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ABSTRACT 

This paper discusses the challenges of building information 
retrieval applications that operate on large amounts of 
voice/audio data.  Various problems and issues are 
presented along with proposed solutions.  A set of 
techniques based on a phonetic keyword spotting approach 
is presented, together with examples of concrete 
applications that solve real-life problems. 

Index Terms— Phonetic search, speech recognition, 
information retrieval

1. INTRODUCTION 

Information retrieval, and its closely allied disciplines of 
document retrieval and data mining, have long been at the 
leading edge of utilizing technological advancements in 
areas such as computation, storage, communications, 
databases, signal processing, pattern recognition, and 
machine learning.  In practical terms, the goal has always 
been to remove the burden of analysis from a human 
consumer.  More recently, the goal has been to add some 
modicum of control to an almost unmanageable overload of 
information.  Of the major media sources —text and text-
like metadata, images and video, and voice and audio— 
text-based information retrieval is by far the most advanced.  
Typical tasks involving text include creation of searchable 
text indices, creation of text-based natural language 
interfaces, document retrieval, summarization, clustering, 
translation, trend-spotting, language identification, 
sentiment and tone of a communiqué (e.g., terse, jovial, 
annoyed), and clandestine observations, to name a few.  The 
data can come from internet sources, databases, emails, 
faxes, text messages, broadcast transcripts, legal documents, 
one's own computer files, and a host of other sources.  We 
mention these foregoing tasks and data sources simply to 
emphasize that each of these has a correlate with voice and 
audio, but with much less capability for performing the 
desired operations.  

While text and video/images can be scanned efficiently by a 
human consumer to verify results (e.g., a web search 
engine), audio cannot be rapidly displayed.  The logical 
choice for voice information retrieval, therefore, would be to 
produce time-aligned transcripts for the voice signal and 
then bring to bear all the advanced tools of text-based 
processing.  Manually created transcripts are sometimes 
available in the form of closed-captioning or from court 
reporters, but in general they are not.  Automatically 
generated transcripts often include large numbers of word 
errors, which must be allowed for in any information 
extraction process.  Further, a great deal of information may 
be missing, e.g., the identity of the person talking, his or her 
gender, the channel characteristics, the background 
conditions, the stress and intonation pattern, the accent, the 
speaking rate, the proficiency with the language, as well as 
other voice characteristics.  Hence annotated text, such as 
diarization [1], would be desirable.  But, even with these 
embellishments, the text form will never be as rich as the 
audio waveform itself.  

In any information retrieval problem, be it an internet search 
engine, an interactive help menu, or even directory 
assistance, there is generally a fundamental tradeoff between 
finding everything you want (recall) and omitting things 
you do not want (precision).  Setting the proper operating 
point continues to be a challenge in any system.  

In this presentation we discuss one approach to the 
voice/audio information retrieval problem related to real-life 
applications, along with some interesting observations and 
challenges. 

2. DEFINING THE PROBLEM 

We deviate perhaps from the classical definitions of 
information retrieval in that we define the overarching 
problem to be that of reducing the dependence on human 
ears for extracting information from an audio stream or 
record.  Examples of such sources include broadcasts, web 
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Fig. 1: Example of a media file richly annotated by detector and classifier tracks such as language, language family, music, 
DTMF, gender, silence, and voice activity.  The interactive control consists of two panels: the lower one offers a “bird’s eye 
view” of the entire media file (about 2 minutes long in the example), whereas the top panel shows only the zoomed-in 
portion, corresponding to the segment delimited by the vertical orange bars in the lower panel (about 7 seconds long in the 
example). 

postings (such as YouTube videos), voicemails, recorded 
voice interactions, music, telephone recordings, and others.  
Desired information to be retrieved can include a wide array 
of descriptors that may have little do with the actual words 
spoken.  For instance, it may be valuable to determine 
automatically what fraction of time in a recorded voice 
interaction was “hold music.”  Given this definition, 
virtually the entire universe of speech and audio signal 
analysis tools prove to be valuable. 

3. CHALLENGES 

There are three broad classes of problems that must be 
solved, all of which are important for the overall problem.  
The first set of issues relates to the base-level signal 
processing.  These include not only the methodology of 
extracting the desired descriptors, but also such measures as 
accuracy, confidence, pre- and post-processing speeds, 
latency, and storage requirements.  The second set of issues 
relates to the user interface and how the results are 
displayed in a useful fashion to consumers whose level of 
expertise may widely vary.  The third set of issues relates to 
how to impose a higher intelligence on the extracted 
information to assist in actual decision making for custom 
applications. 

