
TOWARDS SPOKEN-DOCUMENT RETRIEVAL FOR THE ENTERPRISE:
APPROXIMATEWORD-LATTICE INDEXINGWITH TEXT INDEXERS

Frank Seide, Peng Yu, And Yu Shi

Microsoft Research Asia, 5F Beijing Sigma Center, 49 Zhichun Rd., 100080 Beijing, P.R.C.
{fseide,rogeryu,yushi}@microsoft.com

ABSTRACT
Enterprise-scale search engines are generally designed

for linear text. Linear text is suboptimal for audio search,
where accuracy can be significantly improved if the search
includes alternate recognition candidates, commonly repre-
sented as word lattices. We propose two methods to enable
text indexers to approximately index lattices with little or
no code change: “TMI” (Time-based Merging for Indexing)
aims at lattice-index size reduction, and the “sausage”-like
“TALE” (Time-Anchored Lattice Expansion) approximation
requires no indexer-code or data-format changes at all. On
four enterprise-type data sets (meetings, phone calls, lectures,
and voicemail), TMI and TALE improve accuracy by 30-60%
for multi-word phrase searches and by 130% for two-term
AND queries, compared to indexing linear text.

Index Terms— Audio indexing, lattice, posterior, key-
word spotting.

1. INTRODUCTION

The tremendous progress in audio compression and storage
technologies and the pervasive adoption of e-mail and the
Intra/Internet has fostered a dramatic increase of the use of
digital media in the enterprise, such as online lecture videos,
archived meetings or conference calls, and voicemail. Tools
are needed to efficiently manage digital enterprise audio as-
sets – audio or video recordings with intrinsic value to the
enterprise – particularly search engines.

On the Internet, audio/video search engines can work well
by relying on the anchor text, surrounding text, closed cap-
tions, and metadata of an audio or video file. For enterprise
audio, such information is commonly not available – the au-
dio itself must be processed by speech recognition to index
the spoken content. However, typical enterprise audio is still
a challenge for today’s speech-recognition technology, which
achieves word accuracies of only 50-70% [1, 2, 3].

To maximize search accuracy, the probabilistic nature of
speech recognition must be taken into account [4]. A sig-
nificant improvement can be achieved through incorporating
word confidence scores and alternative recognition candidates
by searchingword lattices instead of linear speech-to-text out-
put [5, 6, 7, 8]. Word lattices are a compact representation of
word candidates and their score and time information.

The goal of this paper is to make word-lattice indexing
feasible for the enterprise, in particular: (1) search alternates
with scores for best possible search accuracy on typical enter-
prise audio; (2) indexed search for a similarly instant search
experience as for text; (3) reuse as much as possible ex-
isting enterprise-search code bases, because enterprise-scale
search engines are complex systems involving substantial in-
vestments in both development and deployment.

This poses two challenges: (a) raw lattices can be as large
as 100 times the size of text or more; and (b) although word
lattices can theoretically be indexed by the same principles
as text, existing text indexing engines cannot do that because
their notion of word positions cannot represent alternates with
different time boundaries or spanning multiple words.

This paper addresses these challenges by investigating the
question: How can word lattices be represented or approxi-
mated such that they can be indexed with existing text index-
ers with little or no modification? We propose two ways: The
first, called TMI (Time-based Merging for Indexing [8]), is
a node-clustering procedure for reducing lattice size signifi-
cantly, down to operating points that today’s text indexers are
optimized for, without loss of accuracy. It does require small
changes to phrase-matching code and a few extra bits in the
index data structure. The second method named TALE (Time-
Anchored Lattice Expansion) allows lattice indexing without
core-code change at all by approximating the lattice further
into a “sausage”-like structure, and overgenerating entries to
keep M -gram phrases. Both methods are evaluated with multi
and single-word queries on four enterprise-type production-
size audio data sets, the largest being 300 hours.

This paper is organized as follows. Next, we review prior
work, followed by a description of the overall system archi-
tecture in section 3 and a discussion of lattices for indexing in
section 4. Section 5 introduces the TMI and TALE method,
and section 6 presents experimental results.

