
EXTENSIBLE SPEECH RECOGNITION SYSTEM USING PROXY-AGENT

Teppei NAKANO, Shinya FUJIE, Tetsunori KOBAYASHI

Department of Computer Science, Waseda University

ABSTRACT

This paper presents an extension framework for a speech recog-
nition system. This framework is designed to use “Proxy-
Agent,” a software component located between applications,
speech recognition engines, and input devices. By taking ad-
vantage of its structural characteristics, Proxy-Agent can pro-
vide supplementary services for speech recognition systems
as well as user extensions. A monitoring capability, a feed-
back capability, and an extension capability are implemented
and presented in this paper. For the first prototype, we devel-
oped a data collection application and an application control
system using Proxy-Agent. Through these developments, we
verified the effectiveness of the data collection capability of
Proxy-Agent, and the framework extension capability.

Index Terms— speech recognition systems, software ar-
chitecture, standardization, extended capability, rapid appli-
cation development

1. INTRODUCTION

A number of speech recognition systems and applications can
benefit from general function enhancement capabilities, such
as a monitoring function of user utterances, a model data up-
grade function via the Internet, and so on. In today’s speech
recognition applications, however, there are no common frame-
works to install these extensional functions. As a result, de-
velopers have to implement additional functions ad hoc, de-
spite a system’s general versatility.
Today’s speech recognition applications developments can

be classified into two approaches. One, called the “architec-
ture based approach,” is based on the architecture for spoken
dialogue systems, such as DARPA Communicator Architec-
ture [1]. The second, called the “library based approach,”
uses a Speech Recognition API directly, such as Windows
SAPI [2] and Java SAPI [3]. The architecture based approach
is usually employed to implement applications whose design
focus is a spoken dialogue interface. In this approach, de-
velopers can use some frameworks provided by the architec-
ture, such as natural language processing and dialogue con-
trol. However, not all applications can be designed around
the speech interface and many of these architectures are based
on distributed technologies. This approach, therefore, can be

This work was supported by the METI Project “Development of Funda-
mental Speech Recognition Technology”

employed only in limited application developments, such as a
call center and some enterprise applications. Conversely, the
library based approach is employed to add a speech interface
easily to existing applications, such as car navigation systems.
A speech recognition engine is regarded as a library in this
approach. This approach, however, requires developers to de-
sign entire speech interfaces. However, the development a
user-friendly speech interface is not easy, and the frameworks
required for this approach are not as well understood as those
employed in the architecture approach. In this research, there-
fore, we consider the framework needed to develop a speech
recognition application using the library-based approach.
One of the most critical issues reported in speech applica-

tion developments in the library based approach is the prob-
lem of mismatches between the usage expected by the devel-
opers and actual usage by the users [4]. A solution to this
problem is needed. Both the addition of a monitoring func-
tion of actual users’ behavior and installation of a common
speech interface are possible solutions. In order to run the
monitoring function efficiently, a feedback function to devel-
opers is also needed. In addition, a delivery function to the
runtime environments of the upgraded model may also be de-
sired. In a traditional approach, however, direct extensions to
applications or speech recognition engines are required, since
an application can reference an engine directly. As a result,
the applicable scope of these extensions is very limited. At the
same time, installing a standard interface is also difficult since
there are no generic frameworks that share common knowl-
edge and implementations.
In this research, we designed and implemented speech

recognition systems such that an application can reference a
speech recognition engine indirectly. To support such an in-
direct reference, we propose a framework that uses a software
component, Proxy-Agent. Proxy-Agent is designed to pro-
vide a plug-in-based extension framework. In this model, we
regard the speech recognition engine not as a single library
but as a single plug-in. By using Proxy-Agent as a standard
platform of general function extensions in speech recognition
systems, we aim to create a newmarket for speech recognition
components, models, frameworks, and peripheral functions.
In this paper, we first describe Proxy-Agent and its de-

sign in Section 2. Section 3 describes the architecture of
Proxy-Agent. In Section 4, we explain how Proxy-Agent is
implemented, and explain the monitoring capability in Sec-

601978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

Application

Proxy-Agent

Service

Engine-Adapter

Network

Device-
Adapter

Fig. 1. Proxy-Agent Overview

tion 5. Section 6 describes applications that use Proxy-Agent.
In Section 7, we discuss the advantages and disadvantages of
Proxy-Agent. We present our conclusions in Section 8.