3.1. Base-level Analysis: Phonetic Word Spotting 

One set of solutions, explored by Nexidia and others [2,3], 
is based on a phonetic analysis of the incoming speech, 
along with extraction of other key descriptors.  The reasons 
for this choice are numerous and include such factors as 
processing speed and latency, rapid adaptation to new 
languages, and completely open vocabulary.  (There are 
both obvious advantages and disadvantages for the speech-
to-text approach, but these will not currently be discussed at 
this time.)  In phonetic word spotting, certain behaviors 

must be accommodated such as the confusion of homonyms 
in a string, the existence of false alarms (especially short 
audio events), and slower search speed than for text.  The 
underlying processing comprises two phases – pre-
processing and searching.  The first phase pre-processes the 
input speech to produce a phonetic search track, which is 
searched during the second phase to find the query term(s).  
Pre-processing is performed only once for a given media 
segment, and stored or archived.  Searching, on the other 
hand, is typically performed every time to locate the 
temporal offset(s) of the query term(s) within the audio file.  
The original waveforms are not involved at all during 
searching and could be discarded if desired in favor of 
compressed representations. 

3.1.1 Pre-processing, acoustic model, and phonetic 
grammar 

The pre-processing phase begins with format conversion of 
the input speech into a standard representation for 
subsequent handling.  Then, using an acoustic model and 
phonetic grammar, the pre-processing engine scans the 
input speech and produces the corresponding phonetic 
search track.  An acoustic model represents characteristics 
of both an acoustic channel and a natural language.  
Channel characteristics include frequency response, 
background noise, and reverberation. 

A phonetic grammar likewise depends upon the natural 
language in use (particularly the set of phonemes used to 
represent basic sounds and meanings of the input speech).  
This grammar is used to identify likely end points of words 
in the input speech (although one should note that words per 
se are not generated during pre-processing, unlike in large 
vocabulary continuous speech recognition (LVCSR) 
systems). 
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Fig. 2: Example presentation of search results for a media file.  The left panel shows the hits in tabular form, whereas the 
right panel superimposes their offset on the player’s timeline (vertical red bars). 

3.1.2 Phonetic search track 

The end result of phonetic pre-processing of a media 
segment is a phonetic search track – a highly compressed 
representation of the phonetic content of the input speech 
(which cannot be reconstructed from the search track).  
Unlike LVCSR, whose essential purpose is to make 
irreversible (and possibly incorrect) bindings between 
speech sounds and specific words, phonetic pre-processing 
merely infers the likelihood of potential phonetic content of 
sounds (thereby deferring decisions about word bindings to 
the subsequent searching phase).  Produced by phonetic pre-
processing and required for phonetic searching, phonetic 
search tracks are tangible artifacts that can be treated as 
metadata, associated and distributed with the originating 
media segments, produced in one environment, stored in 
databases, transmitted via networks, and searched in another 
environment.  They are distinct from the word or sub-word 
lattices often generated as an internal step in LVCSR.  

3.1.3 Searching, keyword parsing, phonetic dictionary, 
spelling-to-sound, and search results 

The searching phase begins with keyword parsing of the 
query term, which is specified as text containing one or 
more: 

words or phrases (e.g., “Osama bin Laden”) 

phonetic strings (e.g., “[B IY T UW B IY]”, the six 
phonemes representing the acronym “B2B”) 

temporal operators (e.g., “brain cancer &15 cell 
phone,” representing two phrases spoken within 15 
seconds of each other) 

A phonetic dictionary is probed for each word within the 
query term and it typically contains unusual words (whose 
pronunciations must be handled specially for the given 
natural language) as well as very common words (for which 
performance optimization is worthwhile).  Any word not 
found in the dictionary is then processed by consulting a 

spelling-to-sound model that generates likely phonetic 
representations given the word’s orthography. 