2. PRIORWORK
Several approaches have been reported in the literature for in-
dexing spoken words in audio recordings. In the TREC (Text
REtrieval Conference) Spoken-Document Retrieval (SDR)
benchmarking on audio-retrieval of broadcast-news clips,
most systems apply text-based information retrieval to ap-
proximate speech-recognition transcripts. They achieve re-
trieval accuracy similar to using human reference transcripts,
and ad-hoc retrieval for broadcast news was concluded to be a

629978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

“solved problem” [9]. This scenario differs significantly from
ours with its significantly lower word-error rates (20%) and
high redundancy of news segments and queries that prevented
recognition errors to cause catastrophic failures.

Prior work on lattice indexing includes [5], which pro-
posed a direct inversion of raw lattices from the speech recog-
nizer. No information is lost, and accuracy is the same as for
directly searching the lattice, but no attempt to reduce lattice
size is made besides beam pruning. [6] proposed a posterior-
probability based approximate representation in which word
hypotheses are merged w.r.t. word position, which is treated
as a hidden variable. It easily integrates with text search en-
gines, but only achieves a small reduction of index entries
and loses time information for individual hypotheses. Also
related to our topic are “confusion networks” (or “sausages”),
a method to align a speech lattice with its top-1 transcription
[10]. Sausages are a parsimonious approximation of lattices,
but due to the presence of null links, they do not lend them-
selves naturally for matching phrases or indexing.

3. SYSTEM ARCHITECTURE

Fig. 1 shows the overall architecture of a search engine for
audio/video search. At indexing time, a media decoder ex-
tracts the raw audio data from different formats of audio found
in the enterprise. This is then fed into a large-vocabulary
continuous-speech recognizer (LVCSR), which outputs word
lattices. The lattices are processed with our TMI or TALE
method and merged into the inverted index.

At search time, list of hits of all query terms are retrieved
from the index and intersected (including phrase matching) to
determine documents that contain all query terms. The ranker
computes relevance scores, and a result presentation module
creates snippets for the returned documents and compose the
result page, which would contain time information for indi-
vidual word hits to allow easy navigation and preview.

4. WORD-LATTICE BASED SEARCH

Before presenting the TMI and TALE methods in section 5,
we want to review word-lattice based search. First, we discuss
how and where lattice indexing can help accuracy – and where
not; and then formally define lattices in the form we use.

4.1. Benefit of Lattices
At word accuracies of 50-70%, recognition results are highly
uncertain. The idea of lattice indexing is to retain alterna-
tive word candidates that the recognizer also considered, with
their associated probabilities – Alternates improves Recall,
whereas probabilities, representing confidence, improve Pre-
cision. For example, while a text represents information like
“word w was spoken at a certain point of the recording,” a
lattice represents “soft” statements like “It appears w1 was
spoken, but expect that only to be correct with a probability
of P1, and by the way it could also have been w2 with proba-
bility P2 or w3 with P3 etc.” Figure 2 shows an example.

For known-item searches – retrieving one or more known
audio document – the dominant metric is Recall, and we have

Fig. 1. System Architecture.

shown in [4] that it is optimal (w.r.t. a specific accuracy met-
ric) to list all hits that match the query ranked by the hits’
query posterior probabilities, i.e. confidence scores.

For ad-hoc search – retrieval of relevant documents, typi-
cally unknown, from a large database that may contain multi-
ple acceptable answers – the dominant criterion is Precision.
A system with Precision below, say, 70-80% will likely be
perceived as broken. Requiring Precision of 70-80% has an
interesting consequence: It requires a confidence threshold
above 0.5 – but because confidences are probabilities and sum
up to 1.0, no second best recognition alternate could ever be
retrieved! Thus, it seems that in high-Precision ad-hoc scenar-
ios, indexing alternates cannot help to improve Recall (while
Precision can still benefit from confidence scores.)

We can experimentally confirm this for single-word
queries. However, most queries are multi-word queries
(e.g. Internet web queries consist of 2.35 words on average
[11]), and query terms are strongly correlated: Hits are sig-
nificantly more like to be correct than single-word queries
when they all appear in the lattice, even more so if they oc-
cur in sequence (phrase match). Indeed, we find that even at
confidence thresholds far below 0.5, the required precision is
retained. Formulti-word (phrase, AND) queries, including al-
ternates does lead to a significant improvement of Recall even
at a high-Precision requirement.