2. BASIC APPROACH

Proxy-Agent is a software component located between appli-
cation programs, speech recognition engines, and input de-
vices, and takes care of their collaborations (Fig. 1). It pro-
vides extension capabilities for cross-application and cross-
engine functions as well as for application-dependent and engine-
dependent functions. When using Proxy-Agent, an applica-
tion controls a speech recognition engine via the interface
provided by the Engine-Adapter. Engine-Adapter is a virtual
speech recognition engine composed of more than one plug-
in component; the speech recognition engine itself is one of
the plug-in components. Since each speech recognition en-
gine usually consists of more than one module, such as an
acoustic model and a language model, these constituents can
also be plug-ins. Engine-Adapter retrieves input data via the
Device-Adapter managed by Proxy-Agent. Device-Adapter
is a data provider that encapsulates the data acquisition logic
via an actual input device, and actually performs the task.
As mentioned above, the primary goal of Proxy-Agent is

to provide a standard platform of general function extensions
in speech recognition systems. The remainder of this section
describes the key features of the platform, and why these fea-
tures are important to achieve this goal.

Extension capability is the basic and most important feature
of this platform. Each extension is a plug-in to Proxy-
Agent. Examples of extensions are the speech recogni-
tion engine, constituents of the speech recognition en-
gine, frameworks using the speech recognition engine,
and application implementations dependent on speech
recognition.

Networking capability is embedded in the platform to com-
municate with server services. Since Proxy-Agent is
designed independently with respect to applications and
engines, comprehensive server services can be provided.
Because it is combined with other features in the plat-
form, this platform needs to support the “network effect
by default” [5], which means the platform is designed
to enable both users and developers to contribute to the
growth of the framework.

1.Monitoring

3.Analysis
&

Upgrading

4.Delivery

2.Feedback

1.Monitoring

3.Analysis
&

Upgrading

4.Delivery

2.Feedback

USERS

DEVELOPERS

0.Initial Model

Fig. 2. A positive feedback loop. 0. Proper initial model is be
provided. 1. User behavior on actual execution environment
is monitored. 2. Usage information is fed back to the devel-
oper side. 3. Developers analyze usage information to detect
mismatches, and upgrade models to decrease mismatches. 4.
Upgraded models are delivered to the client side.

Monitoring capability is supported by the platformwith feed-
back capability using the networking capability. As a
solution to the mismatch problem mentioned above, a
development paradigm based on continuous improve-
ment is supported in this platform. In this paradigm,
we presume that mismatches always exist in all speech
applications. Therefore, we provide a framework by
which developers can obtain the behavior of actual users
at runtime. By taking advantage of its structural char-
acteristics, Proxy-Agent can monitor the signals from
applications to speech recognition engines as well as
the input-output information from these engines, all of
which are critical to achieve the paradigm.

Upgrade capability can be used to deliver and install up-
graded plug-in components in runtime environments us-
ing the networking capability. Combined with the mon-
itoring capability, this feature is necessary to achieve
continuous improvement. This positive feedback loop
between engine developers, application developers, and
users is one of the most essential features of speech
recognition systems (Fig. 2).

Sharing capability of linguistic resources, component im-
plementations, and framework implementations is a side
effect of the framework and is abundantly needed in the
growth of speech recognition research. This feature is
also important to expand common frameworks, such as
a framework to generate a standard speech interface,
because all frameworks can be executable in the plat-
form.

3. PROXY-AGENT ARCHITECTURE

Proxy-Agent is designed as an infrastructure to execute plug-
ins and provides an extension point between applications and

602

Engine

Extension

Extension

Model

Model Model
Module Module

Module

Engine-Adapter

Fig. 3. Engine-Adapter Overview: The interface is defined as
an aggregation of plug-in interfaces

engines. This extension point is used to install application /
engine independent features or frameworks into the system.
This section describes the architecture of Proxy-Agent.

