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ABSTRACT
This paper investigates an approximate similarity measure
for searching in phone based audio transcripts. The baseline
method combines elements found in the literature to form an
approach based on a phonetic confusion matrix that is used
to determine the similarity of an audio document and a query,
both of which are parsed into phone N -grams. Experimen-
tal results show comparable performance to other approaches
in the literature. Extensions of the approach are developed
based on a constrained form of the similarity measure that
can take into consideration the system dependent errors that
can occur. This is done by accounting for higher order confu-
sions, namely of phone bi-grams and tri-grams. Results show
improved performance across a variety of system con gura-
tions.

Index Terms— Phone, search, indexing, approximate

1. INTRODUCTION

The ability to search in audio is important both from a busi-
ness and consumer standpoint. This paper explores a method
for approximate search in audio, collected in a typical context
where large volumes of data are processed through a speech
recognizer, or perhaps a phone recognizer, to generate tran-
scripts. Any resulting word based transcripts can be expanded
into phone based transcripts. These are then indexed, so that
information retrieval can be performed at a later date. We fo-
cus on the case where a speech recognizer is used, noting that
in the broader context, certain queries may require the power
of a languagemodel, for example to disambiguate various ho-
mophones or where word boundary information is important.
However, in real world scenarios, data can be collected in
heterogeneous environments, at multiple times, in multiple
locations, and processed with a variety of recognition sys-
tems. These systems will most likely differ in their proper-
ties, and in particular their vocabularies. That is, it should
not be assumed that the same recognition system will be used
at all times. When the search terms are part of the recog-
nition vocabulary, the problem is relatively straightforward,

however one still must deal with recognition errors. When
this is not the case techniques must be developed to cope with
the out of vocabulary (OOV) queries. An audio indexing sys-
tem would likely combine these with methods of addressing
in-vocabulary queries, giving more exibility. Much work
exists in the literature addressing aspects of the OOV search
problem as well as search in the presence of recognition er-
rors. In [1], a similarity measure based on a phone confusion
matrix is developed and shown to be quite effective in be-
ing able to match sequences of phones approximately. In [2],
errors within particular phone classes are also handled. [3]
compares a variety of indexing techniques based on sub-word
units, as does [1]. Sub-word lattice based techniques [4] have
also performed well, as have techniques based on confusion
networks [5] [6], with their ability to capture complex decod-
ing errors. The baseline approach in this paper combines and
extends some of the techniques presented in [1] and [3] to
construct a method incorporating approximate query match
on an N -gram document phone index. One of the goals is
to balance the ability to search accurately with the cost of in-
gesting and indexing the audio data. Thus, the results in this
paper are based on 1-best outputs of the recognizers.

First, in sections 2 and 3, the initial technique is described
and evaluated in a number of situations to elucidate the perfor-
mance and stability of the approach. In particular results are
given on in-vocabulary and out-of-vocabulary (OOV) queries
as well as with respect to varying ASR system con gurations,
as may be used in the audio data ingestion phase.

Then, in section 4, extensions of the method are developed
to take into consideration the higher order confusions that
the ASR systems could make. These take the general form
of phone sequence confusions that are learned from training
data. Note that to use this technique, we do not need to de-
code lattices in the ingestion phase. The method is developed
in conjunctionwith a modi cation that replaces the initial edit
distance-like computation with an alignment similarity that
can account for the higher order confusions, yielding an im-
proved approximate match.
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2. BASELINE APPROACH

The baseline method incorporates elements from work pub-
lished in the literature. In [1], a phonetic confusion matrix
is used together with a weighted edit distance-like computa-
tion as a measure of phone sequence similarity, or approx-
imate match. In [3], queries to be matched are parsed into
N -grams which are then searched for, using an exact match,
in a phoneme index. The approach used in this paper rst
parses the documents to be searched intoN -grams and builds
an inverted index to the documents. Queries are then also
parsed into N -grams and the approximate search is used to
match eachN -gram in the query to elements in the index. The
resulting approximate scores for the N -grams in the query
are then combined to form the nal document score. Given
scores, accept and reject mechanisms can be used to deter-
mine the set of returned documents for a query. We rst com-
pute the best score possible for the query, which is a document
and index independent value. This value could be referred to
as the self match score. The documents with the top score
(multiple documents can achieve the top score) are returned,
unless the score is less than half of the best score. We avoid
the need to train a threshold. While, this is a computation-
ally intensive search procedure, the extensions and alterna-
tives developed later in the paper will allow a fair amount of
pre-computation.