4.2. Lattice Definition
A word lattice is L = (N ,A, nenter, nexit) is a weighted di-
rected acyclic graph (DAG) where arcs A represent word hy-
potheses with recognizer scores, and nodesN the connections
between them, encoding times and possibly context condi-
tions.1 nenter and nexit ∈ N are the unique initial and final
node, respectively. The recognizer score of a word hypothesis
is used as the arc weight:

qns,w,ne
= p

1
λ (O(tns

...tne
)|ns, w, ne) · P (w|ns)

where p(O(tns
...tne

)|ns, w, ne) is the likelihood for acous-
tic observation O(tns

...tne
) given word w, its time bound-

aries (ts, te), and its cross-word triphone context (ns, ne).
P (w|ns) is the language-model (LM) probability of word w

to follow its LM history (encoded in ns). λ is the well-known
LM weight.2 Consider qns,w,ne

= 0 for non-existent arcs.
1Alternative definitions of lattices are possible, e.g. nodes representing

words and arcs representing word transitions.
2Despite its name, the function of the LM weight is now widely consid-

ered to be to flatten acoustic emission probabilities. This matters when sums

630

INTO -10.0
INTO 0.0

BEEN -6.5

INTEREST -27.6
INTO -27.6

IN -18.4

INTO -26.1
CHANGE -29.6

THINKING -16.1 THIS -16.1
THE -26.7

THIS -20.2

INTO -26.1
INTO -16.2

BEEN -22.6 THERE’S -10.0
THERE’S 0.0

JUST -6.5

BANK -27.6
THIS -27.6

JUST -18.4

JUST -26.1
IN -29.6

BANK -18.4

BANK -29.7

BANK -26.6

BANK -19.3
BANK -6.5 BANK -17.8

BANK -14.7THIS -29.7

BANK -12.9
BANK 0.0

BANK -11.3

BANK -8.2

BANG -25.1

BANK -27.6
BANK -29.0

BANK -16.1
BANK -27.5BANK -24.4

SPANK -26.7

SPANK -20.2
SPANK -28.4

BANK -29.5

HIM -20.2YOU -28.4

ACCOUNT -12.9

HIM 0.0

YEAH -11.3

YOU -8.2

TO -25.1 COUNT -25.1

CAN -12.9
COUNT -8.7
CAN’T -9.2

CANNES -12.9

 -11

Fig. 2. Word-lattice example for the word sequence “...into this bank account.”

The lattice representation allows to answer one question
of interest: Given our observed audio recording O, what is the
probability P (∗-ts-w-te-∗|O) that a particular word w was
spoken at a particular time ts...te? This quantity is called
the word posterior probability. Despite its name, it is defined
over paths, and ∗-ts-w-te-∗ shall denote the set of paths that
contain w with boundaries ts and te. To compute it, we sum
over all nodes (ns, ne) with the given time points (ts, te)

3:

P (∗-ts-w-te-∗|O) =
∑

(ns,ne):
tns=ts∧tne =te

P (∗-ns-w-ne-∗|O)

where the arc posterior P (∗-ns-w-ne-∗|O) is computed as:

P (∗-ns-w-ne-∗|O) =
αns

· qns,w,ne
· βne

βnenter

and the forward probability αns
and backward probability

βne
represent the sum over all paths from sentence start nenter

to ns and ne to sentence end nexit, respectively. They can be
computed conveniently with the forward-backward recursion
[12]. βnenter is the total probability over all paths.

Relevance-ranking formulas often use the term frequency
TFw (per-document keyword occurrence). Its expected value
can be computed from the lattice as:

Ew|O{TFw} =
∑

∀m,n0...nm:
n0=nenter∧
nm=nexit

P (n0-w1-n1-...-wm-nm) ·
∑

∀i:wi=w

1

=
∑

∀n,n′

P (∗-n-w-n′-∗|O)

One would also want to answer the same question for multi-
word sequences (w1w2...wm), not only to support explicitly
quoted phrase queries, but also because sequence matches
are significantly more accurate, and query terms often oc-
cur in sequence (implicit phrases). The phrase posterior
P (∗-ts-w1...wm-te-∗|O) can be computed by summing over
all m-arc paths with the given boundaries ts and te:

P (∗-ts-w1...wm-te-∗|O) =
∑

∀m,n0...nm:
tn0=ts∧

tnm=te

P (∗-n0-w1-n1-...-wm-nm-∗|O)

P (∗-n0-w1-n1-...-wm-nm-∗|O) =

αn0

m∏
i=1

qni−1,wi,ni
βnm

βnenter

of path probabilities are taken instead of just determining the best path.
3In most applications, one would also relax the time boundaries, e.g. ex-

tending the sum to include alternate boundaries with significant overlap.