3.1. Engine-Adapter

Engine-Adapter is defined as a virtual speech recognition en-
gine. It provides an extension point for applications and en-
gines. This extension point is used to install application /
engine dependent features as well as independent features.
The granularity and roles are varied according to the plug-
ins, which include the following: constituent units of a speech
recognition engine such as an acoustic model plug-in, a voice
activity detection (VAD) functional module plug-in, as well as
the speech recognition engine itself with a functional exten-
sion plug-in (Fig. 3). The application programming interface
of Engine-Adapter is defined as an aggregation of the plug-
ins’ callable interfaces. An application can call the interface
via Proxy-Agent freely.
Functional extensions include plug-ins to 1. filter input /

output data, 2. intercept method calls, 3. define new methods
to wrap other method calls, 4. encapsulate operational logic
on the speech recognition engine. Some of these plug-ins,
usually prepared for each application, are tightly coupled to
the engine. These tightly coupled plug-ins can help keep an
application and an engine loosely coupled. Since all of these
extensions potentially can be shared with other applications,
this scheme can also help share knowledge.
Engine-Adapter only provides fundamentals such as the

means to handle an input device, a plug-in scheme and a com-
ponent load scheme. The definitions of the component inter-
faces are left to the engine developers. At the same time,
however, since all components follow the same plug-in rules,
developers are free to use pre-defined components. Accord-
ing to these rules, we expect effective plug-ins to be shared as
a de facto standard by preparing a common repository for all
of these plug-ins.

3.2. Device-Adapter and Recognition Process Sequence

Device-Adapter is defined as a plug-in to acquire binary data
via a runtime environment. It supports buffering, and it begins

new

:Application :Proxy-Agent :Engine-Adapter:Callback :Device-Adapter

start (callback)

start
startRecording

control (engine)

start

read

Binary data

loop [Until result is generated]

append (result)

start

Call processing for the session

Fig. 4. Sequence Diagram for the recognition process: 1.
Proxy-Agent sends a start signal to Device-Adapter when it
receives a start signal from the application. 2. Proxy-Agent
calls for control to the Callback Object specified by the appli-
cation. 3. Callback Object controls Engine-Adapter (such as
loading a grammar construction). as defined by the applica-
tion. 4. Proxy-Agent sends a start signal to Engine-Adapter.
5. Engine-Adapter starts recognition with the reading data
acquired via Device-Adapter

to acquire data into the buffer when it receives a start signal
by Proxy-Agent. Engine-Adapter reads the buffered data via
Device-Adapter when the Device-Adapter’s recognition pro-
cess is started.
In order to compensate for the shortcomings of the redun-

dant layer in this architecture, the framework precisely main-
tains the timing of the start signal. Using Device-Adapter’s
buffering capability and a callback framework, all data after
the start signal can be obtained, including data during the in-
termediate preparation time (Fig. 4).

4. IMPLEMENTATION

4.1. Implementation Platform

As a platform to implement Proxy-Agent, we use Eclipse
RCP (Rich Client Platform) [6]. Eclipse RCP is the plat-
form that underlies Eclipse IDE for building and deploying
rich client applications. The Eclipse RCP platform, based on
the OSGi [7] platform, provides highly extensible plug-in ar-
chitecture that assures interoperability of applications and ser-
vices delivered and managed via networks.
Based on the Eclipse RCP platform, all constituents such

as Proxy-Agent and Engine-Adapter are implemented as Eclipse
plug-ins. As the result, the Eclipse IDE environment can be
used to implement Proxy-Agent’s plug-ins. In addition, the
plug-in management features implemented on networks based
on OSGi can also be used to maintain Proxy-Agent’s plug-ins.

