
A STUDY OF LATTICE-BASED SPOKEN TERM DETECTION
FOR CHINESE SPONTANEOUS SPEECH

Sha Meng1,2, Peng Yu2, Frank Seide2, and Jia Liu1

1Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University, 100084 Beijing, P.R.C.

mengs04@mails.tsinghua.edu.cn, liuj@tsinghua.edu.cn
2Microsoft Research Asia, 5F Beijing Sigma Center, 49 Zhichun Rd., 100080 Beijing, P.R.C.

{rogeryu,fseide}@microsoft.com

ABSTRACT

We examine the task of spoken term detection in Chinese

spontaneous speech with a lattice-based approach. We com-

pare lattices generated with different units: word, character,

tonal syllable and toneless syllable, and also look into meth-

ods of converting lattices from one unit to another one. We

find the best system is with toneless-syllable lattices converted

from word lattices. Further improvement is achieved by lat-

tice post-processing and system combination. Our best sys-

tem has an accuracy of 80.2% on a keyword spotting task.

Index Terms— speech indexing, lattice, posterior, key-

word spotting

1. INTRODUCTION

Improving accessibility for the overwhelming amounts of

speech data available today necessitates the development of

robust Spoken Term Detection (STD, also known as keyword

spotting) and Spoken Document Retrieval (SDR) techniques.

To date, a significant amount of work in this field has been

done for English.

The TREC (Text Retrieval Conference) SDR track has

fostered research on audio retrieval of broadcast-news clips.

Most benchmarking systems applied text retrieval directly on

the speech recognition transcripts. Due to the low Word Er-

ror Rate (WER) for broadcast news (<20%) and high re-

dundancy of queries in documents, a similar accuracy com-

pared to a human reference was achieved and thus was con-

sidered a “solved problem”[1]. However, further research

[2, 3, 4] found that this approach does not apply to sponta-

neous speech, where typical WER is about 40% to 50%. In

this situation, indexing recognition alternates, normally rep-

resented as lattices, provides significant improvement.

Among research on lattice-based indexing for English,

there have been discussions about the choice of indexing unit

Work performed during the 1st author’s internship at MSR Asia.

between word and sub-word (normally phoneme for English).

Word-based systems, usually based on Large-Vocabulary Con-

tinuous Speech Recognizers (LVCSR), suffer from the Out-

Of-Vocabulary (OOV) problem, which is more serious for

STD tasks as queries chosen by users tend to be rare words,

and have a higher probability to be OOV words. Phoneme-

based systems have no OOV problem, but have significantly

lower precision due to weaker language models. [5] found

that a phonetic system outperformed a word-based one on a

recall-emphasized task. [6] showed significant improvement

by combining two systems.

The same requirement for STD and SDR systems rises for

Chinese. The (Mandarin) Chinese language has several dis-

tinctive characteristics compared to English. Chinese words

are graphemically made up of characters. The set of most-

common 6000 Chinese characters has a sufficient coverage

for most user scenarios. Thus the OOV problem of LVCSR

system is significantly reduced as those characters themselves

are in the dictionary as well. Additionally, the Chinese lan-

guage has a closed set of Constant-Vowel structured syllables.

As syllables usually have a more stable segmentation and a

closer link to semantic-level information, it provides a better

choice of sub-word unit than phonemes.

Previous research [7, 8, 9] on Chinese spoken term detec-

tion used lattice-based approach as previously done for En-

glish . Both of them built systems with syllables.

In this paper, we also examine lattice-based spoken term

detection for Chinese spontaneous speech. Specially, we look

into the problem of comparing lattices with word and different

sub-word units (character, tonal and toneless syllable). In ad-

dition, we also discuss methods to convert lattices generated

with higher-level unit, i.e., more semantic based like word,

to lower-level unit, i.e. more phonetic based like syllable. It

is observed that the best performance comes from toneless-

syllable lattices converted from word lattices. Further im-

provement is achieved by lattice post-processing method and

system combination. Our best system has an FOM of 80.2%,

635978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

compared with 51.5% from using speech recognition tran-

scripts only.

The rest of paper is organized as follows. Section 2 intro-

duces the lattice-based spoken term detection algorithm. Sec-

tion 3 describes methods of lattice generation and conversion

with different unit. Section 4 and section 5 discuss methods

for lattice post-processing and system combination. Section 6

shows the results and section 7 concludes the whole paper.