In this paper, we actually use an equivalent, more convenient
representation, which we call the posterior lattice. In a pos-
terior lattice, arc weights are not qns,w,ne

but directly the pre-
computed arc posteriors P (∗-ns-w-ne-∗|O). This represen-
tation still allows exact computation of phrase posteriors:

P (∗-n0-w1-n1-...-wm-nm-∗|O) =

m∏
i=1

P (∗-ni−1-wi-ni-∗|O)

m−1∏
i=1

P (∗-ni-∗|O)

with P (∗-n-∗|O) =
αnβn

βnenter

=
∑

∀n′

∑

∀w

P (∗-n-w-n′-∗|O)

We call the new term P (∗-n-∗|O) node posterior. The pri-
mary advantage of the posterior representation is that poste-
riors are resilient to approximations like aggressive quantiza-
tion and merging of alternates with non-identical time bound-
aries, and they allow comparing arcs with different time du-
rations and temporal splitting e.g. compound words. Further,
the node posteriors turn out to be uncritical and can be re-
placed by a constant in our scenario.

5. INDEXING LATTICES WITH TEXT INDEXERS
WITH NO OR LITTLE CHANGES

This section addresses the main question of this paper: How
to represent or approximate word lattices such that they can
be indexed with existing text indexers with little or no modi-
fication?

Lattices can be indexed according to the same principles
as text. An inverse index stores for every term a list of its oc-
curences, including document id, relative word position, and
supplementary information for ranking (e.g. font size [13]).
Documents can be retrieved efficiently by intersecting the lists
of all query terms. For the typical “Google-style” query we
are all familiar with, all query terms must be present at least
once in a document, and for phrases, query terms must occur
in consecutive word positions.

To transform a text indexer into a lattice indexer, “word
position” must be changed to store start and end node (data
structure change) and the phrase matcher must use that in-
formation (code change); the word posterior has to be stored
e.g. as part of the supplementary “ranking information” and
must be used by the ranker. Node times are needed only for
the result display, and are not stored in the inverted index.

Having posteriors used by the ranker can be achieved by a
trick. Typical indexer designs use the “ranking information”
as an abstract type index into a weight table [13]. To use pos-
teriors in ranking, we’d just need to change the weight table
accordingly. Thus, the remaining issue is phrase matching.

631

IN -18.4

BEEN -6.5
CHANGE -29.6 THINKING -16.1

INTO 0.0
INTEREST -27.6

IN -29.5

JUST -6.5

THE -26.7
THIS -16.1
JUST -26.1

THERE’S 0.0 BANK -8.2

SPANK -28.4
BANG -25.1 BANK 0.0

SPANK -20.2
YOU -8.2
TO -25.1

ACCOUNT -12.9
YEAH -11.3
CAN -12.9
HIM 0.0

CAN’T -9.2
COUNT -8.7

CANNES -12.9

IN -18.4

THINKING -16.1
INTO 0.0

BEEN -6.5
INTEREST -28.3

THERE’S 0.0

INTEREST -28.3
BANK -8.9

SPANK -29.1
BANG -25.9
THE -26.7
THIS -16.1
JUST -6.5

YOU -8.9

TO -25.9
BANK 0.0

SPANK -20.2
BANG -25.9

YOU -8.9
TO -25.9

YEAH -11.3
CAN -12.9
HIM 0.0

CAN’T -9.2
COUNT -8.7

CANNES -12.9
ACCOUNT -12.9(a) TMI (b) TALE

Fig. 3. The lattice of Fig. 2 after TMI (a) and TALE (b) processing.

If the code and data-format changes are permissible, the
remaining challenge is lattice size. The TMI method (Time-
based Merging for Indexing) addresses this problem. If even
the above changes are not possible, further approximations
are needed to map nodes to word positions. This is addressed
by the TALE method (Time-Anchored Lattice Expansion).

5.1. TMI – Time-based Merging for Indexing
As Fig. 2 shows, a single word often has multiple lattice arcs
with different acoustic or language-model context conditions
and slightly off time boundaries. The objective of the TMI
method, which was first introduced in [8], is to significantly
reduce the lattice size by exploiting this redundancy, while
retaining all word sequences to avoid false negatives.