2.1. Confusion matrix

The phone set is P = {p
1
, p

2
, p

3
, ...}. The phone confusion

is represented as P (pi|pj) which is the probability that pi is
the true phone when pj is observed. It may be necessary in
some cases to map from one phone set into another. For ex-
ample if the index was built using a particular set, but new
data is from a recognizer that outputs a different phone set. In
this case the recognizer’s phone set should be mapped to that
of the index. This also implies that the phone set chosen for
the index should be as general as possible. The distributions
P (pi|pj) are derived from confusion matrices. To estimate
the parameters, rst, held out data is decoded with a speaker
independent ASR system (described in the experiments sec-
tion) to produce a phone level alignment from the decoding.
A forced alignment to the reference transcripts is also carried
out. The two results are then used to compute the phone con-
fusion matrix. While the audio to be searched in this paper
consists of broadcast news data, it was observed that either
broadcast news or telephony data could be used to estimate
the confusion matrix without much effect on the results. Fur-
ther, reasonable results were obtained with about 1 hour of
data.

2.2. Sequence match

Letm = the hypothesis (phone) vector size and n = the refer-
ence or query (phone) vector size. The query vector is

q = {q
0
, q

1
, q

2
, . . . , qn−1

} (1)

and the hypothesis vector is

h = {h0, h1, h2, . . . , hm−1} (2)

where each qi and hi are elements of P . The following dy-
namic programming procedure, commonly used to compute
the weighted edit distance, will produce a result that can be
used as a similarity measure. M is anm + 1 × n + 1 matrix
holding the scores of the paths which is initialized by setting
M [0][0] = 0.0. The initial sequence of deletions is handled by
the rst row ofM where each query symbol is in turn deleted
from the output hypothesis without affecting the hypothesis

M [0][i] = M [0][i − 1] + f(P (0|qi−1
)), i = 1 . . . n (3)

The function f() is included for the sake of generality, and
is often taken to be −log. Here, it is taken to be the identity
function. The initial sequence of insertions is handled by the
rst column of M where each hypothesis symbol is in turn
inserted into the hypothesis without a matching query symbol

M [i][0] = M [i − 1][0] + f(P (hi−1|0)) (4)

then the following recursion is used to ll in the matrix:

M [i][j] = max{ (5)
M [i − 1][j − 1] + f(P (hi−1|qj−1

)), (6)
M [i][j − 1] + f(P (0|qj−1

)), (7)
M [i − 1][j] + f(P (hi−1|0))} (8)

for i = 1 . . .m, j = 1 . . . n. After the dynamic programming
algorithm is run, the score of the best match (path) is given by

M(q, h) = M [m][n], (9)

which is a measure of the weighted edit distance (or similar-
ity).

2.3. Building an index

The format is an inverted index. Each audio segment is con-
verted into a sequence of phones by rst passing the data
through a speech recognizer and then using the baseforms
in the dictionary to expand the word based transcript into
phones. The length of the document is the number of result-
ing phones and the position of each phone is the granularity of
the index. Initially, an N is chosen as the length of the phone
string in the index. For each document Dk, the N -gram at
each position is extracted and associated with the document
and position pair. At the end of the document, where full
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N -grams are not available, the sub-N -grams are stored. The
same N -gram can appear multiple times in the same docu-
ment as well as in multiple documents. Thus the inverted in-
dex contains for eachN -gram in the index, a list of document
and position pairs specifying all of the locations at which it
occurs. The structure of the index is:

• h1 = {p
1,1, p1,2, p1,3, p1,4, p1,5} at (d1,1, n1,1), . . .

• h2 = {p
2,1, p2,2, p2,3, p2,4, p2,5} at (d2,1, n2,1), . . .

• h3 = {p
3,1, p3,2, p3,3, p3,4, p3,5} at (d3,1, n3,1), . . .

• etc.

The index [the N -gram part] I contains all of the unique
N -grams that occurred in the database of documents. Note
that h is used to indicate elements of the index, anticipating
that these will be used as the hypotheses when conducting a
search. The query will be the reference, or the exact sequence
of phones that is sought.

2.3.1. Generating scores

The query, a list of words, is rst expanded into phones by the
use of an automatic baseform generator [7], yielding a vector
of phones with some length n, Q = {q

0
, q

1
, q

2
, . . . , qn−1

}.
This is necessary in order to handle OOV terms for which
baseforms may not be readily available. The hypotheses are
the parts of the documents represented in the index via the
N -grams. To determine document scores for the query, it is
rst expanded into N -grams, extracted as above (resulting in
a sequence of overlappingN -grams offset by 1 phone).

