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ABSTRACT

Speaker overlap in meetings is thought to be a significant con-
tributor to error in speaker diarization, but it is not clear if
overlaps are problematic for speaker clustering and/or if er-
rors could be addressed by assigning multiple labels in over-
lap regions. In this paper, we look at these issues experi-
mentally, assuming perfect detection of overlaps, to assess
the relative importance of these problems and the potential
impact of overlap detection. With our best features, we find
that detecting overlaps could potentially improve diarization
accuracy by 15% relative, using a simple strategy of assign-
ing speaker labels in overlap regions according to the labels
of the neighboring segments. In addition, the use of cross-
correlation features with MFCC’s reduces the performance
gap due to overlaps, so that there is little gain from remov-
ing overlapped regions before clustering.

Index Terms— speaker identification, diarization, local-
ization, overlap

1. INTRODUCTION

The goal of speaker diarization is to extract segments of speech
and to associate them with the correct speaker. This task
is particularly challenging for meeting recordings, in which
a variable (meeting-dependent) number of microphones are
placed at unknown distances from the speakers in an unknown
(ad hoc) configuration. In the NIST meeting recognition eval-
uation [1], this is known as the multiple-distant-microphone
(MDM) test condition.
A difficulty in meeting diarization, particularly for the

MDM condition, is that speakers often talk at the same time.
In typical NIST meetings, 78% of word tokens occur within
silence bounded regions containing speaker overlap [1]. Us-
ing a different definition of overlap over similar data, the au-
thors of [2] found that between 8-17% of words, and 31-54%
of sentence-like “spurts” contained overlap. Typically, sys-
tems ignore the problem of overlapping speech, which poses
a challenge to any type of speech processing. In early work on
meeting speech, error analyses suggested that overlaps caused
an 11% increase in word error rate (WER) and a 17% increase
in diarization error [1]. On recent diarization systems, and
with more precise word times, overlaps have been estimated
to cause a 3.5% diarization error increase [3].
In this paper, we conduct another analysis of the impact

of speaker overlaps on diarization error, looking at the poten-
tial gain in performance due to perfect overlap detection. In
addition, we distinguish between potential causes of errors at
different stages of the diarization process and look at the role
of location features such as microphone pair correlation lags.
We find that detecting overlaps can indeed improve perfor-
mance substantially, but is most important in the labeling (vs.
clustering) stage of processing. In the sections to follow, we
briefly review related work on overlaps, raise two main ex-
perimental questions, outline the experimental paradigm, and
present the results.

2. OVERLAP DETECTION AND PROCESSING

One way of dealing with the problem of overlaps is to pre-
process the overlapped speech signal with a source separa-
tion algorithm [4, 5, 6, 7], the potential advantage being that
speaker-specific characteristics could be isolated, and thus con-
tribute to overall diarization accuracy during the speaker clus-
tering process. However, these methods have various limita-
tions. For example, the currently popular independent com-
ponent analysis (ICA) methods have difficulties with one or
more of the conditions present in conversational speech. Many
have problems in the presence of reverberation [8]. Others
require time windows on the order of 5s for convergence [9],
much longer than the typical overlap present in conversational
speech (we have calculated that the median overlap length,
averaged over 54 meetings in [10], is 250ms). Nearly all
source separation algorithms assume that the number of speak-
ers is known [11].
Another approach to overlaps is to detect them and then

exclude them from subsequent processing. In the monau-
ral channel vocoder work of [12], spikes in speech ampli-
tude kurtosis were found to bracket 83-92% of single talker
speech, where single talker speech was defined as speech with
greater than 10dB talker to interferer ratio (TIR). Closely re-
lated overlap detection algorithms in [13, 14, 15] were applied
to speaker identification. On synthetically overlapped TIMIT
data, up to 75% of “usable” speech was detected, where “us-
able” segments were defined as those in which the level of
one talker was 20 dB or more greater than that of the other.
The authors of [15] used the spectral autocorrelation peak val-
ley ratio (SAPVR) as a proxy to TIR. After removing speaker
overlap with a SAPVR threshold, they found that a speaker
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identification system got results equivalent to removing speech
with a TIR less than 20dB. However, speaker identifications
(ID) were assigned based on a known TIR, a quantity unavail-
able in practice. SAPVR features yielded poor overlap de-
tection performance for meeting speech personal microphone
voice activity detection, but good performance was obtained
using kurtosis and cross-correlations [16].
Other monaural work includes [17], which used pitch pre-

diction and cepstral features to detect overlapped speech, and
[18], which used robust Hough transform pitch detection, LPC
model fit and entropy measures. On a subset of the TIMIT
corpus [19], the combined feature classifier caught 74.7% of
overlapped frames with a false detect rate of 12.3% (F=0.81).
In [20], clustered “Eigen locations” derived from ROOT-

