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ABSTRACT
Many techniques for retrieving arbitrary content from audio

have been developed to leverage the important challenge of

providing fast access to very large volumes of multimedia

data. We present a two-stage method for fast audio search,

where a vector-space modelling approach is first used to re-

trieve a short list of candidate audio segments for a query.

The list of candidate segments is then searched using a word-

based index for known words and a phone-based index for

out-of-vocabulary words. We explore various system config-

urations and examine trade-offs between speed and accuracy.

We evaluate our audio search system according to the NIST

2006 Spoken Term Detection evaluation initiative. We find

that we can obtain a 30-times speedup for the search phase of

our system with a 10% relative loss in accuracy.

Index Terms— Spoken-term detection, audio search, vector-

space modelling, latent semantic indexing.

1. INTRODUCTION

Instantaneous access to very large volumes of data, in many

forms, is an increasingly important convenience. Clearly, the

sheer volume of material available presents a challenge to

fast and accurate search and retrieval of desired information.

Audio data present a particularly important challenge for in-

formation retrieval since text-based search can be insufficient

when applied to such media as recorded telephone conversa-

tions, conference meetings and archived video data.

Automatic speech recognition (ASR) systems have been

applied extensively to the audio search task. While topologies

vary for audio search methods reported in the literature, in

most of these systems ASR is first applied to the audio data to

produce a transcription, or other text-based representation, to

which text-based search methods can be applied. Many sys-

tems use a lattice representation of audio to model confusable

alternatives to recognition hypotheses and thus improve recall

[1, 2, 3]. For large databases, efficient search schemes such as

inverted indices are often used since searching through a large

collection of lattices can be computationally intensive. In [2],

lattices are indexed by an approximation of expected term fre-

quencies of phone N-grams in a two-stage search scheme. A

truncated list of documents is then provided to a second stage

on which a full linear search is performed.

We present in this paper an efficient approach to audio

search which draws upon vector-space modelling (VSM) of

audio data. Vector-space modelling is common in text-based

information retrieval, and has been applied to such speech

recognition and retrieval tasks as language identification [4],

retrieval by spoken query [5] and retrieval by spoken docu-

ment [6].

An overview of our system for audio search is given in

Figure 1. We extract word-based tokens from the lattice repre-

sentation for each audio segment in the database and from the

input query. A vector-space similarity measure is then used

to retrieve a short list of likely candidate segments for each

query. The list of candidate segments is then searched us-

ing word-based indexing for known words and phone-based

indexing for out-of-vocabulary (OOV) entries. OOV words

are scored according to a similarity measure based on phone

confusion probabilities. We evaluate our audio search system

according to the NIST 2006 Spoken Term Detection evalua-

tion initiative.

The rest of the paper is organized as follows: Section 2

describes the NIST 2006 Spoken Term Detection evaluation

initiative and its primary performance measure, the Actual

Term-Weighted Value (ATWV) statistic. A brief overview of

our system for audio search is given in section 3. A brief re-

view of vector-space modelling and its application to audio

search is provided in Section 4. Our spoken term detection

system is described in section 5. We evaluate our overall sys-

tem and its two major components in terms of speed and ac-

curacy in Section 6. Finally conclusions and extensions to

future work are given in Section 7.

2. SPOKEN TERM DETECTION TASK

We evaluate our audio search method according to the NIST

2006 Spoken Term Detection (STD) evaluation initiative [7],
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(a) Audio Segment Retrieval (b) Spoken Term Detection

Fig. 1. Audio search system overview

where audio search is formulated as a detection task. The

NIST evaluation provides a standard set of raw audio data

and a list of 1107 query terms. For each query term, which

may consist of one or more words, systems are required to

locate all occurrences in the database and return their start

and stop times. The primary evaluation measure, the Actual

Term Weighted Value measure (ATWV) is a weighted aver-

age based on the number of false alarms and misses for each

query, and is given by

ATWV = 1− 1
Nterms

∑

t∈terms

(Pmiss(t) + β ·Pfa(t)) (1)

where β ≈ 1000, Pmiss(t) and Pfa(t) are defined as

Pmiss(t) = 1 − Ncorr(t)
Ntrue(t)

(2)

Pfa(t) =
Nspurious(t)

Total − Ntrue(t)
. (3)

For each term t, Ncorr(t) and Nspurious(t), are the number

of correct and incorrect detections, respectively. Ntrue(t) is

the number of occurrences of t in the database and Total is a

value proportional to the total length of audio in the database.