Q �→ {q
1
, q

2
, q

3
, . . .}. (10)

Given a documentD and a query N -gram q, the best match-
ing index element corresponding to the document is

h∗(D, q) = arg max
h∈I/D

M(q, h).

The notation I/D is used to indicate the elements of I that
occur within the document D. Let NQ = the number of N -
grams extracted from the query. The score for document D
is

1

NQ

∑

q
i
∈Q

M(qi, h
∗(D, qi)), (11)

which is the average of the scores for each query N -gram
against its best matching index entry in the document. An
important characteristic of the search used in this paper is that
it employs an approximatematch on anN -gram phone index.

3. BASELINE EXPERIMENTAL RESULTS

3.1. Data

The datasets are chosen to highlight the differences in perfor-
mance on in vocabulary and out of vocabulary queries as well
as to give comparative results to those in the literature.
Hub4: This dataset is taken from the English Hub4 broad-

cast news Eval97 and Eval98 data [4]. It consists of about 6
hours of audio, segmented into 1484 audio documents which
on average contained 165 phones. The queries are all of the
words in the reference transcripts, minus the stop words, giv-
ing a total of 6116 single word queries. All but a few of the
queries were in vocabulary and they averaged between 6 and
7 phones.
oov: This is 9 hours of data from the 1996 and 1997 Hub4

and TDT-4 Corpora. There are 4162 audio segments. The av-
erage number of phones per segment was approximately 96.
A total of 185 single word out of vocabulary (OOV) queries
were chosen, which on average had between 6 and 7 phones.
Note that this dataset has no in-vocabulary queries with re-
spect to the ASR systems used.
In both cases, each audio segment is considered to be

a separate document that could be retrieved by the search.
Each query is contained in approximately 4 segments (docu-
ments) on average. The ASR systems used were trained on
roughly 430 hours of English broadcast news data. A quin-
phone acoustic model with approximately 6K context depen-
dent states and 250K Gaussians was used. As indicated in the
experimental results both speaker independent and speaker
dependent systems were used. Also, the same recognition
parameters, for pruning beam, etc., were used throughout.
The rst set of experiments establish a baseline, with re-

sults comparable to those in the literature. Average precision
(p) and recall (r) per query are reported (in %) in table 1.
In [4] the same data as dataset Hub4 was used, and the results
obtained are comparable to those in table 1. Note that the
techniques are quite different though, as [4] uses a fragment
based language model during recognition and indexes paths
in the resulting lattices in order to allow vocabulary indepen-
dent search. Here, an approximate match on N -grams de-
rived from the 1-best decoding is used. The recognition sys-
tems used here and in [4] differ in the nature of the language
model, fragment vs. word. The base vocabularies, though, are
nearly the same, comparing to that used in building the frag-
ment based language model. In the experiments here, N = 5
is used. Values ofN from 3 to 7 were experimented with and
5 resulted in the best consistent overall performance. To get
an understanding of the performance when the queries are not
in the ASR vocabulary, results are presented on dataset oov.
As is evident, the performance is considerably worse than on
dataset Hub4. This is because dataset oov contains only OOV
queries. In the sequel, the performance improvements on in
and out of vocabulary queries is tracked on datasetsHub4 and
oov respectively.
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Table 1. Baseline system performance.

Dataset ASR p% r%
Hub4 SAT 67.83 67.15
oov SAT 30.83 31.09

3.1.1. Comparative performance vs. ASR system complexity

In the results above (shown in table 1), the ASR system used
speaker adapted training (SAT). Here, a performance compar-
ison based on reducing the complexity of the acoustic models
is presented. Three con gurations of the ASR system are con-
sidered. System 1 is an ML system. System 2 is ML + fMPE
(feature-space minimum phone error) [8]. The results in ta-
bles 1 and 2 show that the technique is robust in that it works
well regardless of the complexity of the ASR system, and yet
re ects improvements in those systems. The effect of reduc-
ing language model (LM) complexity, for the fMPE system,
is reported in table 3. The original was a 4-gram model. The
performance degrades somewhat for 3 of the cases, but in-
terestingly, it actually improves very slightly for dataset oov
with the 3-gram LM.

Table 2. Baseline approach for various system con gura-
tions.