After words, phrases, phonetic strings, and temporal 
operators within the query term are parsed, then actual 
searching commences.  Multiple phonetic search tracks can 
be scanned at high speed during a single search for likely 
phonetic sequences (possibly separated by offsets specified 
by temporal operators) that closely match corresponding 
strings of phonemes in the query term.  Recall that phonetic 
search tracks encode potential sets of phonemes, not 
irreversible bindings to sounds.  Thus, the matching 
algorithm is probabilistic and returns multiple results, each 
as a 3-tuple:

Search Track (for the media segment probably 
containing the query term)

Temporal Offset (of the query term within the 
media segment, accurate to 0.01 second)

Confidence Level (that the query term occurs as 
indicated, between 0.0 and 1.0)

Even during searching, irreversible decisions are postponed. 
Results are simply enumerated, sorted by confidence level, 
with the most likely candidates listed first.  Post-processing 
of the results list can be automated.  Example strategies 
include hard thresholds (e.g., ignore results below 90% 
confidence), occurrence counting (e.g., a media segment 
gets a better score for every additional instance of the query 
term), and natural language processing (patterns of nearby 
words and phrases denoting semantics). 

As in any detection-based information extraction process, 
many descriptors are required to fully describe accuracy. 
Plots and graphs would include ROC curves, DET curves 
[4], etc. Although such measures are of limited value 
without context, a few key numbers for Nexidia’s 
implementations are presented for comparison purposes 
only.  The Figure-of-Merit (FOM) number is computed by 
measuring the probability of detection of a search term 
averaged over the conditions of 0 to 10 false alarms per
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Fig. 3: Another view into a search result set.  In this case, each horizontal line corresponds to a media file (thus the different 
lengths) and the hits are depicted by a sphere whose radius is proportional to the confidence score and whose color is 
determined by the query (only two in this case). 

hour of audio.  Here the search terms are varied from 4 to 
20 phonemes in length.  For broadcast news materials, this 
number is 87% (consistent across English, Modern 
Standard Arabic, etc.).  For Switchboard landline and 
cellular, the numbers are 77% and 71% respectively.  For 
mixed telephony compressed  audio using G.726 at 6 kHz 
and 2 bits, the FOM drops to 69%, and for actual input from 
a production call recorder, a typical FOM score is 56%.  
Finally, typical FOMs for speech captured from a far field 
microphone during a live meeting are in the range of 45%.  
One should note, though, that in the latter two cases, the 
quality is sufficiently bad as to cause great difficulty for 
even a skilled human transcriptionist.  Given this 
progression in audio quality versus accuracy, the 
degradation is reasonably graceful. 

Another result is that the FOM shows a marked 
improvement as the length of the search term increases.  
Short terms (e.g., those consisting of only four phonemes) 
will produce many more false alarms than will longer 
terms.  FOMs for terms of 20 phonemes in length give 
FOMs in the high 90s.  These numbers, when verifiable, are 
very consistent across languages.  A key lesson in these 
measurements  is that real-world data often stresses the 

system more than do laboratory databases.  But, even in the 
most hostile conditions, useful information can be 
extracted, especially if one avoids short queries. 

3.1.4 Application of additional processing, annotation, and 
filtering 

In addition to creating phonetic search tracks, the process of 
indexing a media file can also include other types of base-
level analyses, such as:  

• Voice activity detection 

• Silence detection 

• Music detection 

• Speaker turns  

• Segmenting talkers in two-way voice signals  

• Language and/or language family identification 

• Accent or dialect analysis  

• Gender detection 
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Fig. 4: A more advanced visualization of search result sets which includes “dispositioning” information, i.e., truth marks.  In 
this case, each dot corresponds to a hit, color-coded according to its dispositoned value: red for a false alarm, green for a true 
positive, and gray for a phonetic partial match (as in matching “sixty” when searching for “sixteen”).  Each column (X-axis) 
corresponds to a search term, and the Y-axis corresponds to the confidence score.  In this view, the search terms are sorted by 
their automatic threshold (horizontal blue line), an attempt to automatically separate true hits from false alarms. 

• DTMF detection and decoding 

• Number string detection  

• Fax/modem signal detection 

• Other captured meta-data 

Applying this array of detectors and classifiers results in 
richly annotated media files, as depicted in Fig. 1.  Note that 
almost all of the descriptors are binary, lending themselves 
to detection strategies. 

3.2. Presentation layer: Informative display of result sets 

Once the results for a search term or query have been 
obtained, there are different ways of presenting them to the 
user.  Fig. 2 shows a very common interface, where the 
results are presented in both tabular form and superimposed 
on a timeline.  Fig. 3 extends the idea to a 2-D plot to 
display multiple media files, and Fig. 4 adds dispositioning 
information (i.e., whether the hits are true or false positives) 
to the visual representation of a large result set.