2. LATTICE-BASED WORD SPOTTING

In this section, we give a brief introduction to lattice-based

spoken term detection.

(a) Original posterior lattice

(b) Converting word lattice to character lattice

(c) Lattice after TMI-node merging

Fig. 1. Examples of Posterior Lattice: (a) is a posterior lattice

with word arcs. Splitting the word arc into character ones,

result lattice is shown in (b). Merging the lattice with TMI-

node method, (c) shows the final result.

2.1. Lattice Definition

A lattice L = (N ,A, nstart, nend) is a directed acyclic graph

(DAG) with N being the set of nodes, A is the set of arcs,

and nstart, nend ∈ N being the unique initial and unique

final node, respectively.

Each node n ∈ N has an associated time t[n] and pos-

sibly an acoustic or language-model context condition. Arcs

are 4-tuples a = (S[a], E[a], I[a], w[a]). S[a], E[a] ∈ N de-

note the start and end node of the arc. I[a] is the word (or sub-

word) identity. Last, w[a] shall be a weight assigned to the arc

by the recognizer. Specifically, w[a] = pac(a)1/λ · PLM(a)
with acoustic likelihood pac(a), LM probability PLM, and

LM weight λ. 1 Normally the recognizer will also provide

the best pronunciation for each arc, when multiple pronunci-

ations exists for word I[a].
In addition, we define paths π = (a1, · · · , aK) as sequences

of connected arcs. We use the symbols S, E, I , and w for

paths as well to represent the respective properties for entire

paths, i.e. the path start node S[π] = S[a1], path end node

E[π] = E[aK], path label sequence I[π] = (I[a1], · · · , I[aK]),
and total path weight w[π] =

∏K
k=1 w[ak].

2.2. Posterior Lattice Representation

It was found in [4] that an alternative but equivalent repre-

sentation of lattice, which we call posterior lattice, is more

convenient in many cases.

For the posterior lattice, we define the arc posteriors Parc[a]
and node posteriors Pnode[n] as

Parc[a] =
αS[a] · w[a] · βE[a]

αnend

; Pnode[n] =
αn · βn

αnend

,

with forward-backward probabilities αn, βn defined as:

αn =
∑

π:S[π]=nstart∧E[π]=n

w[π] ; βn =
∑

π:S[π]=n∧E[π]=nend

w[π]

αn and βn can be conveniently computed using the well-

known forward-backward recursion, e.g. [10].

The posterior lattice representation stores four fields with

each edge: S[a], E[a], I[a], and Parc[a], and two fields with

each node: t[n], and Pnode[a].
In our previous work [3] it was shown that in a word spot-

ting task, ranking by the posterior probability of phrase is the-

oretically optimal. With the posterior lattice representation,

the phrase posterior of query string Q is computed as

P (∗, ts, Q, te, ∗|O)

=
∑

π=(a1,··· ,aK):
t[S[π]]=ts∧t[E[π]]=te∧I[π]=Q

Parc[a1] · · ·Parc[aK]
Pnode[S[a2]] · · ·Pnode[S[aK]]

. (1)

1Despite its name, the function of the LM weight is now widely consid-

ered to flatten acoustic emission probabilities. This matters when sums of

path probabilities are taken instead of just determining the best path.

636

The posterior representation is lossless. It has several ad-

vantages as stated in [4]. In our case, the posterior lattice rep-

resentation makes it easy to segment an arc with longer unit

(e.g. word) to multiply short units (e.g. characters), and to

merge multiple arcs and nodes together. This will be shown

in later sections.

3. LATTICE GENERATION AND SEARCH WITH
WORD AND SUB-WORD UNITS

Compared with English, the Chinese language has several dis-

tinctive characteristics:

• Graphemically, a word is a sequence of characters.

Though number of words is unlimited as in English,

the 6000 common characters have sufficient coverage

for most user scenarios. A character alone is a word

itself, and has its own meaning.

• Phonetically, a character is a Consonant-Vowel struc-

tured syllable. In total, there are about 420 base sylla-

bles. Chinese is a tonal language, for each base sylla-

ble, there are up to five tone types.