Dataset ASR p% r%
Hub4 ML 65.21 64.52
Hub4 fMPE 67.50 66.71
oov ML 20.79 22.44
oov fMPE 28.80 29.94

Table 3. Baseline approach for fMPE con guration with
lower LM complexity.

Dataset LM p% r%
Hub4 3-gram 61.93 61.55
Hub4 2-gram 59.84 58.81
oov 3-gram 29.34 29.90
oov 2-gram 27.19 28.15

4. CONSTRAINED MATCHWITH HIGHER ORDER
CONFUSION

In this section, the baseline approach is expanded in light of
observations made on the properties of data alignment error.
In particular, when the decoded word strings are expanded
into phone strings, the types of edit mistakes that can oc-
cur are constrained. Thus it is possible to be more ef cient
and accurate by taking this into consideration in the similar-
ity measure.

Consider again the hypothesis and query vectors h and q
given in equations 2 and 1. WhereasM(q, h) has been used
to indicate the level of match between query and hypothesis,
a better measure could perhaps try to approximate P (h|q) or
P (q|h). In this paper, these are referred to as high order con-
fusions.
Because of the fact that the phone based transcriptions are

derived from the 1-best decoded word sequences, it seems
reasonable not to consider random edits when comparing the
hypothesis sequences and the query sequence. Toward this
end, the approach described here will not use the weighted
edit distance-like measure as described in equations 3 through
8. Deletions and insertions will not be allowed when match-
ing the N -gram subsequences and thus the measure is con-
strained by how well the N -grams align. We refer to this
procedure as constrained match.

Table 4. Results for constrained match.

Dataset ASR p% r%
Hub4 fMPE 66.68 78.30
Hub4 SAT 72.85 85.39
oov SAT 32.42 34.66

Carrying the reasoning further, it makes sense that the
standard phone confusion matrix should be updated to in-
clude, phone bi-gram, tri-gram, and in general N -gram con-
fusions. That is, since errors result essentially from decoding
errors, the rate at which higher order sequences are substi-
tuted should help in determining the nal score of how well a
document matches a query.
However, it can be problematic to estimate the general

N -gram confusion rates because most will likely not be seen
in reasonable amounts of training data. But the substitutions
that do occur are used to estimate a contribution to the match
score. Based on each confusion that is seen in the training
data, a normalized matrix is created. The method is similar
to that used in estimating the parameters of the single phone
confusions, but here higher order confusions are considered.
Since this matrix could have very high dimensionality, we
store only the non-zero components. We have used approx-
imately 10 hours of held out telephony and broadcast news
data to estimate the high order confusion parameters in the
experiments.
The following is proposed as a measure that captures the

behavior of P (h|q) and yet is applicable when training data
for the higher order confusions is limited. Let Gmax be the
highestG for which there are estimates of theG-gram confu-
sions in the system (G is used here so as not to be confused
with theN used for the size of the index entries). HereGmax

will be 3 since up to 3-gram confusions are considered. Each
index entry hi and each N -gram in the query qj is further
parsed into overlappingG-grams shifted by 1 phone, denoted
for example by G1(hi) for 1-grams of entry hi or G3(qj) for
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3-grams of queryN -gram qj . These sets are ordered such that
nth element is the nth occurringG-gram from left to right. As
a notational convenienceG3(qj)[n] will be used to indicated
the nth element below. SinceN is the length of the sequences
to match, there will beN 1-grams,N −1 2-grams, andN −2
3-grams.

S(qi, hj) = α1

N∑

n=1

f(P (G1(hi)[n]|G1(qi)[n]))

+ α2

N−1∑

n=1

f(P (G2(hi)[n]|G2(qi)[n]))

+ α3

N−2∑

n=1

f(P (G3(hi)[n]|G3(qi)[n]))(12)

Again, f() is the identity function. The parameters αi need
to be speci ed. Here, the values of {1, 1/3, 1/3} were used.
These values were not based on any training, but chosen a pri-
ori. The new document score is computed as follows. Given
again a documentD and a queryN -gram q, the best matching
index element corresponding to the document is now given by

h∗(D, q) = arg max
h∈I/D

S(q, h).