Post-processing can also be manual – particularly for short 
lists of results.  Highly optimized and efficient human 
interfaces can be devised to sequence rapidly through a list, 
to listen briefly to each result, to determine relevance, and 

finally to select one or more utterances that meet specific 
criteria.  Depending upon available time and importance of 
the retrieval, the list can be perused as deeply as desired. 

Fig. 5 shows an interface for interactive dispositioning and 
convergence to the optimal sequence of phonemes to 
represent a query. 

3.3. Decision-making: Applications solving real-world 
problems

The applications of information retrieval technologies for 
voice/audio media are varied and numerous.  The most 
obvious one is direct search, i.e., using search terms and 
structured queries directly, in order to locate occurrences of 
those expressions in the audio.  Typical scenarios for direct 
search are forensic investigations, e.g., combing through an 
archive of voice mails to find occurrences of certain phrases 
(“Grandma Millie,” as an example of an actual coded 
message on one customer’s site), or any situation where 
users perform searches to navigate the media, to jump to the 
relevant segments within the audio or video files (as when 
searching for, say, “taxi cab driver” to locate a particular 
story within a long television newscast).  Additionally, if the 
search is conducted on a stream of audio (such as a live 
radio broadcast or a telephone call that is still ongoing), the 
application is said to perform live monitoring, which can 
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Fig. 5: Example of interactive dispositioning that leads to a more accurate sequence of phonemes to represents the query at 
hand.  In this case, after marking the 6th hit as correct, the engine proposes a variation in the phoneme sequence that allows 
the user to find many more occurrences of the target search term. 

trigger live alerts when the phrases of interest are spoken.  
Note that search expressions can be known in advance by 
the system (e.g., in a call center deployment, there can be a 
global list of search terms to be applied against all incoming 
calls) or be totally ad-hoc. 

3.3.1 Interactive secondary search 

The information retrieval experience can also be highly 
interactive.  Indirect or secondary search refers to 
employing the occurrences of search expressions (i.e., the 
search results) as a starting point for more complex tasks, 
such as filtering, classification, ranking, and more elaborate 
statistics.  Filtering refers to selecting a subset of media 
from a larger collection by presence or absence of a search 
expression, e.g., finding all the calls containing “cancel my 
account.”  Typically it is an iterative process, as one can, for 
example, refine that set of cancellation calls by searching for 
names of competitors within that set only, or apply set-
theoretic operations (intersection, union, difference) on such 
sets of results.  Closely related to filtering is classification, 
where results for predefined search expressions are used to 
automatically assign audio records to different categories 
(e.g., fire vs. police vs. medical in a emergency call center), 
either as a hard, binary decision (call X either belongs or 
does not belong to category Y) or as a soft one (call X 
belongs to category Y with probability Z).  This type of soft 
classification or scoring can be used for ranking, where 
audio records are ordered by relevance to a particular area of 

interest (modeled via search expressions).  For example, 
when intelligence analysts are faced with a pool of 
thousands of intercepted calls, they can specify a few search 
expressions relevant to their inquiry, let the system rank the 
calls accordingly, and thus conduct a much more targeted 
and efficient investigation.  More generally, arbitrarily 
complex statistical analysis can be performed on search 
results, including establishing positive or negative 
correlations between search expressions (e.g., one may 
discover that the “customer satisfaction” metric is in fact 
negatively correlated with the “agent follows script” metric) 
or computing trends by tracking such metrics over time. 

3.3.2 Pronunciation optimization 

In one interactive application of phonetic technology, one 
can conduct searches in a language one does not speak by 
engaging in a pronunciation optimization dialogue with the 
system, where the user starts with an approximation of the 
target search term (e.g., grossly misspelled, or lacking 
diacritics), then listens to the search results and marks the 
few correct hits, whereupon the engine performs a 
correction of the phoneme sequence for the target search 
term based on the true hits, which leads to finding many 
more correct hits, etc, eventually converging onto the 
optimal pronunciation (typically only after one or two 
optimization rounds, see Fig. 5 again for an example).  Fig. 
6 presents an example of the phoneme graph that underlies 
the computation of alternative phoneme sequences. 
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Fig. 6: Example of a phoneme lattice such as the ones that underlie the computation of alternative sequence of phonemes 
used for pronunciation optimization and repeated search. 