603

time

SessionSession

Start

SessionSession

SessionSession

Session tag
Recognition tag

Start

Application tag

Start

<aTag name=“xx”> </aTag>
<session/>

</sTag>
</sTag>

<sTag name=“x”>
<sTag name=“y”>
<start/>

<start/>
</rTag>
</rTag><rTag name=“B”>

<data file=“xxxxx.pcm”/>

<data file=“yyyyy.pcm”/>

<session/>
</sTag>
</sTag>

<sTag name=“x”>
<sTag name=“y”>
<start/>

</rTag><rTag name=“A”>
<data file=“zzzzz.pcm”/>

<session/>

RECOGNIZE
SCOPE

SESSION
SCOPE

APPLICATION
SCOPE

<result file=“xxx.txt”/>

<rTag name=“A”>

</rTag><rTag name=“A”>

<result file=“zzz.txt”/>

<result file=“yyy.txt”/>

Result

Result

Result

Fig. 5. Tags to Speech Segments

4.2. Engine-Adapter Implementation

As an implementation of Engine-Adapter, we developed the
Sphinx-4 [8] Engine Plug-In. Sphinx-4 is a Java based open
source speech recognition engine that is highly reconfigurable.
We extended the Sphinx-4’s resource loading framework such
that classes and resources can be loaded from other plug-ins
on Proxy-Agent. Sphinx-4’s model loader for the HTK (Hid-
den Markov Model) format acoustic model was also devel-
oped as a plug-in.

4.3. Device-Adapter Implementation

As an implementation of Device-Adapter, we developed an
audio input plug-in for a microphone. The buffering capabil-
ity was implemented using a cyclic queue. In addition, we
provided constant recording capability to support the recog-
nition using past data before the start signal. This feature can
be used when a user starts the voice input before sending a
start signal, such as pushing the talk button after the utterance
has started.

4.4. Proxy-Agent Application Programming Interface

We prepared the following two types of communication pro-
tocols between applications and Proxy-Agent: the client-server
type and the application-plug-in type. The client-server type
uses asynchronous message passing based on local TCP/IP,
and the application-plug-in type uses a Java API directly. As
a client application, C++ and Java are available.

5. MONITORING CAPABILITY IMPLEMENTATION

An autonomous data collection framework was implemented.
The collected data are the data actually read by the speech
recognition engine. The collected data are stored in the repos-
itory managed by Proxy-Agent. The endpoint of the data is
determined by the engine or application stop message. When

Proxy-Agent receives the results from the engine, it stores the
data in the same time it is sending them to the application. It
is also possible to tag the speech segments via API[9]. Based
on the scope, segments are tagged as shown in Fig. 5. Devel-
opers can use these tags as keys to find needed segments for
analysis.
The data upload framework is implemented in the Proxy-

Agent as well as in server programs to receive data. In Proxy-
Agent, one management thread is launched to compress the
data stored in the repository, and to upload and to delete data.
We implement Proxy-Agent and Receiver to communicate
to each other with SOAP (Simple Object Access Protocol;
XML based RPC). Since Proxy-Agent can be deployed in
various network locations, this framework supports the RE-
SUME function. With this feature, Proxy-Agent doesn’t have
to restart uploading from the beginning of the data each time.

6. APPLICATION DEVELOPMENTS

Using the Proxy-Agent prototype described in the above sec-
tion, we developed the following two applications: the data
entry application and the voice control application. Through
these developments, we verified the monitoring capability and
Engine-Adapter’s extension plug-in capability.

6.1. Data Entry Application

A data entry application for travel information was developed.
This application was developed to investigate how voice in-
puts changed when the user interfaces were changed. Four
comparative interfaces were prepared. Each interface had ten
input fields, and a network grammar was assigned to each in-
put field. Speech recognition was performed to fill the field.
The application was developed as a client-server type. The

Sphinx-4 Engine Plug-In and Network Grammar Loading Ex-
tension were plugged in to Engine-Adapter. All models and
grammar definitions were packed into Engine-Adapter. In
addition, we used the constant recording capability on the
Device-Adapter and configured it to obtain voice input from
200 [ms] before the start signal.
Experiments were performed at the university cafeteria. A

total of 908 speech segments was collected from 78 subjects
using the monitoring function of Proxy-Agent. The collected
speech segments were analyzed in terms of the occurrence
frequency of fillers and the change of speaking style. As re-
sults of the analysis, the following facts were observed: 1.
The developer’s assumption was not correct (a well-designed
user interface still cannot reduce fillers; 38data actually con-
tained fillers). 2. Constant recording capability was not nec-
essary in this application (no subject started speaking before
push the button). 3. Some users read out the label of the field
in some interfaces (this was not expected behavior). Through
these tests, it was verified that effective information was eas-
ily collectable via the monitoring capability.

604

Fig. 6. Data Entry Application Overview: (left) The user se-
lecting the field to input, (right) Voice input processing.