The basic idea is to cluster lattice nodes with similar
times, and to approximate word hypotheses by arcs between
node clusters rather than individual nodes. The clustering cri-
terion is simple: two consecutive nodes can be clustered to-
gether unless that would create a loop (a hypothesis starting
and ending in the same clustered node); and amongst the man-
ifold of clusterings that satisfy this condition, the one leading
to the smallest number of clusters is considered the optimal
solution. It can be found using dynamic programming:

• sort nodes n1...nN in ascending time
• for each node ni, determine mi: the maximum node that ni

can be grouped with without causing a loop
• set cluster counts C0 ← 1; Ci ← ∞∀ i > 0
• set backpointers Bi ← ni ∀ i > 0
• for i = 1...N : // DP recursion

– for j = i...mi: if Ci−1 + 1 ≤ Cj :
∗ Cj ← Ci−1 + 1
∗ Bj ← i // cluster {ni...nj}

• k ← N ; while k �= 0: // trace back, merge nodes
– create new node cluster {Bk...nk}, relink arcs
– k ← Bk − 1

• merge arcs that connect the same two clusters with same word
by summing up their posteriors

We call this “Time-based Merging for Indexing,” as it
effectively clusters nodes with similar time points, although
node times are only used for node sorting. The process re-
tains Ew|O{TFw} and keeps all phrases. It also introduces
additional paths, but they are restricted to not cause insertions
or deletions of full words, and our experiments show no loss
of accuracy from false positives (these random combinations
are unlikely to be valid phrases that one would search for).

The final arc merging significantly reduces lattice size,
into the range of operating characteristics that text engines are
optimized for (further reduction is possible by pruning), and
the resulting number of nodes is only slightly above the num-
ber of spoken words, so text indexers’ mechanisms to store
word positions, which may involve compression, are suited to

store start nodes ns. Indexing TMI lattices still requires small
code and data-structure modifications to store end nodes (ne–
ns is barely ever above 8: three bits are sufficient) and inter-
pret it for phrase matching. Scores are stored in the ranking
information and do not require code change.
5.2. TALE – Time-Anchored Lattice Expansion
The objective of TALE is to approximate lattice indexing
where changes to the core indexer code or data format are
not an option. In this case, words must be aligned to word
positions, forming a sausage-like lattice. The standard phrase
matcher requires words belonging to phrases to be in con-
secutive word positions, i.e. some words must be aligned to
multiple slots (overgeneration). It is impossible to guarantee
retaining all possible phrases while keeping phrase posteriors
and keeping the index small. We have to set priorities.

TALE aims to retain the expected term frequencies
Ew|O{TFw} (they matter for ranking); keep time points of
individual hits accurate enough to allow playback; and have
all phrases up to three words in consecutive word positions.
The following method satisfies these criteria while keeping
the index size reasonable.

First, we define the conditional probability that word w

happens as the Δ-th path token after a given node n:

P (w|n, Δ, O) =

∑
∀ni,wi:

i=1...Δ∧wΔ=w

P (∗-n-w1-n1-...-w-nΔ-∗|O)

P (∗-n-∗|O)

We then choose time anchor points t0...tT to define word-
position slots (ti, ti+1), e.g. the time boundaries of the best
path, and align each node n to the closest slot, denoted by
i = sn. We call this “binning.”

We can now compute the probability distribution for slot
i of words w being the Δ-th token of a phrase:

PΔ(w|i, O) =
∑

∀n:sn+Δ=i

P (∗-n-∗|O) · P (w|n, Δ, O)

We call this the “PΔ-Expansion.” It is easy to show that
Ew|O{TFw} remains unchanged for all w. The time infor-
mation are retained by the anchor points.