• Sometimes one character may map to multiple tonal

syllables in different context of words. Those charac-

ters are called polyphonies. Polyphonies are common

in Chinese. On average each character has about 1.2

pronunciations.

For the unit of lattice generation, there are five choices:

word, character, tonal-syllable, toneless-syllable, phoneme.

Phonemes are typically not used in Chinese speech recogni-

tion as they has no real benefit over syllables.

3.1. Lattice Generation and Matching

A LVCSR decoder is used to generate word-based lattices.

As the characters themselves are in the vocabulary as well,

there is nearly no OOV problem. At search time, a standard

ngram-based word breaker is used to parse a query into word

sequence. The word breaker uses the same dictionary as the

recognizer, which means no OOV word will appear in the

parsed word sequence. A query is considered a match when

the word sequence matches consecutive arcs in a lattice.

Same decoder is used to generate lattices for characters,

tonal syllables and toneless syllables, but with trigram lan-

guage models for characters, tonal syllables and toneless syl-

lables respectively. At search time, for character system, a

query is directly broken into characters and matched against

lattices. For syllables, the word breaker is first used to parse

queries, and then the dictionary is used to lookup the tonal or

toneless pronunciation of words. If multiple pronunciations

exist for words, they will all be matched against lattices.

3.2. Converting Word Lattices To Character Lattices

Though word lattices do not have OOV problem, it suffers

from the ambiguity of word breaking. E.g., phrase “��
�” (“Chinese People”) can be broken into either “���”

(single word) or “��-�” (two words). Thus an arc in lat-

tice with “���” will not match query “��” (“Chinese”)

though it should.

The problem could be solved by converting word lattices

to character lattices, and matching queries by characters only.

For each arc a in lattice, I[a] = W = (c1, · · · , cN), where

W is the word with the arc, and ci are consecutive charac-

ters, the conversion could be easily done with posterior lattice

representation in following steps:

• create new nodes n1, · · · , nN−1, with

t[ni] =
(i ∗ t[E[a]] + (N − i) ∗ t[S[a]])

N
;

Pnode[ni] = Parc[a];

• create new arcs a1, · · · , aN , with

S[ai] =
{

S[a] :i = 1
ni−1:i > 1 ; E[ai] =

{
ni :i < N
E[a]:i = N

;

Parc[ai] = Parc[a]; I[ai] = ci;

• delete a.

Fig. 1 depicts this process. Fig. 1(a) is a word lattice, while

(b) is a converted character lattice.

3.3. Converting Word and Character Lattices To Syllable
Lattices

The reason we want to convert word or character lattices to

syllable lattices is to tolerate recognizer errors with homo-

phones (words or characters having same pronunciations), i.e.,

words or characters in lattices will be counted as matches as

long as they have same pronunciations as queries. The con-

version is straightforward by replacing word or character la-

bels on each arc to corresponding pronunciations (i.e. sylla-

bles). For word lattice, the same arc splitting algorithm as in

3.2 is required. Sometimes words and characters have mul-

tiple pronunciations (with polyphonies), in this case, the best

pronunciation info for each arc provided by the recognizer is

used.

4. LATTICE POST-PROCESSING

In result lattices from recognizers, nodes are not only time

points, but also carry language model context information.

This means that, at the same time point, there could exist

multiple nodes. If we pinch these nodes together, we add ad-

ditional paths in lattice, which will result in a better recall for

637

phrase matches. Though at the same time we are generating

false positives, experimental results show that it is not harm-

ful for keyword spotting tasks, as most of false positives are

random combinations which will not used as queries by users.

To achieve this, we proposed to use the TMI (Time-based

Merging for Indexing) processing first presented in [4], which

is proposed for reducing lattice size. But the algorithm fits

here as well for increasing lattice recall.

