance dLr
d̂T dLJ

DER (%) 12.64 12.18 11.49

Table 3. Diarization results of pitch-correlogram fast-match
versus different distance measurements (dLr

, d̂T and dLJ
), as

explained in Section 3.2.

The average cross ranking percentage of the pitch-correlo-
gram (RPC,BIC(1)) and KL-divergence (RKL,BIC(1)) ver-
sus BIC is shown in Figure 3, which depicts the average rank-
ing percentage of the top 1 BIC decisions in the new scoring
versus iterations. As can be observed from this figure, in or-
der to keep the top 1 BIC decision in the match space, the
matching rate (r) needs to be increased along iterations as
discussed previously. We can also see that the KL-divergence
scoring has a better average cross ranking percentage than the
pitch-correlogram scoring.
Figure 4 shows the matching chance (MC) of the pitch-

correlogramand KL-divergenceversus the number of the mer-
ge candidates (m) kept after fast-match. When m = 1, it is
equivalent to discarding BIC scoring completely and only us-
ing it in making merge decisions, and the matching chance
(MC) is only 20%. But as m increases to 15, the matching
chance increases to 80∼90%. We would also like to point out
that since it is not completely clear that the BIC decision is
optimal in terms of DER, theMC-curve does not necessarily
exactly correlate with DER.
The results of the diarization speed-up and DER are shown

in Table 4. The pitch-correlogram approach, with the start-
ing match rate set to 10% with linear boosting along itera-
tions as in Eq. (9), speeds up the system by 22% without
degrading the DER. When only top-5 candidates are kept in
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Fig. 3. The average cross ranking percentage of
pitch-correlogram (RPC,BIC(1)) and KL-divergence
(RPC,BIC(1)), as defined in Section 5.3.
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Fig. 4. The matching chance (MC) of pitch-correlogram and
KL-divergence, as defined in Section 5.3.

each iteration, there is a 0.79% degredation in DER, which
partially verifies our statement on the limitation of the pitch-
correlogram in Section 3.3. The best result is achieved using
the KL-divergence approach, which matches only the top 5
candidates at each iteration. It performs 715 BIC comparisons
(14% of 4951 comparisons performed in the baseline system),
speeds up the system by 41% and achieves faster than real-
time speaker diarization without affecting the speaker diariza-
tion error rate. The reason for the degradation of the DER
performance of KL-divergence approach in the 10% match-
ing rate with linear boosting setup is not clear, which might be
due to the dynamics of greedy search and sub-optimal merg-
ing path of agglomerative clustering.

DER #BIC TSC(s) xRT1 xRT2 SU

Baseline 11.74% 4951 11173 1.60 1.45 NA
PCr=0.1 11.49% 2035 8727 1.25 1.15 22%
PCTop5 12.53% 697 6667 0.96 0.90 40%
KLr=0.1 12.52% 2060 8347 1.20 1.10 25%
KLTop5 11.58% 715 6570 0.88 0.94 41%

Table 4. Results of pitch-correlogram and KL-divergence
fast-match (SU is the speedup of TSC over the baseline).

Since in the KL-divergence fast-match approach, the sys-
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tem performance is not affected by keeping only the top 5
merge candidates at each iteration, we move one step further
to see what if we only keep the top 1 candidates. In this case
the BIC score is not used to decide which two clusters should
bemerged, but only used to decide whenmerging should stop.
The diarization result is 19.56%. This shows that BIC, as
a robust model selection technique, still makes better merge
decisions than simple distance measurements.

6. CONCLUSION AND FUTUREWORK

We presented a fast-match approach for agglomerative speaker
diarization. The fast-match component reduces the hypothe-
sis space of the expensive model selection using BIC. Two
fast-match strategies, which are used separately, are adopted
to reduce the number of BIC comparisons, which was identi-
fied as the bottleneck of the speaker diarization system based
on agglomerative clustering.
The first strategy, as a feature level strategy, uses the in-

expensive pitch-correlogram to capture speaker variation by
looking at the pitch patterns in order to pre-select highly likely
merge candidates. The second strategy, as a model level strat-
egy, uses the efficient and highly accurate unscented-transform
based approximation of KL-divergence to measure the dis-
tance of two models. These two fast-match strategies, as two
independent approaches, are used to select the most likely
merge candidates.
The pitch-correlogram fast-match approach performs less

than half of the total BIC comparisons of the baseline and
speeds up the system by 22% without degrading the DER.
The best performance is achieved by using the KL-divergence
fast-match, which reduces the number of BIC comparisons by
86% and speeds up the existing ICSI speaker diarization sys-
tem by 41% without affecting the accuracy. The result is a
robust and faster than real-time speaker diarization system,
which makes its integration in upstream applications more
practical and efficient.
Since the pitch-correglogramonly carries the speech source

information, while the KL-divergence approach contains the
speech channel difference via MFCC feature, it would be in-
teresting to combine these two strategies for further speedup
via more aggressive fast-match. However, an effective way to
do this is still to be researched.
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