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ABSTRACT 

In continuous speech recognition substitution, insertion and 
deletion errors usually not only vary in numbers but also have 
different degrees of impact on optimizing a set of acoustic models. 
To balance their contributions to the overall error, an enhanced 
minimum classification error (E-MCE) learning framework is 
developed. The basic idea is to partition acoustic model 
optimization into three subtasks, i.e., minimum substitution errors 
(MSE), insertion errors (MIE) and deletion errors (MDE), and 
select/generate three corresponding sets of competing hypotheses, 
one for each individual sub-problem. MSE, MIE and MDE are 
then sequentially executed to gradually reduce the overall word 
error rates. Experimental results on continuous Mandarin digit 
recognition of five different data sets collected over various 
acoustic conditions have consistently shown the effectiveness of 
the proposed E-MCE learning framework. 

Index Terms— MCE, Mandarin Digit Recognition

1. INTRODUCTION 

Automatic speech recognizer (ASR) usually produces three 
different types of errors, including insertion, deletion and 
substitution. These errors often pose different challenges for 
discriminative training. For example, the recognition result of an 
utterance may have many possible insertion errors, but only limited 
deletion and substitution errors. On the other hand, insertion or 
deletion errors are more destructive since they may induce 
neighboring substitution errors. But a substitution error may just 
pop up a similar word with the same starting and end times. 
Therefore, from the viewpoint of optimizing a set of acoustic 
models, it is desirable to have a training framework that can 
balance the contributions of these three types of errors and to 
further reduce the overall recognition error rate. 

Table 1: A class of discriminative training criteria contained in the 
unifying approach (adopted from [6]). 

f(z) Mr G(W,Wr)
MMI z all 1 (W,Wr)
MPE exp(z) all Free
MCE -1/{1+exp[2exp(z)]}  w/o Wr 1 A(W,Wr)

Discriminative training algorithms, such as maximum mutual 
information (MMI) [1], minimum phone error (MPE) [2] and 
minimum classification error (MCE) [3-8], are the state-of-the-art 
acoustic model training techniques. In [6] a unifying view for MMI, 
MPE and MCE was presented and their training criteria are 
summarized in Table 1 and Eq. (1).  
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where , f,  and G are the parameters of acoustic model, 
smoothing function, weighting exponent and the gain function, 
respectively, and r denotes the index of a training utterance, each 
consisting of a sequence, Xr, of acoustic observation vectors and 
the corresponding word sequence, Wr, H1 is the set of the 
alternative competing word sequences. 

It is worth noting that from Table 1 and Eq. (1) that the 
choices of Kronecker (W,Wr) or raw word/phone accuracy A(W, 
Wr) functions implies that these algorithms usually do not take into 
account the different contributions of the insertion, deletion and 
substitution errors. 

To balance the effects of the three error types when 
optimizing a set of acoustic models, an enhanced minimum 
classification error (E-MCE) learning framework is developed in 
this paper. The basic idea is to partition the acoustic model 
optimization problem into three smaller subtasks, i.e., minimum 
substitution error (MSE), insertion error (MIE) and deletion error 
(MDE), and select/generate different sets of competing hypotheses 
for each subtask. In other words, three different sets of 
hypothesized theories, containing mainly substitution, insertion 
and deletion errors, respectively, are separately generated and 
presented to the MSE, MIE and MDE training modules in an 
interleaving manner to sequentially correct each corresponding 
type of errors. Comparing with the conventional discriminative 
training approaches, one benefit of our approach is that different 
types of competing hypotheses, especially with samples containing 
more insertion and deletion errors, can be observed and optimized 
in the training phase [8]. 
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2. MCE TRAINING FRAMEWORK 

MCE aims at minimizing the (smoothed) empirical error on the 
training data. The MCE formulation for hidden Markov model 
(HMM) with parameter set, Λ  , is briefly summarized as follows. 

For every training utterance rX , a misclassification measure, 

( )|rd X Λ compares a discriminant function ( ), |r rg X W Λ  for 

the known word sequence label rW  with a competing anti-

discriminant function, ( ), |r nG X W Λ  in Eq. (1), i.e.: 

( ) ( ) ( )| , | , |r r r r nd X g X W G X WΛ = − Λ + Λ . (2) 

Here ( ), |r nG X W Λ  is a weighted sum over the set 1H of n

competing N-best sentences, nW [3]. Then the misclassification 
measure is turned into a soft error count using a sigmoid function. 
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where λ  and b  control the slope and offset, respectively. 

Thirdly, given the training set, { }, 1,...rX r R= , the empirical 
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which is often optimized by generalized probabilistic descent [3]. 
Recently, improved MCE algorithms, representing competing 
hypotheses by a word-graph or lattice instead of an N-best list to 
collect more alternatives, have also been developed [6-7]. 