The TMI method starts from a simple criterion: reduce the

number of nodes as much as possible by merging consecutive

nodes without generating loop edges. It turns out that the op-

timal merging could be achieved by a Dynamic Programming

algorithm as below:

• merge all nodes with same time stamps, with node pos-

teriors summed up;

• line up all nodes in ascending time order, t[ni] < t[ni+1],
i = 1, · · · , N ;

• for each node n, find out the furthest node that it can

be grouped without generating loop arcs, denoting its

index as T [n];

• set group count C[n1] = 1; C[ni] = ∞, i > 0. Here

C[ni] means the minimal number of nodes after node

merging with sub-lattice containing n1, · · · , ni and con-

necting arcs;

• set backpointer B[n1] = −1; B[ni] = ni, i > 0;

• for i = 1, · · · , N − 1:

– for j = i+1, · · · , T [ni]: if C[nj+1] > C[ni]+1:

∗ C[nj+1] = C[ni] + 1;

∗ B[nj+1] = ni; // clustering node ni, · · · , nj

• trace back and merge nodes:

– set k = N , repeat until k = −1:

∗ merge nodes from B[nk] to nk−1 with node

posteriors summed up;

∗ k = B[nk].

• merge all edges with same start node and end node,

with edge posteriors summed up.

Fig. 1(c) shows an example of TMI processing.

5. SYSTEM COMBINATION

[6, 2, 11] show significant improvement from combining word-

level lattices with phonetic lattices for English keyword spot-

ting tasks. If there are N systems, with query Q and time

slot (ts, te), the i-th system has a phrase posterior of P i(∗, ts,
Q, te, ∗|O), a combined system will have:

P comb(∗, ts, Q, te, ∗|O) =
∑

i

γi · P i(∗, ts, Q, te, ∗|O),

where
∑

i γi = 1. Ideally, the weights γi should be tuned on

a development set to get best performance. However, experi-

ments show that those weights are really not sensitive for final

results. Experiments in the result section use equal weights.

6. RESULTS

6.1. Setup

We evaluate our method by a keyword-spotting task on a 4-

hour long Chinese spontaneous speech set. The phone set

contains 187 phones, with 28 “initial”s (the Consonant) phones,

157 tonal “final”s (the Vowel), and two silence phones. There

are totally 1666 tonal syllable and 423 toneless syllables [12].

An acoustic model trained on 154-hour reading-style speech

plus 148-hours spontaneous mandarin speech is used for all

setups. 39-dimension MFCC is used. A dictionary with 68933

words is used for both the LVCSR recognizer and for the word

breaker. Word and character trigrams are trained from a text

corpus containing about 2.1 billion characters. Syllable-based

trigrams are trained from all the pronunciations in the dictio-

nary.2

The baseline WER of all recognizers are shown in Ta-

ble 1. To compare among different units, Character Error Rate

(CER), Syllable Error Rate (SER) and toneless SER are listed

as well. As expected, the more semantic information a unit

carries, the stronger constraint a trigram language model pro-

vides, and the lower Error Rate is obtained. Therefore the

word-based recognizer has the best error rate.

Table 1. Accuracy of different recognizers (WER:word error

rate, CER: character error rate, SER: syllable error rate, all in

%)

decoder unit WER CER SER Toneless SER

Word 48.43 36.98 35.38 30.81

Character – 42.90 41.33 35.90

Syllable – – 61.30 50.39

Toneless Syllable – – – 51.93

An automatic procedure described in [5] was used to se-

lect queries. Example queries are “��” (“spring festival”),

“���”(“Russia”), “�����”(“Eiffel Tower”). A statis-

tics of number of syllables in each queries are shown in Ta-

ble 2.

Table 2. Query statistics against number of syllables. #occur-

rences are total occurrences in reference transcripts.

#syl. in query 2 3 4 5+ Total

#queries 2004 777 846 352 3979

#occurrences 3095 930 942 379 5346

2Our experiments on English setup show that training phonetic trigrams

on a dictionary (other than from pronunciation transcripts of a text corpus)

provides satisfying performance already.

638

Table 3. Lattice Generation with different units. The first line is bestpath with word-based system, others are for lattices.

Performance on query set with different number of syllables are listed. All numbers are in %.