MUSIC beamforming outputs were able to find location peaks
in projected space due to simultaneous talkers. Unfortunately,
the ROOT-MUSIC is inappropriate for meetings due to its
high sensitivity to microphone position errors.
Finally, in [21], speaker segments obtained from a single-

speaker diarization system were used to train hidden Markov
model (HMM) speaker states corresponding to every possi-
ble overlap pair between detected speakers. Meeting data was
then re-segmented using the combined single-speaker and over-
lap HMM. While the authors do not cite accuracy numbers,
they state that, while the system was capable of detecting
overlap, it correctly identified the overlapped speakers only
a third of the time, and that the approach did not reduce over-
all diarization error.

3. QUESTIONS IN OVERLAP HANDLING

These different results leave open several questions about the
impact of overlap regions on diarization performance and pro-
cessing strategies. While analyses have shown that overlaps
contribute to diarization error, the results are mixed as to the
relative importance. Other work suggests that, while detect-
ing meeting speech overlaps may be within reach, it may still
be difficult to design an algorithm that can tell who is talking.
Most current systems (including our baseline) assign only one
speaker label to any region of speech. Is this alone what leads
to errors, or is the overlapped speech corrupting the single-
speaker models learned in the process of diarization? It may
be that very high accuracy overlap detection is needed to suc-
cessfully leverage overlap information, or it may be that there
is little gain from such detection.
In order to better understand the potential impact of over-

lap detection, we factor out the effect of overlap detection
errors by using an “oracle” overlap detector and evaluating
alternatives for using this information in the diarization pro-
cess.
In a typical diarization system, a stream of speech is ini-

tially broken into short time segments, either at detected speaker
change points or at uniform intervals. Then these segments
are grouped and assigned to a speaker by agglomerative clus-

tering. Overlaps cause errors in at least two ways. First, clus-
tering assigns segments to only one speaker during an over-
lap; other speakers during the overlap will be missed. Second,
clusterer speaker models can be corrupted when overlapped
speech is included in their training data.
In diarization experiments, we ask the following ques-

tions:

1. Would diarization be improved if overlaps were detected
and removed before speaker clustering?

2. After the initial single-speaker diarization has been com-
pleted, does the assignment of two speaker labels given
knowledge of location of overlap regions lead to signif-
icant improvements in diarization scores?

4. EXPERIMENTAL PARADIGM

Experiments were conducted on data from the NIST Rich
Meeting Transcription Project. In these meetings, held at five
locations in conventional conference rooms, 3 to 18 partic-
ipants were recorded with 1 to 16 distant, omni-directional
microphones. Sound was acquired at 16bits and 16KHz on
multi-track digital recording systems. No information about
microphone or speaker location is available. The data used
included the NIST 2004 development (dev) test and evalua-
tion (eval) sets, and the eval sets for 2005 and 2006. Meetings
with fewer than two microphones were omitted, since loca-
tion features cannot be computed in the single-microphone
case, and their use was of interest in this study. The final data
set contained 31 meetings.
The diarization system used for evaluating our overlap

handling algorithm is based on the system described in [22],
which yielded the best results in the NIST 2006 competition
(the authors made this feature extraction and clustering soft-
ware available to us). As in most meeting diarization (and
speaker recognition) systems designed for this task, the sys-
tem uses mel-warped cepstral coefficients (MFCC’s), but in
addition it includes “location features,” the set of correlation
lags computed between microphones placed at unknown lo-
cations. The system also does a delay-sum beamforming of
the distant microphone channels; the MFCC speaker ID fea-
tures were generated from this signal. The diarization sys-
tem uses a standard agglomerative clustering scheme with a
Bayesian information criterion (BIC) stopping threshold and
a hidden Markov model (HMM) to enforce minimum length
constraints. Tuning parameters (number of mixtures, HMM
states, etc.) were fixed to those found to be optimal for the
NIST 2007 evaluation.
For this work, an improved version of the correlation fea-

tures is used, based on a speech-specific Hilbert envelope for
computing correlations together with a low-dimensional vec-
tor of features based on a principal components analysis trans-
form of a vector of microphone pair correlations, as described
in [23].
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Table 1. Effect of input overlap processing on single-talker
diarization accuracy

Overlaps Diarization
Features in Input? Error (%)
MFCC Y 18.5
MFCC N 17.9
MFCC+XC Y 11.9
MFCC+XC N 11.6

Speaker diarization results were measured against refer-
ences with word times determined by forced alignments, us-
ing the NIST diarization scoring software1. For this tool, the
diarization error is the sum of time over all reference speak-
ers for which speech is either missed or falsely detected –
including during overlaps and silences – divided by the total
speech time of the scored region, counting overlap times for
each speaker.