To guarantee to retain all M -word phrases in consecutive
slots, we interpolate multiple PΔ-Expansions:

P (w|i, O) =

M∑

Δ=1

αΔ · PΔ(w|i, O)

with
∑

αΔ = 1. The weights αΔ would ideally be opti-
mized on a development set to maximize overall accuracy,
but it is not necessary: Experiments show that using equal
weights yields almost as good result as full lattice. We name
this method “TALE” (Time-Anchored Lattice Expansion)

632

Table 1. Summary of data sets used.
dur. #docu- av. dur WER

set and scenario [h] ments [min] [%]
lectures (online learning) 170 169 60.4 46.6
1:1 calls (call mining) 310 2435 7.6 37.5
meetings (archive) 99 104 57.1 45.7
voicemails (personal) 30 3934 0.5 35.6

6. EXPERIMENTAL RESULTS
6.1. Setup
We evaluate our method on four different data sets totaling
600 hours of audio from popular speech corpora. They were
chosen to represent typical enterprise scenarios – online learn-
ing: MIT iCampus lectures [3]; call mining: Switchboard-I
telephone conversations; meeting archive scenario: the train-
ing set of Rich Transcription 2004 Spring Meeting Recogni-
tion Evaluation; and personal search: voicemails (IBM Voice-
mail I+II). Table 1 summarizes the dataset information.

Raw lattices were generated with a speaker-independent
LVCSR system. Its acoustic model was trained on the 1700-
hour Switchboard “Fisher” telephony-speech set (does not in-
clude Switchboard-I) [2]. The trigram language model (LM)
for recognizing Switchboard-I conversations was trained on
Fisher transcripts. Due to limited LM data for voicemails
and lectures, we partitioned the test set into 10 parts, and
recognized each part with an LM trained on the transcripts
of the remaining 9 parts, keeping training and test disjunct.
For meetings, LMs were trained on transcripts of a collec-
tion of broadcast news, voicemails, and telephone conversa-
tions, plus the meetings transcripts in the same 10-part held-
out manner. Word-error rates (WER) range from 35 to 47%.

We evaluate our method on keyword search without rel-
evance weighting. We include multi-word phrase queries,
single-word queries, and two-term AND queries (each term
can be single or multi-word). The keyword set is synthetic
and consists of noun phrases chosen from the transcripts such
that for each query there are at most two matching documents.

We use three different accuracy metrics:
• FOM: The NIST Figure Of Merit defined as the de-

tection/false-alarm curve averaged over [0..10] false
alarms per keyword per h hours. Instead of the orig-
inal h = 1, we use h=data set duration from Table 1.

• mAP: mean average precision, ranking documents by
the probability that the single or multi-word query Q

occurs in the document at least once:

P (Q in doc) = 1 −
∏

∀hits h for Q

(1 − P (h|doc))

and for AND queries:

P (X AND Y in doc) = P (X in doc) · P (Y in doc)

• R75/R50: document Recall at Precision 75%; and at
50% for single-word queries, for which it proved diffi-
cult to get enough observation points above 75%.

Both mAP and R75 rely on a joint ranking among all query
terms. Therefore we normalize the word and phrase posteriors
using three 2-state Hidden-State Maximum-Entropy models
[14] for single words, two-word phrase, and longer phrases,
respectively. This improves AND-query results by up to 5
points.

6.2. Speech-To-Text Transcript vs. Lattice Indexing
Table 2 shows the results. The first and second result
rows compare accuracies for the simplest approach, index-
ing speech-to-text (STT) plain-text transcripts, with raw lat-
tice indexing. To be able to compare transcript results with
lattices, we attached posteriors from the lattice to each tran-
script word. (Without that, there is only one Precision/Recall
point, for which the results are very similar to the RP result.)

The first three result columns show accuracies for phrase
queries. From STT transcript to raw lattice, a significant im-
provement is observed. For FOM and mAP, relative improve-
ments are 63 and 57%, respectively, and 28% for R75. For
the single-word queries (next three columns), improvements
for FOM and mAP are in the 30% range, and none for R50.
The next three columns show AND-query results. Both mAP
and R75 increase by a solid 2.4 times. Indeed, indexing al-
ternates helps significantly for known-item searches (FOM,
mAP), while for ad-hoc queries with high precision (R75/R50)
it helps for multi-word queries. The results are shown for only
one data set, iCampus lectures. For the other data sets, the
picture is very consistent.

6.3. Lattice Reduction – TMI
In the next three rows, we compare the effect of the TMI size-
reduction method. First, TMI reduces the lattice size (last
column) over 30 times, from around 1600 arcs per spoken
word to 46. We admittedly use very rich lattices here – in ear-
lier experiments [8] with smaller lattices of about 25 arcs per
word, TMI achieved about a 5-fold size reduction. Compared
with the “raw lattice,” TMI does not lead to an accuracy hit
– in fact it improves accuracy by 2-3 points for multi-word
queries: By creating additional paths, TMI has recovered a
few phrases. For single-word queries, TMI is very close to
the raw lattice as expected.