3. SYSTEM OVERVIEW

Our system for audio search consists of an audio segment re-

trieval stage followed by a spoken term detection stage, as

depicted in Figure 1. An ASR system, described in detail in

Section 6.1, is used to produce lattices for the audio segment

retrieval stage, and 1-best hypotheses for the spoken term de-

tection stage. A vector-space representation of queries and

lattices is used to score audio segments according to their rel-

evance to each input query and to produce a sorted list of

audio segments in the database. The spoken term detection

system accepts the set of 1-best transcriptions as well as a

truncated list of audio segments as inputs; only transcriptions

corresponding to audio segments in the list are entered into its

indexing system to be searched. If the list of audio segments

is short and consists mostly of segments relevant to an in-

put query, then the search system will see significant speedup

with minimal loss of accuracy.

4. VECTOR-SPACE MODELLING FOR AUDIO
SEGMENT RETRIEVAL

Vector-space modelling (VSM) approaches to information re-

trieval convert documents from their original form to a nu-

meric vector, often called a document vector. Input queries

can be similarly converted to query vectors and the relevance

of any document in the set to an input query can be deter-

mined numerically, using vector-space similarity metrics or

clustering techniques. The cosine distance, which gives the

cosine of the angle between two vectors, is commonly used

to express the similarity between two document vectors. For

two document vectors x1 and x2 the cosine similarity is given

by

SIMcos(x1,x2) =
x1 · x2

|x1||x2| (4)

In the remainder of this section, we briefly review Latent

Semantic Analysis (LSA), a popular VSM technique for in-

formation retrieval [8]. We then discuss our application of

LSA to audio search.

4.1. Latent Semantic Analysis

With Latent Semantic Analysis (LSA), as with VSM in gen-

eral, documents and queries are converted to numeric vectors

using a so-called bag-of-words model in which a finite list

of terms of interest is extracted from all documents without

regard for their original ordering. Each document vector xj

then has one element for each item in the list of terms, and

its values are some meaningful statistic used to represent the

co-occurrence between the document and its terms. The col-

lection of document vectors can then be expressed as a term-

document co-occurrence matrix C, such that

C =
[
x1,x2, · · · ,xD

]
. (5)

With LSA, a document dj is expressed as the vector xj ac-

cording to the following relation

xj
i = (1 − ε(wi)) · n(wi, dj)∑

i n(wi, dj)
(6)

where n(wi, dj) is the count of term wi in document dj and∑
i n(wi, dj) is the count of all terms in document dj . The

normalized entropy, ε(wi), of term wi across all documents

in the database, is given by

ε(wi) = − 1
lnD

D∑

j=1

n(wi, dj)∑
j n(wi, dj)

ln
n(wi, dj)∑
j n(wi, dj)

(7)
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where D is the total number of documents in the database.

This weighting scheme for the terms in matrix C is commonly

called TF-epsilon [8] and is used in all experiments discussed

in this paper.

A singular value decomposition (SVD) is then applied to

the matrix C, which is typically very sparse, such that C =
T S D′ ≈ T̃ S̃ D̃′. The matrix S̃ is a reduced version of

S in which only the R largest singular values are retained.

Similarly T̃ is a reduced version of T retaining the leftmost R
columns. A document vector xj is said to be projected onto

the latent semantic space according to the following relation

x̃j = T̃ ′ · xj (8)

where x̃j is typically of lower dimension than xj . A query

vector q can be similarly projected such that q̃ = T̃ ′ · q. The

cosine metric

SIMcos(q̃, x̃j) =
q̃ · x̃j

|q̃||x̃j | (9)

can then be used to judge the similarity between a query q and

a document dj .