5. RESULTS

Table 1 shows the effect of overlaps on single talker speech
accuracy, that is, the subset of speech where there are no over-
laps. For this series of experiments, references derived from
forced alignments were used to exclude overlaps from the fi-
nal diarization outputs, so that the diarization error was cal-
culated only over single talker speech. We then compared the
cases where the input to the diarization clustering includes vs.
excludes the overlap regions. To explore the effect of overlaps
on different features, clustering experiments were conducted
using: i) MFCC’s alone, and ii) MFCC’s in one observation
stream of the HMM and cross correlation features (XC) in a
second stream, as in [23].
In the first two rows of Table 1, we see that an ideal over-

lap detector, which excludes overlaps from MFCC-only clus-
tering input data, would improve single-speaker-only diariza-
tion performance by 0.6%. Adding XC features reduces the
error by about 35% relative in both cases, shrinking the gap
in performance.
In Table 2, we show the effect of different overlap out-

put processing approaches on the full diarization score, i.e.
including overlap regions in the diarization score. As in the
previous experiments, we use oracle overlap regions, i.e., as-
suming perfect detection, in this case to obtain different input
and output processing conditions. The first row gives the di-
arization baseline performance with MFCC features, with no
special overlap handling. In the next two rows, we show that
replacing the speaker label associated with an overlap with
the labels associated with the two speakers detected closest
to the overlap (referred to here as “nearest-2”) yields a 2%
absolute improvement (10% relative) if overlaps are not ex-
cluded at the clusterer input. If overlaps are excluded at the

1www.nist.gov/speech/tests/rt/rt2006/spring/code/md-eval-v21.pl

Table 2. Effect of input/output overlap processing on full
diarization accuracy

Overlaps Output Diarization
Features in Input? Post-process Error (%)
MFCC Y none 21.6
MFCC Y nearest-2 19.6
MFCC N nearest-2 19.1
MFCC N perfect 18.0
MFCC+XC Y none 15.1
MFCC+XC Y nearest-2 12.9
MFCC+XC N nearest-2 12.9
MFCC+XC N perfect 12.2
MFCC+XC Y perfect 12.5

clustering input, a 2.5% absolute improvement results.
In the fourth row, we show the result of “perfect” overlap

post processing, where oracle overlap regions are assigned
to the true speaker labels. Here, “perfect” means “the best
you can do.” If the clusterer had underestimated the number
of speakers so that some overlap segments contained speak-
ers which were not detected anywhere in the meeting, then
no segment for that speaker was inserted into the overlap re-
gion. This causes a diarization error, but it matches the con-
dition of the nearest-2 strategy, which can only select from
speakers detected by the clusterer. For MFCC features, this
"perfect" overlap scheme yields a 1.1% absolute improvement
over the nearest-2 approach; the nearest-2 approach obtained
70% of the improvement ideally possible with input and post-
processing overlap detection.
The remaining rows of Table 2 show that, withMFCC+XC

features, the nearest-2 approach comes much closer to the
ideal. Comparing the baseline performance in the fifth row
with the next two, we see that the simple nearest-2 post pro-
cessing step improves performance by 2.2% absolute (15%
relative), regardless of whether or not overlaps were excluded
at the clusterer input. From the last two rows, we see that
nearest-2 approach obtains 75% of the ideal improvement.

6. CONCLUSIONS

In this paper, we have demonstrated that a simple nearest-
2 post-processing step will yield most of diarization perfor-
mance improvement possible from overlap detection, given
the speaker clusters detected by the diarization system under
study. We show that, for MFCC+XC features, removing over-
lap segments from the input of the diarization clusterer yields
no further improvement when cross-correlation features are
included in clustering. The results suggest that one way in
which cross correlation features help diarization is to improve
the overlap-robustness of single-speaker model building.
Future work would, of course, include the development

of an accurate automatic overlap detector, and further explo-
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ration of overlap post processing methods in this context.
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