6.2. Voice Control Application

As a prototype of the new speech user interface, we developed
a voice control application using Proxy-Agent. This applica-
tion was originally developed as a standalone application to
propose and evaluate the interface. This application was then
redesigned to extract the framework for building the proposed
speech interface. In order to solve the “what should I say”
problem, the proposed interface used “functional structure,” a
tree structure of executable functions of the system, and “con-
tinuous keyword input” to access the command [10].
The application was designed as an application-plug-in

type. Sphinx-4 Engine Plug-In was plugged in to Engine-
Adapter. The extension was designed to depend on the Sphinx-
4 Engine and to require “functional structure XML” from the
Engine-Adapter. The grammar and dictionary were gener-
ated from the XML by this plug-in. An acoustic model was
plugged in separately. Two APIs were defined: a method to
specify the current context of the tree and a method to re-
trieve a list of path candidates from the word result. These
APIs were exposed to the client. Fig. 7 shows the result of
the redesign. Fig. 8 shows the dependency of the developed
plug-in at its selection dialog on Eclipse.
Through this development, the pre-developed speech recog-

nition application was successfully redeveloped based on the
Proxy-Agent architecture. Since the developer had never de-
veloped with the Eclipse plug-in development environment, it
took around 40 hours for the construction. As a result of the
development, however, the target feature was successfully ex-
tracted and an executable framework plug-in was developed.
It was also verified that this extension was feasible by adding
the acoustic model plug-in and functional structure XML.

7. DISCUSSION

In this section, we discuss the advantages and disadvantages
of using Proxy-Agent compared to other approaches.
First of all, we discuss the disadvantages of using Proxy-

Agent compared to the direct reference to the engine. In or-
der to use Proxy-Agent, additional time and resources are re-
quired. The needed time is for learning, and the needed re-
sources are CPU and memory. Usually, most developers need
the time for learning because Proxy-Agent is not well known.

Proxy-Agent

Application
Plug-In

Application

Engine

Main

Acoustic Model

User Interface

Engine-Adapter
Plug-In

Engine-Adapter
Proxy

Extension
Component

Engine
Engine

Acoustic Model

Main

UI XML

XML

Fig. 7. System redesign as an Engine-Adapter Plug-In

Extension
Plugin

Sphinx4 is
required

Fig. 8. Update Site for the Plug-Ins; “Sphinx4 engine is re-
quired” to install the plug-in is indicated.

This means that it may not be suitable to use Proxy-Agent
as a first prototype development if the prototype is very sim-
ple. However, when the prototype needs peripheral functions,
such as the monitoring and buffering functions in Device-
Adapter, the learning costs would be justified. Moreover, in
terms of production, network capabilities would be necessary
for the applications. Of course, it is possible to develop these
functions into the application [11]. However, the “network ef-
fect” is less promising. In terms of resources, Proxy-Agent re-
quires relatively heavy resources because it uses Eclipse RCP
on Java. Certainly, it is not possible to use the current Proxy-
Agent in lightweight devices, such as handheld devices. How-
ever, because an embedded version of Rich Client Platform is
being developed [12], it will be possible to use this platform
in the near future.
In contrast, maintainability may be much superior when

Proxy-Agent is used. One of the most distinct features in
Proxy-Agent is its virtual speech recognition engine feature,
to which developers can plug-in their application-dependent
implementations. Using this feature, application developers
can encapsulate all of the engine-dependent implementations.
As a result, an application and an engine can be loosely cou-
pled, which is a better approach in terms of maintainability.
Without Proxy-Agent, an adapter pattern or wrapper pattern

605

may be used. In this approach, the application developer de-
fines a common interface internally, and wraps the engine to
support the interface. This approach is also common in other
speech recognition framework developments [13]. This ap-
proach, however, requires more implementations by the de-
velopers. Some people might say using AOP (aspect-oriented
programming) [14] is a better solution. Certainly, the feature
to intercept an application call to the engine is a similar idea.
However, the capabilities provided by Proxy-Agent are not
just an interception: it controls the data flow of the device
adapter, manages plug-ins, and so on. Therefore, AOP is not
enough to replace the Proxy-Agent style of programming.
Finally, we consider the use of Proxy-Agent in spoken

dialogue systems in distributed environments. In this case,
there are some popular architectures, such as Open Agent Ar-
chitecture [15] and DARPA Communicator Architecture [1].
In most of these architectures, a speech recognition engine
is defined as a single constituent of the architecture, such as
the agent [15] and server [1]. Applications, therefore, don’t
have to manage the engine directly. Moreover, some architec-
tures, such as Jaspis [16], also have monitoring or data collec-
tion functions. However, they don’t provide the capabilities
supported by Proxy-Agent, such as extension capability and
upgrade capability. This means that it is possible to replace
a speech recognition agent or server with our Proxy-Agent
based the speech recognition system, if developers need these
functions.