3. AN E-MCE TRAINING FRAMEWORK 

The proposed E-MCE training framework is consisted of MSE, 
MIE and MDE, with three different sets of competing hypotheses, 
i.e., 1,SH , 1,IH  and 1,DH .MSE, MIE and MDE all follow the 
MCE training framework (Eqs. (2)~(3)). But they select/generate 
their own sets of competing hypotheses, 1,SH , 1,IH  and 1,DH , 
which contain mainly the substitution, insertion and deletion error 
samples, respectively. Thus they also have their own competing 
anti-discriminant functions, ( ), |S r nG X W Λ , ( ), |I r nG X W Λ

and ( ), |D r nG X W Λ , when computing Eqs. (2) and (3).  

3.1. Competing Hypotheses Generation 

In this paper, we choose to embed some constraints into the N-best 
list search algorithm to directly generate three sets of competing 
hypotheses. In short, three different search networks, each with 
equal to, more than or less than the correct number of words in the 
training utterance, rX , are applied to the N-best search algorithm 
in the training phase. This configuration facilitates the online 
generation of three desired sets of hypotheses, directly related to a 
specific requirements, either for MSE, MIE or MDE, respectively. 

The generated sets, 1,SH , 1,IH  and 1,DH , are then used in 
turn to calculate the competing anti-discriminant functions, 

( ), |S r nG X W Λ , ( ), |I r nG X W Λ  and ( ), |D r nG X W Λ , in the 

MSE, MIE and MDE modules. 

4. MANDARIN DIGIT STRING RECOGNITION 

The proposed E-MCE training framework is evaluated on 
Mandarin digit recognition [9-10]. Mandarin digits are all in 
monosyllables and with much shorter durations than their 
counterparts in Western language. Especially, Mandarin digit 
recognizers often produce insertion or deletion errors on some 
vowel-vowel sequences. 

For example, “1-1” (/yi-yi/), “2-2” (/er-er/), “5-5” (/wu-wu/), 
“7-1” (/chi-yi/), “8-2” (/ba-er/) and “9-5” (/jiou-wu/) pairs are 
easily misrecognized as “1” (/yi/), “2” (/er/), “5” (/wu/), “7” (/qi/), 
“8” (/ba/) and “9” (/jiou/) and vice versa. According to our 
previous experiences, more than half of the errors could be 
imputed to the vowel-vowel sequence insertions or deletions [9]. 
. 
4.1. Databases and Experimental Settings 

Five Mandarin digit corpora were used in this study. All were 
collected through different telephony networks (PSTN and GSM). 
Each utterance in the training and test sets consists of 4 to 16 digits. 
Among them, NTUT-CONFUSION is specially designed to reflect 
the most challenging situation in Mandarin digit recognition, i.e., 
the vowel-vowel pairs and confusable pairs. A detailed description 
of the testing sets is listed in Table 2. 

In all the following experiments, 19 context-independent 
phone models, trained using HTK toolkits with the maximum 
likelihood (ML) criteria, were used as the baseline. Thirty-nine 
mel-frequency cepstral coefficients (13 MFCCs and their first and 
second time derivatives) were computed with a window size of 
20ms and a frame shift of 10ms. Moreover, Feature domain 
cepstrum mean subtraction, variance normalization, and ARMA 
filtering (MVA) were applied to partially reduce the channel, 
handset and background noise distortions. 

To optimize the MCE, MSE, MIE and MDE loss functions, 
N-best lists and a generalized probabilistic gradient descent (GPD) 
[3] method are adopted. The length of the N-best list was 
empirically set to 50 for all experiments.  

Table 2. The five Mandarin digit corpora used in all evaluations. 

Corpus Channel Content #. of 
utt. 

Training MAT-TR [10] PSTN random digit string 5080
MAT-TS [10] PSTN random digit string 757

ITRI-ID PSTN ID number 1243
NTUT-

CREDIT GSM credit card number 475Test 

NTUT-
CONFUSION GSM 

vowel-vowel 
sequences and 
confusable pairs 

3523

4.2. Learning Curve Analysis 

In the following subsections, the property of the conventional 
MCE framework on Mandarin digit recognition is first studied. 
Secondly, the behaviors of the MSE, MIE and MDE modules are 
explored. Finally, we compare the learning curves of the E-MCE 
and MCE approaches. In all analyses, two subsets of the MAT-TR 
and MAT-TS [10] corpora were used to train and evaluate these 
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approaches. There are 1,251 and 300 utterances in the training and 
test set, respectively. It is worthy noting that in this case, the ML 
baseline system unfortunately gives higher insertion and lower 
substitution and deletion errors. 