Because the lattice size is still above our target of 10 arcs
per spoken word, we prune the lattice by removing all arcs
with posteriors below -8. The result (in the next row “TMI
with pruning”) shows a 2-6 points accuracy hit for multi-word
queries for FOM and mAP. I.e., unlike false positives from
creating new paths, false negatives are expensive. The loss is
much smaller for the high-precision R75 metric.

“TMI with pruning” realizes nearly all the benefit of in-
dexing “raw lattices” while only requiring about 10 arcs per
spoken word. Table 2 also shows the pruning results for the
other three data sets. The results are very consistent.

6.4. Lattice Expansion – TALE
For TALE, we first compare binning of words into word
slots without and with the TALE expansion. Not using the
TALE expansion causes a 5-point accuracy hit for multi-word

633

Table 2. Search results for phrase queries, single-word queries, and two-term queries of the form X AND Y where X and Y may be phrases.
Shown are Figure of Merit (FOM) per keyword hit, per-document mean average precision (mAP), and per-document Recall at a certain
Precision cut-off (RP) for P=75% and 50% for multi and single-word queries, respectively. “Index size” is index entries per spoken word.
“Relative improvement” is from “STT transcript with confidence” to the “with pruning.”

query type: phrase queries single-word queries X AND Y queries index
configuration FOM mAP R75 FOM mAP R50 FOM mAP R75 size

iCampus Lectures (Online Learning)
STT transcript with confidence 40.6 42.7 43.4 36.4 44.2 45.2 42.8 26.1 26.1 1.0
raw lattice 66.1 67.2 55.7 49.0 55.9 45.4 55.6 63.3 61.6 1617
TMI (node merging w/o loops) 68.4 69.6 58.0 48.7 55.9 45.4 56.1 66.3 63.9 46.2
TMI with pruning 65.7 67.1 58.3 48.2 55.4 45.4 55.0 60.4 61.0 9.9
⇒ relative improvement over STT +62% +57% +34% +32% +25% +1% +30% ×2.3 ×2.3 -
simple binning of word hypotheses 63.9 65.4 55.5 47.8 55.9 45.4 54.0 61.1 58.9 19.9
TALE (binning with expansion) 68.5 70.2 57.6 48.4 55.8 45.5 56.2 67.7 63.7 35.5
TALE with pruning 65.8 67.6 57.7 48.1 55.4 45.5 55.2 61.5 61.7 11.5
⇒ relative improvement over STT +62% +58% +33% +32% +25% +1% +29% ×2.4 ×2.4 -

Switchboard 1:1 Telephone Conversations (Call Mining)
STT transcript with confidence 50.5 52.1 52.8 45.8 50.0 52.7 53.2 33.2 33.2 1.0
TMI with pruning 78.1 78.9 70.9 59.5 63.3 55.1 70.2 71.1 71.3 8.0
TALE with pruning 75.8 76.7 66.9 59.3 61.9 53.8 68.6 68.6 68.8 9.3

LDC Meetings (Meeting Archives)
STT transcript with confidence 37.7 40.1 40.5 40.0 45.1 40.6 41.9 25.7 25.7 1.0
TMI with pruning 65.0 67.0 60.1 54.0 58.3 38.6 57.6 60.1 58.9 9.5
TALE with pruning 65.2 67.4 58.0 54.9 58.3 39.4 58.2 60.7 58.4 11.3

LDC Voicemails (Personal Search)
STT transcript with confidence 44.4 44.5 45.5 37.9 37.5 37.9 51.0 26.7 26.7 1.0
TMI with pruning 68.5 67.2 62.1 50.8 47.5 38.6 64.5 56.6 56.9 8.0
TALE with pruning 68.6 67.2 61.5 51.5 47.5 38.6 65.0 57.0 57.3 9.4

Cross-corpus Averages
TMI av. relative improvement over STT +62% +56% +35% +34% +26% +0% +32% ×2.2 ×2.2 -
TALE av. relative improvement over STT +61% +57% +38% +33% +27% +1% +32% ×2.2 ×2.2 -

queries. This shows again the cost of false negatives. How-
ever, that the lattice size of TALE is nearly twice that of sim-
ple binning. Besides, accuracies for TALE are very similar to
TMI, except for Switchboard we observe a 2-4 points drop.