In this paper we use LSA to sort a list of all of the au-

dio segments in the database, according to the criterion in (9)

for each of the 1107 queries provided by the NIST Spoken

Term Detection evaluation initiative. The sorted lists are then

truncated and searched in the second stage of our spoken term

detection system.

In the following section, we discuss our methods for cre-

ating document vectors from a lattice representation of audio.

4.2. Lattice-Based Indexing for VSM

As in previously reported systems for audio search [1, 2, 3, 9,

10] we use a lattice representation for each spoken document

in our database. For vector-space modelling, it is necessary to

extract an unordered list of terms of interest, along with their

counts, from each document in the dataset. We accomplish

this for lattices by extracting expected counts of each term.

The expected term count ETC(wi, dj) of term wi in docu-

ment dj is the expected number of occurrences of wi over

all paths in the lattice representation for document dj , and is

given by

ETC(wi, dj) =
∑

l∈Lj

PLj
(l|O) · Cl(wi) (10)

where Lj is the complete set of paths in the lattice, Cl(wi) is

the count of term wi in path l and PLj
(l|O) is the posterior

probability of path l given an observation sequence O. To

create a document vector xj we substitute ETC(wi, dj) for

n(wi, dj) in (6) and (7).

Training Data
The matrix T̃ is constructed off-line from data independent

of the testing set. We use reference transcripts, instead of lat-

tices or the 1-best output of a recognizer, to build the off-line,

term-document co-occurrence matrix for training. We build

an unordered list of terms from the most frequently occur-

ring 1-gram tokens in the training set, which is used to build

test set document vectors as well. Since we use word-based

lattices and transcripts, the vector-space modelling front end

to our system does not account for out-of-vocabulary (OOV)

terms in a query. The need for vocabulary independent search

is handled in the back end spoken term detection stage, and is

discussed in Section 5.

5. SPOKEN-TERM DETECTION SYSTEM

The detection system used employs a combination of a word

based and phone based indexing scheme. The documents to

be searched are first passed through an ASR system to gener-

ate word based transcripts, and these are later expanded into

phone based transcripts using the recognizer’s lexicon. Each

item in the word based index points to the documents in which

it occurs along with the beginning and end times. Exact match

is used on the terms being searched. The word boundary in-

formation is used to ensure that terms in multi-word queries

co-occur.

5.1. Phone Sequence Match

The phone based approach [11] is used when the search terms

are not found in the word based index. In this case, a phone

sequence match is used to judge similarity. If we define the

phone set as P = {p1, p2, p3, ...}, then the expanded tran-

scripts will be sequences with elements in P . The query terms

that are not found in the word based transcripts are expanded

into phone sequences using an automatic baseform genera-

tor. Then, a sequence similarity measure is used to determine

where they are present. This measure is based on estimates of

phone confusion P (pi|pj) which is the probability that pi is

the true phone when pj is observed. These estimates are de-

rived from heldout data which is decoded in parallel with the

decoded and reference transcripts to produce parallel phone

level alignments. The two results are used to compute the

phone confusion matrix.

5.2. Index Construction for OOV Terms

To make the sequence match efficient, N -grams are extracted

from the decoded phone based transcripts and an inverted in-

dex is created with each N -gram in the index pointing to a

list of documents and the positions within each where the

N -grams occur. The search index contains all of the unique

N -grams {hi} that occurred in the database of documents.

At test time, the query terms Q are also used to generate N -

grams Q �→ {q1, q2, . . . , qNQ
}.
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(a) System 1: 250K, SI+SA decode (b) System 2: 30K, SI decode only

Fig. 2. Average precision vs recall for audio segment retrieval on Broadcast News.