#syl. in query all 2 3 4 5+

id decoder unit FOM REC FOM REC FOM REC FOM REC FOM REC

S1b word bestpath <51.5 51.5 <48.1 48.1 <48.3 48.3 <61.9 61.9 <61.0 61.0

S1 word 68.3 69.2 63.8 65.4 70.2 70.4 78.0 78.0 75.5 75.5

S2 character 67.5 70.5 66.0 70.9 66.5 67.0 73.4 73.5 68.3 68.3

S3 tonal syllable 66.9 73.5 67.0 78.0 69.6 70.4 66.8 66.9 59.9 59.9

S4 toneless syllable 67.6 75.1 67.6 80.2 72.0 72.9 68.1 68.2 56.2 56.2

Results are reported in Figure of Merit (FOM), which

is defined by National Institute of Science and Technology

(NIST) as the detection/false-alarm curve averaged over the

range of [0...10] false alarms per hour per keyword. Lattice

recall (recall of all query matches within lattice, which is an

upper bound of FOM) is listed as well for analysis purpose.

6.2. Lattice Generation with Different Units

Table 3 lists results for lattices generated with different recog-

nizers. Results against number of syllables in query are listed

as well.

The first and second lines compares the bestpath-only ap-

proach versus a lattice-based approach for a word-based sys-

tem. At this WER level, the LVCSR bestpath has a recall

at only 51.5%, while the lattice increase the recall to 69.2%,

with the FOM improved to 68.3%.

The next three lines list performance of lattices generated

with characters, tonal syllables and toneless syllables. They

all have a better recall than the word-based system3, but the

latter has the best FOM.

Distribution of FOM over number of syllables in query

shows a clear drop for two syllable-based systems, reflecting

the limited prediction scope of syllable trigrams. In contast,

distribution for word-based and character-based systems are

more flat, benefit from a stronger prediction power with se-

mantic level information.

6.3. Lattice Conversion among Different Units

Table 4 show results with lattice conversion among different

units, in most cases, the conversion process results in a better

FOM and recall. The improvement mainly comes from two

steps:

• Conversion from word lattices to character lattices (from

S1 (FOM 68.3%) to S1.1 (FOM 70.9%)). This im-

provement mainly comes from removing the ambiguity

of the word breaker as discussed in section 3.2;

• removing tone information (from S1.2 to S1.3, S2.1 to

S2.2, and S3 to S3.1, more than 2% FOM improvement

3The lattice recall really depends on the beam setting when decoding.

However, as different systems has different perplexity, it is difficult to fairly

compare beam setting across systems. We tried to use the biggest beaming

setting the decoder allows for each system, so the recall here could be under-

stood as “the upper limit of recall with a realistic setup” for each system.

for all). The improvement comes from tolerating the

tone recognition errors from the decoder, reflecting the

fact that tone information in spontaneous speech is not

always stable.

At the same time, conversion word lattice to tonal-syllable

lattices (S1 to S1.2) is only marginally better than conver-

sion to character lattices. Conversion from character lattices

to tonal-syllable (S2 to S2.1) lattices got even worse. This is

mainly caused by the ambiguity when mapping words/characters

with multiple pronunciations to tonal syllables. Though the

recognizer provides the best pronunciation in this case, it seems

that the information is not accurate enough. This is more se-

rious when converting character lattices to tonal-syllable lat-

tice, as character sequence has more pronunciation variances

than words.

The best setup in the table is by converting from word

lattices to toneless-syllable lattices, which has an FOM at

73.3%.

Table 4. Keyword spotting results for different setups. The

first four blocks show results for converting lattices to dif-

ferent units. Rightmost two column are after TMI post-

processing. The bottom four lines show results for system

combination. All numbers are in %.

Raw Lattice + TMI proc.

no. index FOM Rec FOM Rec

S1 word 68.3 69.2 67.5 68.4

S1.1 =>character 70.9 73.2 71.7 74.0

S1.2 =>syllable 71.3 73.8 72.3 74.9

S1.3 =>toneless syl. 73.3 77.4 74.2 78.5

S2 character 67.5 70.5 68.3 71.7

S2.1 =>syllable 61.3 64.6 65.1 69.2

S2.2 =>toneless syl. 69.5 75.0 71.4 77.8

S3 syllable 66.9 73.5 68.8 76.6

S3.1 =>toneless syl. 70.8 79.4 71.8 82.0

S4 toneless syl. 67.6 75.1 69.7 78.8

C1 S1+S1.1+S1.2+S1.3 74.3 78.0

C2 S2+S2.1+S2.2 73.6 79.4

C3 S3+S3.1 71.9 82.1

C5 C1+C2+C3+S4 80.2 88.1

639

6.4. Lattice Post-Processing

The right-most two columns of Table 4 show the effects of

TMI lattice post-processing, where we see a consistent im-

provement for almost all the setups for both FOM and recall

except S1. This improvement is caused by a higher recall,

which comes from the additional path created by node merg-

ing. The corresponding increase in FOM shows the false pos-

itives introduced by this merging is not harmful.