3.3.3 Repeated search  

In a process similar to that described above, a user can find 
one particular instance of a successful query and repeat the 
search based on a “find it again” basis.  An alternative 
phonetic rendering of the target query is derived and 
substituted for the original rendering.  This procedure can be 
illustrated by the following example.  In a body of data 
related to foreign policy, a query was run on the phrase 
“nuclear weapons,” and multiple correct detections were 
extracted.  One particular correct hit had been uttered by a 
southern politician that had pronounced it as “nucular” (i.e., 
“NEW-cue-lerr” (IPA: ) rather than “NUKE-
lee-ar” (IPA: )).  When the “find it again” 
process was invoked, a phonetic rendering that better 
matched the target utterance was derived, and the search 
process repeated.  The results were similar to those found 
earlier, but with this particular talker’s utterances ranked 
higher than others.  This method is not a speaker identifier, 
per se, but it is highly correlated.  

3.3.4 Clip spotting 

There is often a need to find audio clips in a long stream 
(weeks or even months) for compiling statistics, verifying 
compliance, collecting royalties, etc.  Such clips can include 
music, voice, sound effects, or both, and may have noise or 
other distortion added to the data. A text rendering of the 
audio stream would be of limited utility for this task, and a 

search on the original audio would in general be 
prohibitively slow.  A demonstrated solution is to perform 
the search on the phonetic search track.  Although little if 
any direct meaning can be assigned to the phonetic tracks of 
non-speech sounds, they are sufficiently consistent that 
target clips of two or more seconds in length can be found 
with almost perfect accuracy. 

3.3.5 Voice user interface 

An added layer of difficulty occurs when the query is input 
using voice rather than a keyboard (we ignore the scenario 
of uttering the letters themselves).  This is desirable if one 
wishes to retrieve items from voicemail archives or as an 
assistive aid to the blind (described below).  One approach 
is to use the N-best automatically derived phonetic 
renderings of the input and search on all of these, with 
suitable weighting.  Depending on he application or the user 
preferences, the operating point can be set in such a way as 
to virtually assure the user that the desired query terms will 
be found.  Testing shows that decreased accuracy always 
results from such input, under even the best of conditions.  
When the inputs were simulated by clipping snippets of 
words directly from the Switchboard audio, FOMs 
decreased by 40% absolute.  Under live conditions with 
speaker adaptation, however, drops on the order of only 
10% were observed.  
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Fig. 7: Sample output from the phonetic scoring portion of a language assessment application.  The tables show the average 
score for each phoneme across all the words in the script, color-coded in a continuous gradient from pure red to pure green.  
The top table corresponds to a low-scoring speaker, the bottom table to a high-scoring speaker.

3.3.6 Query building 

In higher-order information retrieval, one must examine 
more than individual words and phrases in order to classify 
audio data.  The best query method would be by natural 
language [5] which is making rapid advances. More simply, 
classifying text files can often be accomplished by using 
Boolean search that involves using nested ORs, ANDs, and 
NOTs along with word separation proximities.  It would be 
attractive to be able to use this vast body of knowledge 
directly on the audio itself, but without transcripts for 
training, other methods must be employed.  If the 
underlying processing results in keyword detection along 
with time delimiters and confidence scores, the Boolean 
search can use time separation and  can include the 
confidence levels of the various terms (as opposed to text 
where each term is either present or absent).  Further, the 
training set might consist of a set of audio records that are 
classified, but not transcribed, putting the query writer at a 
severe disadvantage in forming any statistical basis for the 
search.  Here, useful queries can be derived interactively, 
where rough approximations of possible terms and 
structures are posited for a training set, and then 
automatically modified for better classification performance.  
Note that this can be done in individual environments where 
the audio quality is of a particular nature and the dialog 
context has various levels of constraints.  The major 
advantage of this strategy is to diminish the required 
expertise for a query writer.  Typical end products of this 
process are queries that optimally balance terms’ 
detectabilities versus their importance for classification.  

3.3.3 Latent semantic indexing 

Latent semantic indexing (LSI) is also a popular method for 
information retrieval of text [6].  Text representations of the 
training sets are required to train such models, and as such, a 
transcription of each record must exist.  For analysis, an 
automatically transcribed version is then useful for 
classification or clustering.  In practice, imperfect transcripts 

still work, but only if the error rates are within reasonable 
limits [7].  Keyword spotting can also be used in the 
analysis (assuming the training was performed with correct 
text), but the important modification that confidence levels 
must be used in the final weighting.  