5.2.1. Generating scores

The score for each document D is

1
NQ

∑

q
i
∈Q

S(qi, h∗(D, qi)),

where h∗(D, qi) is the best matching index element corre-

sponding to the document and a scoring procedure is used to

compute the constrained match similarity S(q, h), with para-

meters given by P (pi|pj) (see [11] for details).

The time taken for search depends linearly on the size of

the index, so that any reduction in the number of elements

to consider directly affects the search time. Each document

corresponds to a subset of the index with elements that occur

in that document. Thus, if prior to the search, a filtering has

determined that only a restricted set of documents need be

considered, then only the index elements in the union of the

corresponding index subsets need to be tested.

6. EXPERIMENTS

Our audio search system uses vector-space modelling, to re-

trieve a list of relevant audio segments followed by a spoken

term detection system. In this section we evaluate the perfor-

mance of these two stages independently and in concert. The

audio segment retrieval system is evaluated according to the

trade-off between precision and recall, where precision indi-

cates the fraction of documents in a truncated list, relevant to

a given query. Recall, in contrast, is the fraction of documents

in a truncated list taken with respect to all relevant documents

in the database. The spoken term detection system is evalu-

ated according to the ATWV measure discussed in Section 2.

Finally, we evaluate the combined system by examining the

effect on the ATWV score when a truncated list is used for

audio search. We also report the execution time for generat-

ing lattices with respect to the complete length of audio in the

database.

6.1. Data

Broadcast News
For the broadcast news audio search task, the NIST evaluation

initiative provides 2.79 hours of broadcast news data. 1107

query terms including, single-word and multi-word terms are

also provided with the evaluation. Examples of single-word

and multi-word queries in the evaluation set are “too” and “six

point eight,” respectively.

Raw audio in the database is first segmented by speaker

into short audio segments. We then create a lattice represen-

tation for each of 1408 audio segments in the database by

using a speaker-adapted ASR system developed for English

broadcast news transcription. Although generating lattices for

audio segments in a database could be considered part of an

offline indexing phase, we consider the efficiency of this stage

in the system to be an important design criterion since a prac-

tical system could need to search very large volumes of audio.

We compare two ASR systems, differing significantly in their

complexity, for generating lattices to examine the trade-off

between speed and accuracy of retrieval. The two systems are

briefly described in the remainder of this section.

ASR System 1: 250K, SI+SA decode
We use the speaker-adapted ASR system, described in [12] to

create lattices. Its speaker-independent and speaker-adapted

models share a common alphabet of 6000 quinphone context-

dependent states and 250K Gaussian mixtures. 40-dimensional

recognition features computed via a subspace projection of 9

frames of 19-dimensional PLP features are used for both the

speaker-independent (SI) and speaker-adapted (SA) training

phases. Acoustic models for the speaker-independent phase

are trained to optimize the MMI criterion. Features for speaker-

adapted training are normalized with vocal-tract length nor-

malization as well as speaker-wise mean subtraction and vari-

ance normalization.

ASR System 2: 30K, SI only decode
Our speaker-independent system for producing lattices is sig-

nificantly less complex. It uses speaker-independent models
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with 30K Gaussian mixtures and 3000 context-dependent tri-

phone states. No speaker-adapted models were trained for this

system. Both of these systems use a 4-gram language model,

built from a 54M n-gram corpus.
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(a) Conversational Telephone Speech (b) Conference Meetings

Fig. 3. Average precision vs. recall for Conversational Tele-

phone Speech (CTS) and Conference Meetings (CNFMTG)

audio.

6.2. Audio Segment Retrieval

Plots of average precision vs. recall are given in Figure 2 for

Broadcast News data. The pruning beam width for generating

lattices has a direct effect on speed and ASR decoding accu-

racy. In Figure 2 we illustrate the trade-off between speed and

retrieval accuracy by varying the beam width for lattice gen-

eration. We also compare ASR System 1, with System 2, in

Figures 2 (a) and (b), respectively. Precision for the two ASR

systems is comparable for low values of recall, but System

1 retains high precision even when recall is high (i.e. when

most of the relevant documents have been retrieved). This

implies that, on average, truncated lists containing a compa-

rable number of documents relevant to a query, are shorter for

System 1.