6.5. System Combination

The last four lines of Table 4 show results with system combi-

nation. The line C1, C2, and C3 combines the setups coming

from the same recognizer, almost no improvement is observed

over the best individual system. However, when combining

setups from different decoders, as shown in line C5, FOM

is significantly improved to 80.2%, from the best individual

system S1.3 with 74.2%.

7. CONCLUSIONS

This paper has examined lattice-based spotaneous Chinese

speech. In order to better capture the characteristics of the

Chinese language, we used different units for lattice genera-

tion, including word, character, tonal and toneless syllables.

We also looked into converting word lattices to character or

syllable lattices, and character lattices to syllables lattices.

Overall it was found that the best performance comes from

toneless-syllable lattices converted from word lattices, which

achieved an FOM of 73.3% on spontaneous Chinese speech.

Lattice post-processing were then applied aimed at creat-

ing additional links in lattice, which resulted in a higher re-

call. Results show that the post-processing gave about 1%

improvement to FOM. Different setups were then combined

together by interpolating query phrase posteriors from each

setup, and the best combination achieved an FOM of 80.2%.

8. REFERENCES

[1] J. Garofolo, TREC-9 Spoken Document Retrieval Track.

National Institute of Standards and Technology, http://
trec.nist.gov/pubs/trec9/sdrt9_slides/
sld001.htm.

[2] M. Saraclar, R. Sproat, Lattice-based Search for Spoken

Utterance, Proc. HLT’2004, Boston, 2004

[3] P. Yu, K. J. Chen, C. Y. Ma, F. Seide, Vocabulary-

independent Indexing of Spontaneous Speech, IEEE trans-

action on Speech and Audio Processing, Vol.13, No.5,

Special Issue on Data Mining of Speech, Audio and Di-

alog.

[4] Z. Y. Zhou, P. Yu, C. Chelba, F. Seide, Towards Spoken-

document Retrieval for the Internet: Lattice Indexing For

Large-Scale Web-search Architectures, Proc. HLT’2006,

New York, 2006.

[5] F. Seide, P. Yu, et al., Vocabulary-independent Search

in Spontaneous Speech, Proc. ICASSP’2004, Montreal,

2004.

[6] P. Yu, Frank Seide, A Hybrid Word/Phoneme-based Ap-

proach for Improved Vocabulary-independent Search in

Spontaneous Speech, Proc. ICLSP’2004, Korean, 2004.

[7] B. R. Bai, B. Chen, H. M. Wang, A Multi-phase Ap-

proach for Fast Spotting of Large Vocabulary Chinese Key-

words from Mandarin Speech Using Prosodic Information,

Proc. ICASSP’1997, Munich, 1997.

[8] H. M. Wang, Experiments in Syllable-based Retrieval of

TV News Speech in Mandarin Chinese, Speech Commu-

nication, 32(1-2), pp. 49-60, Sept. 2000

[9] B. Chen, H. M. Wang, L. S. Lee, Retrieval of

Broadcast News Speech in Mandarin Chinese Collected

in Taiwan Using Syllable-level Statistical Characters,

Proc. ICASSP’2000, Istanbul, 2000.

[10] F. Wessel, R. Schluter, K. Macherey, and H. Ney, Confi-

dence Measures for Large Vocabulary Continuous Speech

Recognition, IEEE transaction on Speech and Audio Pro-

cessing, Vol.9, No.3, Mar.2001.

[11] S. W. Lee, K. Tanaka, Y. Itoh, Combining Multiple Sub-

word Representations for Open-vocabulary Spoken Docu-

ment retrieval,Proc. ICASSP’2005, Philadelphia, 2005.

[12] C. Huang, Y. Shi, J. L. Zhou, M. Chu, T. Wang,

E. Chang, Segmental Tonal Modeling for Phone Set De-

sign in Mandarin LVCSR, Proc. ICASSP’2004, Montreal,

2004.

640