3.3.4 Language proficiency assessment 

Another application is the automatic assessment of a 
speaker’s proficiency in a particular language.  Although as 
a first impression this task might appear not to fall within 
the audio information retrieval umbrella, by our earlier 
definition of removing human listening from a process, it 
does.  This current application of phonetic technology that 
solves this real-life problem is a system that automatically 
ranks speakers according to their pronunciation and fluency, 
which is useful for call center companies that need to screen 
thousands of applicants for agent positions.  A script is 
prepared that covers all the phonemes of the language, and 
the agent applicants are recorded reading it, at which point 
the “language assessor” system analyzes it to compute the 
pronunciation and fluency scores.  The pronunciation score 
models how “native” the speaker sounds, and can be 
computed as a function of the average/median scores for 
each phoneme across the script.  The fluency is typically 
computed as the ratio of the sum of the durations for each 
word in the script over the total duration, thus penalizing 
false starts and other speech disfluencies.  Absolute speed 
(as in phonemes per second) can be added into the final, 
global score as well.  Fig. 7 presents phoneme scores for 
two speakers of different ability.  Worth noting is the fact 
that a necessary component for this system is transcript 
synchronization, whereby each applicant’s speech can be 
time aligned with the presented materials.  This process is 
described below.  

3.3.5 Transcript synchronization 

Although synchronization of text with audio is a well-
explored application in the ASR domain, where forced 
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Fig. 8: Sketch of the device for note retrieval for the blind (top), and example of the navigational steps to find the 
occurrences of “phone” (bottom). 

recognition and Viterbi alignment is common [8], the 
keyword spotting approach is much more robust to 
transcription errors, disfluencies, and omitted content.  This 
is particularly important for talkers that may be experiencing 
difficulty in a test condition, as in language assessment. 
Interestingly, this robust alignment process has found 
application in film production where synchronization to the 
movie script is used to locate and align all the different shots 
(angles, takes) of the same scene. It is also used in the legal 
community, where video testimony is required by law to be 
time aligned with non-verbatim court transcripts.  

3.3.6 Other information retrieval tasks 

When confronted with customers who wish to further 
minimize the need for human supervision, a few unexpected 
requests emerge.  One example is that of assessing how long 
originators of calls are put on hold.  An obvious solution 
would be to electronically relay that the hold button was 
pushed, or if this is not available, to process the audio to 
detect the hold music.  But as the service representatives 
learned that hold times were being monitored, they simply 
placed the phone on their desks.  Hence, a new piece of 
information was necessary to detect.  As a matter of 
practicality, it would be unreasonable to require a complete 
reprocessing of an audio archive to update a condition for 
search.  Therefore, examples as the one described above 
should be detectable using the existing search track. 

3.4 Usability Study: Note Retrieval for the Blind 

Let us now describe an interesting proof of concept that was 
designed for personal information retrieval where the only 
available medium was audio.  Individuals with severe visual 
impairments often have difficulty taking and retrieving notes.  
Currently available assistive devices are little more than 
portable voice recorders with a file structure.  To retrieve 
stored information, the user must remember which note 
contains the desired information.  Focus groups had earlier 
determined that this community desired a better mechanism 
so that more notes could effectively be managed and 
retrieved over a longer period of time of time.  The solution, 
whose interface is sketched in Fig. 8, integrated voice storage 
along with keyword spotting to enable content addressable 
notes.  The interface was designed to parallel the 
functionality of existing voice recorder devices, with which 
the users were already familiar.  Although the actual tested 
device was a mock-up of the desired interface controller 
connected to a laptop computer, this fact was transparent to 
the users during the study.  When users input recorded 
messages, a phonetic track was stored in parallel for later 
access.  There was no keyboard interface and queries for 
retrieval were entered by voice.  Nine visually impaired (VI) 
subjects were trained on the 8-button interface which also 
included distinctive speech and non-speech audio icons for 
navigation.  They were each given a set of 50 information 
bearing messages that they were asked to store in their 
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device.  The messages included such information as recipes, 
meeting times and places, phone numbers of individuals, etc.  
In the evaluation, the subjects were recalled 4 to 6 weeks 
later and asked detailed questions regarding information 
within these messages.  Given that much of the detailed 
information was not easily remembered, the subjects were 
forced to rely on the recorded notes.  When timed, the VI 
subjects were able to retrieve the information over twice as 
fast with the voice-enabled search as they were with only the 
recordings.  The response was overwhelming in their desire 
to have such a device to use on a daily basis. In cases such as 
this, it is apparent that even in a setting with imperfect 
precision and/or recall, such technology can be very useful.  
One can easily see how the number of stored messages could 
essentially be unlimited were such a retrieval tool be 
available.  