Table 1. Execution times for generating lattices in terms of

real-time factor (RTF).

While the speaker-adapted System 1 gives better retrieval

accuracy, its complexity causes it to be significantly slower

than System 2. Table 1 reports execution times for generating

lattices for System 1 and System 2 as a fraction of the length

of audio in the database, often called the Real Time Factor

(RTF). The slowest execution time for System 2, 0.13xRT,

is significantly faster than the fastest time for System 1 at

0.43xRT.

Telephone Speech and Conference Meetings
The NIST evaluation also provides about 3 hours of conver-

sational telephone speech and 2 hours of recorded conference

meetings. Lattices were generated for telephone speech and

conference meeting data using speech transcription systems

similar to ASR system 1, but trained on audio data appropri-

ate to each source type. The same set of queries is used for all

source types in the NIST Spoken Term Detection evaluation.

Plots of precision versus recall are given for retrieving au-

dio segments from telephone speech and conference meetings

data in Figure 3. For the best configurations of our speech

transcription system, we achieve a word error rate (WER) of

12.5% on the development set for Broadcast News data, and

19.6% and 47% for telephone speech and conference meet-

ings, respectively. As Figure 3 (a) shows, precision for audio

segment retrieval or conversational telephone speech is above

0.65 even when 80% of the relevant documents have been re-

trieved, on average, and is the best for all source types.

6.3. Spoken Term Detection

Performance results for our back-end spoken term detection

system for broadcast news data, given in terms of the Actual

Term Weighted Value measure in (1), are plotted in Figure 4.

Searching through the full (unfiltered) list of documents, our

back end spoken term detection system achieves an ATWV

score of 0.78. This is indicated in Figure 4 with a single flat

dashed line.

The effect of the audio segment retrieval front end is also

illustrated in Figure 4. The ATWV score achieved when sorted

lists provided by the front-end system are truncated to various

lengths is plotted for ASR Systems 1 and 2 in Figure 4 for var-

ious pruning beam widths. While using ASR System 1 gen-

erally results in higher search accuracy, the best configuration

for ASR System 2 is generally within 10 points, absolute, of

the best configuration for ASR System 2.

Since search time for our spoken term detection system

varies linearly with the size of the list of audio segments, Fig-

ure 4 depicts a trade-off between speed and accuracy for our

search system. When the list of audio segments is truncated

to 3% of its full length, our audio search system achieves a

speedup of about 30 times. Our best configuration for ASR

system 1, with a pruning beam width of 9.0, achieves an

ATWV score of 0.703, a relative loss of about 10% in search

accuracy. The best performance for System 2, at a beam width

of 9.0, is 0.633, a further 10% reduction in search perfor-

mance.

7. CONCLUSIONS AND FUTURE WORK

We have presented a system for spoken term detection using

vector-space modelling to retrieve a list of promising audio
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broadcast news data.

segments. We use a lattice representation for audio segments

in the database and apply vector-space similarity measures

to identify segments relevant to each query. A vocabulary-

independent, audio search system is then applied to the re-

duced set to achieve gains in search speed. The trade-off be-

tween speed and accuracy of both the indexing and search

phases is illustrated with various pruning beam widths for

generating lattices, two transcription systems of differing com-

plexity, and truncating the list of audio segments to various

lengths. We find that a 30-times speed up can be achieved

for the search system with a 10% relative loss in search ac-

curacy as measured by the NIST actual term weighted value

measure. With a further relative loss of 10% accuracy, 4.23

times speedup in indexing time can also be achieved.

Possible extensions to this work include the use of higher

order n-grams for vector-space modelling as well as other

VSM based techniques such as probabilistic Latent Seman-

tic Analysis (pLSA) [13]. We will also explore the use of the

vector-space similarity measure for clustering audio segments

and as a fast confidence score for search.
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