8. CONCLUSIONS

In this paper, we presented an extension framework for a speech
recognition system based on the software component called
“Proxy-Agent.” Proxy-Agent was designed to be located be-
tween application programs, speech recognition engines, and
input devices, and Proxy-Agent takes care of their collabo-
rations. All of extension, networking, monitoring, upgrade
and sharing capabilities were introduced as key features of
this platform. In particular, to focus on the problem of mis-
matches, we designed the monitoring capability as well as
other key capabilities. An implementation based on a highly
extensible plug-in architecture, Eclipse RCP, was described.
Based on the application developed using the prototype, we
verified that effective information was easily collectable via
the monitoring capability, and plug-in development was fea-
sible based on the Engine-Adapter’s extension capability. In
conclusion, Proxy-Agent based speech recognition systems
provide a good solution toward the mismatch problem. As
future work, we will develop larger applications and perform
longer-term operation tests.

9. REFERENCES

[1] Alan Goldschen and Dan Loehr, “The role of the darpa
communicator architecture as a human computer inter-
face for distributed simulations,” in Spring Simulation

Interoperability Workshop (SIW). Simulation Interoper-
ability Standards Organization (SISO), 1999.

[2] “Windows sapi,” http://research.
microsoft.com/research/srg/sapi.aspx.

[3] “Java sapi,” http://java.sun.com/products/
java-media/speech/index.jsp.

[4] S.Furui and et al., “Development of practical speech
recognition systems,” Tech. Rep. 100007350, Achieve-
ment report of NEDO’s project, 2006.

[5] Tim O’Reilly, “What is web 2.0: Design patterns
and business models for the next generation of
software,” http://www.oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html.

[6] “Eclipse rcp,” http://www.eclipse.org/rcp/.

[7] “The osgi alliance,” http://www.osgi.org/.

[8] Paul Lamere and et al., “Design of the cmu sphinx-4
decoder,” in EUROSPEECH 2003, 2003.

[9] Teppei NAKANO, Akira UMEMOTO, Shinya FUJIE,
Tetsuji OGAWA, and Tetsunori KOBAYASHI, “Effi-
cient monitoring capabilities of user behavior for speech
recognition applications based on proxy-agent architec-
ture,” Tech. Rep. 2007-SLP-65, IPSJ SIG, 2007.

[10] Tomoyuki KUMAI, Teppei NAKANO, Tetsunori
KOBAYASHI, and Yasushi ISHIKAWA, “A proposal
and evaluation of new speech user interface based on
functional-structure,” Tech. Rep. 2007-SLP-67, IPSJ
SIG, 2007.

[11] HARA Sunao, MIYAJIMA Chiyomi, ITOU Katsunobu,
and TAKEDA Kazuya, “Speech data collection and
evaluation by using a spoken dialogue system on gen-
eral purpose pcs,” Tech. Rep. 2006-SLP-64, IPSJ SIG,
2006.

[12] “Eclipse embedded rcp,” http://www.eclipse.
org/ercp/.

[13] Savitha Srinivasan, “Design patterns in object-oriented
frameworks,” Computer, vol. 32, no. 2, pp. 24–32, 1999.

[14] Gregor Kiczales and et al., “Aspect-oriented program-
ming,” in European Conference on Object-Oriented
Programming, 1997, vol. 1241, pp. 220–242.

[15] Adam Cheyer and David Martin, “The open agent archi-
tecture,” Autonomous Agents and Multi-Agent Systems,
vol. 4, no. 1, pp. 143–148, March 2001.

[16] M. Turunen and et al., “An architecture and applications
for speech-based accessibility systems,” IBM SYSTEMS
JOURNAL, vol. 44, no. 3, pp. 485–504, 2005.

606