3.5 Major Challenges 

Unquestionably, there continue to be major challenges in 
audio retrieval.  Although many of the issues are in common 
with all ASR type approaches, systems based on phonetic 
search have some clear differences with speech-to-text 
systems.  As such, there are important research directions that 
are still fertile. 

3.5.1 Cross language search 

One worthy goal would be to define all utterances for all 
words in all languages using an IPA-like set of units. This 
process would allow any phonetic string to be detected 
without the need for individual models for each language. 
Further, searching for foreign words or expressions in a given 
language would be greatly facilitated. Our experience is that 
as the number of unique languages in one’s repertoire 
expands, the effects of context dependent phones causes the 
number of models to expand much faster than linear. In 
addition, not all phonemes as categorized by the IPA are 
similar enough acoustically to use a shared model.  
Preprocessing time and phonetic search track size also 
expand beyond manageable levels. For now, one language at 
a time, along with automatic language ID as a front-end filter 
is the practical solution.  

3.5.2 Cross acoustical search 

One problem that enters detection-based systems relates to 
accurate estimation of the confidence levels of the detected 
items.  For a given acoustic condition known in advance, 
scores can be normalized based on such things as noise 
levels, bandwidth, codec used, and query length and content 

to give a more accurate estimate of the true probability of 
correct.  When mixed data occurs (a typical example might 
be a broadcast news segment that includes high-quality 
anchor speech interspersed with distorted telephone feeds 
from a field reporter), setting thresholds and normalizing 
levels to compensate for differing conditions becomes very 
hard.  Promising approaches include automatic classification 
of acoustic conditions as well as adjusting the thresholds to 
produce a constant false alarm rate. 

3.5.3 Search speed 

Even though some embodiments of phonetic search have 
been shown to operate at up to 2 million times faster than real 
time, this direct search is still too slow for brute-force 
searching of large data sets.  Four thousand hours of audio is 
about the limit if one wishes a response time of 7 seconds.  
Further, detectors operating at one false alarm per hour would 
still generate four thousand false alarms.  Clearly a different 
strategy would be required.  Extensive use of any metadata 
could effectively filter the set of records to search, speeding 
up search and reducing false alarms.  Another strategy for 
direct search is to set the operating point at an extremely low 
false alarm rate. DET (detection/error tradeoff) curves [4] 
useful for such analysis.  Two points from such a curve 
recently evaluated on a 4,000-hour telephony corpus place 
the probability of detection for a 12 phoneme query at 35% 
and for a 20 phoneme query at 85% with a false alarm rate of 
0.01 per hour. Though imperfect, this rate is still useful for 
retrieval and may be the desired operating point.  
As exhibited by internet search engines, it is possible to 
access an almost unlimited amount of text data in rapid 
fashion based on indexing and pre-searching.  Without such 
indexing, neither text nor audio can be effectively searched.  
The main difference with audio is that the search for initial 
indexing is much slower than for text.  Nevertheless, 
preliminary studies suggest that most of the familiar 
strategies of crawling, caching, reverse indexing, etc translate 
directly to the audio task.  A mixture of indexing followed by 
direct search for refinement is not unlike the search engine 
strategy of presenting putative hits and letting the user scan 
the results for refinement.   

3.5.4 Integration of Speech-to-text with Phonetic Search 

If a speech-to-text engine is combined with a phonetic search 
engine naively, one clearly gets the worst of both worlds – 
slow processing time and the existence of false alarms.  
Clearly, a strategy should exist for obtaining the best of both 
worlds.  Combining best-of-breed systems in an optimal 
manner is yet to be done. 
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4. SUMMARY 

Audio information retrieval is a multi-faceted problem which 
parallels other IR tasks in many ways.  It also has some 
unique properties that require special accommodations and 
creativity.  A host of practical problems can be solved today 
using a variety of approaches including systems built on an 
underlying phonetic search strategy. 
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