7. CONCLUSION

We have presented two methods to enable text indexers to
approximately index lattices with little or no code change:
“TMI” (Time-based Merging for Indexing) aims at lattice-
index size reduction, and the sausage-like “TALE” (Time-
Anchored Lattice Expansion) approximation requires no
indexer-code or data-format changes at all. The effectiveness
of TMI and TALE has been shown for keyword search on
four enterprise-type data sets, where both achieve accuracy
improvements of 30-60% for multi-word phrase searches and
130% for two-term AND queries, compared to indexing lin-
ear text. It has been found that lattices can help to improve
known-item searches, while for ad-hoc searches with high
precision requirements they only benefit multi-word queries.
We also found that in lattice indexing it is important to retain
phrases as much as possible, while a negative impact from
creation of additional paths through false positives was not
observed. By enabling reuse of existing text indexers, this pa-
per allows to capitalize on the immense investments made on
enterprise text search products, and we hope that it will open a
path for accelerated deployment of speech-recognition based
audio and video search solutions in the enterprise.

8. REFERENCES

[1] M. Padmanabhan, G. Saon, J. Huang, B. Kingsbury, and L. Mangu, Au-
tomatic Speech Recognition Performance on a Voicemail Transcription
Task. IEEE Trans. on Speech and Audio Processing, Vol. 10, No. 7, 2002.

[2] G. Evermann, H. Y. Chan, M. J. F. Gales, B. Jia, X. Liu, D. Mrva,
K. C. Sim, L. Wang, P. C. Woodland, K. Yu, Development of the 2004
CU-HTK English CTS Systems Using More Than Two Thousand Hours
of Data. Proc. Fall 2004 Rich Transcription Workshop (RT-04), 2004.

[3] J. Glass, T. J. Hazen, L. Hetherington, C. Wang, Analysis and Pro-
cessing of Lecture Audio data: Preliminary investigation. Proc. HLT-
NAACL’2004 Workshop: Interdisciplinary Approaches to Speech Index-
ing and Retrieval, Boston, 2004.

[4] P. Yu, K. J. Chen, C. Y. Ma, F. Seide, Vocabulary-Independent Indexing
of Spontaneous Speech, IEEE Transactions on Speech and Audio Pro-
cessing, Vol.13, No.5.

[5] M. Saraclar, R. Sproat, Lattice-based search for spoken utterance re-
trieval. Proc. HLT’2004, Boston, 2004.

[6] C. Chelba and A. Acero, Position specific posterior lattices for indexing
speech. Proc. ACL’2005, Ann Arbor, 2005.

[7] P. Yu, F. Seide, A hybrid word / phoneme-based approach for improved
vocabulary-independent search in spontaneous speech. Proc. ICLSP’04,
Jeju, 2004.

[8] Z. Y. Zhou, P. Yu, C. Chelba, F. Seide, Towards Spoken-Document Re-
trieval for the Internet: Lattice Indexing For Large-Scale Web-Search Ar-
chitectures. Proc. HLT’06, New York, 2006.

[9] J. Garofolo, TREC-9 Spoken Document Retrieval Track. Na-
tional Institute of Standards and Technology, http://trec.nist.
gov/pubs/trec9/sdrt9_slides/sld001.htm.

[10] L. Mangu, E. Brill, A. Stolcke, Finding Consensus in Speech Recog-
nition: Word Error Minimization and Other Applications of Confusion
Networks. Computer, Speech and Language, 14(4):373-400.

[11] Craig Silverstein, Monika Henzinger, Hannes Marais, and Michael
Moricz, Analysis of a Very Large Web Search Engine Query Log. ACM
SIGIR Forum, Volume 33, Issue 1 (Fall 1999).

[12] F. Wessel, R. Schlüter, and H. Ney, Using posterior word probabilities
for improved speech recognition. Proc. ICASSP’2000, Istanbul, 2000.

[13] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1-7):107-117.

[14] P. Yu, J. Xu, G. L. Zhang, Y. C. Chang, and F. Seide, A Hidden-
State Maximum Entropy Model for Word Confidence Estimation.
Proc. ICASSP’2007, Honolulu, 2007.

634