Letting NQ = the number of N -grams extracted from the
query as before, the new score is

1

NQ

∑

q
i
∈Q

S(qi, h
∗(D, qi)). (13)

The technique can be ef cient since most of the information
can be pre-computed and it no longer uses dynamic program-
ming (edit distance). The pre-computation could, for exam-
ple, cache the scores for the most commonly occurring set of
N -grams. Then when a query is expanded, if all the resulting
N -grams are in the chosen set, scoring is essentially a matter
of lookup. At this point many techniques could additionally
be used for further ef ciency. As an example, the index could
be arranged hierarchically to allow an ef cient search. Pre-
ltering mechanisms could also be used to reduce the set of
index elements that need to be considered. An approach using
vector space modelling is described in [9].
In table 4 the results are presented for the case where the

edit distance is replaced by the constrained match, as in equa-
tion 13, with α1 = 1 and the other αi = 0 (here, we ran the
fMPE con guration only for the Hub4 dataset). Comparing
tables 1 and 2 to table 4, the effects of this change are seen
to be quite dramatic. In particular, both recall and precision
are improved. Consider again that only the set of documents
with the top score can be returned. We hypothesize that with
the baseline measure, false alarms sometimes scored higher
than correct hits, preventing the correct ones from being re-
turned. Next, we evaluate the contribution of adding higher

order confusions, with the results given in table 5. Again,
we note that both recall and precision are improved. More-
over, the improvements are seen for both in vocabulary and
out of vocabulary queries. It is expected that if the αi were
trained on held out data, the performance improvement would
be even greater.

Table 5. Higher order confusions (all info).

Dataset ASR p% r%
Hub4 SAT 74.25 86.43
oov SAT 34.16 35.41

5. CONCLUSIONS

We have shown that in realistic scenarios where the speed of
data acquisition must be balanced with the accuracy of subse-
quent information retrieval, the ability to ef ciently incorpo-
rate higher order confusions, in addition to the traditional un-
igram confusions, was able to achieve gains in performance.
The method was introduced in the context of a phoneN -gram
based indexing and approximate search scheme. The initial
baseline approach used a variation on the weighted edit dis-
tance as a measure of phone string similarity. Results showed
that this approach was comparable to others in the literature
for the same data. Moreover, the results were fairly stable
across a variety of ASR systems, which is important due to
variations in how the data to be indexed may be collected.
Then, the approach was modi ed and extended to use align-
ment and include higher order phone sequence confusions to
re ect ASR errors more accurately. The new approach is
more ef cient and resulted in substantial gains. Moreover,
two different data sets were studied to differentiate perfor-
mance based on in vocabulary and out of vocabulary queries.
Improvements were seen for both the in and out of vocabu-
lary queries, though the improvements were greater for the in
vocabulary case.

6. ACKNOWLEDGMENTS

The authors would like to acknowledge Brian Kingsbury for
his assistance with the ASR systems and Olivier Siohan for
discussions on path-based graph indexing and fragment lan-
guage models. This work was partially supported by the De-
fense Advanced Research Projects Agency under contract No.
HR0011-06-2-0001. The views and ndings contained in this
material are those of the authors and do not necessarily re ect
the position or policy of the U.S. government and no of cial
endorsement should be inferred.

669



7. REFERENCES

[1] K. Ng, “Subword-based approaches for spoken document
retrieval,” in Ph.D. thesis, MIT, February 2000.

[2] A. Amir, A. Efrat, and S. Srinivasan, “Advances in pho-
netic word spotting,” in CIKM, 2001.

[3] B. Logan, P. Moreno, and JM V. Thong, “Approaches to
reduce the effects of OOV queries on indexed spoken au-
dio,” in HPL-2003-46, Cambridge Research Laboratory,
HP Laboratories Cambridge, March 2003.

[4] O. Siohan and M. Bacchiani, “Fast vocabulary-
independent audio search using path-based graph index-
ing,” in INTERSPEECH, September 2005.

[5] J. Mamou, D. Carmel, and R. Hoory, “Spoken document
retrieval from call-center conversations,” in SIGIR, Seat-
tle, 2006.

[6] T. Hori, I. L. Hetherington, T. Hazen, and J. R. Glass,
“Open-vocabulary spoken utterance retrieval using con-
fusion networks,” in ICASSP, 2007.

[7] Stanley F. Chen, “Conditional and joint models for
grapheme-to-phoneme conversion,” in Proceedings of
Eurospeech, 2003.

[8] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau,
and G. Zweig, “fMPE: Discriminatively trained features
for speech recognition,” in ICASSP, Philadelphia, 2005.

[9] B. Matthews, U. Chaudhari, and B. Ramabhadran, “Fast
audio search using vector space modelling,” in Submitted
to ASRU, 2007.

670