4.2.1. MCE 

The learning curves of the outside test sets for the MCE 
methods are shown in Fig. 1 (a) and (b). Could be seen from Fig. 1 
(a), fast convergence and high overall digit error reduction were 
achieved by applying the conventional MCE method. 

However, it is also clear from Fig. 1 (b) that most of the 
improvements were obtained mainly from the over reduction of 
insertions, while little from the deletion or substitution errors. 
Besides, more training iterations will further cause the increasing 
of the substitution and deletion errors and result in instability, i.e. 
unbalanced insertion, deletion and subtraction errors in MCE. 

 (a) 

 (b) 
Figure 1. Learning curves of MCE on the outside test  (subsets of 
the MAT-TS): (a) overall error, and (b) substitution, insertion and 
deletion error rates. 

4.2.2. MSE, MIE and MDE 

The learning curves of the outside test sets for MSE, MIE and 
MDE are shown in Fig. 2 (a), (b) and (c), respectively. It can be 
seen that MSE, MIE and MDE were all capable of reducing the 
corresponding substitution, insertion and deletion errors. 

On the other hand, those learning curves in Fig. 2 (a), (b) and 
(c) also indicate that there are strong correlation and conflict 
between the corrections of the substitution, insertion and deletion 
errors when optimizing a set of acoustic models. Especially, Fig. 2 
(a) shows that reducing the substitution errors will also increase 
the insertion errors at the same time. Fig. 2 (b) indicates that 
removing the insertion errors will raise both the substitution and 
deletion errors. Fig. 2 (c) reveals that reducing the deletion errors 
will generate more insertion errors but has only little effects on 
substitution errors. Therefore, a key to reduce the overall errors is 

to balance the contributions of MSE, MIE and MDE to the overall 
error reduction in the overall E-MCE training phase. 

(a) 

(b) 

(c) 
Figure 2. The learning curves of (a) MSE, (b) MIE and (c) MDE 
on the outside test set (subsets of the MAT-TS). 

4.2.3. E-MCE 

It has been observed that MSE and MDE both decrease
substitution and deletion errors, (see Fig. 2 (a) and (c)), on the 
contrary MIE increases substitution and deletion errors, (see Fig. 2 
(b)). When optimizing an acoustic model, we interleave the MSE, 
MIE and MDE procedures as follows: 

Step 1. execute MSE and MIE in turn twice 
Step 2. execute MDE 1 time 
Step 3. go to Step 1 if not converged 

The learning curve in Fig. 3 (a) clearly shows a zig-zag 
behavior caused by the interleaving of MSE, MIE and MDE. 
When compared with Fig. 1 (a), this behavior made E-MCE 
training converging slower than MCE. However the situation with 
over-reduction of the insertion errors in MCE was avoided. It also 
allowed E-MCE to reduce the substitution errors. Another benefit 
of E-MCE is that the insertion and deletion errors were often 
automatically balanced, (see Fig. 3 (b)). 
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(a) 

(b) 
Figure 3. Learning curves of E-MCE on the outside test set 
(subsets of the MAT-TS): (a) digit error, and (b) substitution, 
insertion and deletion error rates. 

4.3. Experimental Results 

The proposed E-MCE training framework trained with the 
whole MAT-TR corpus was finally evaluated on several different 
larger scale test corpora and compared with conventional MCE. It 
can be seen from Table 3, high relative error reductions (both digit 
and sentence errors) were achieved by applying the conventional 
MCE method. However, it is also clear from Table 3 that most of 
the improvements were obtained mainly from the over reduction of 
the insertion errors. Therefore, these results also demonstrate the 
impact of unbalanced errors in MCE training. 

Table 3 Detailed performance comparisons of errors of ML, MCE 
and E-MCE leaning on various Mandarin connected digit corpora. 

ML 1.73 1.70 1.89 94.68 76.88 — —
MCE 0.41 1.70 1.08 96.80 85.34 39.85 36.60
E-MCE 0.53 1.29 0.85 97.33 86.53 49.81 41.74
ML 1.19 2.55 1.98 94.27 72.73 — —
MCE 0.17 2.40 1.60 95.83 81.17 27.23 30.95
E-MCE 0.25 1.96 1.45 96.34 81.74 36.13 33.04
ML 1.76 1.74 2.22 94.28 45.26 — —
MCE 0.61 2.10 2.05 95.25 56.21 16.96 20.00
E-MCE 0.74 1.48 1.72 96.05 60.42 30.94 27.69
ML 4.15 3.52 3.50 88.84 65.20 — —
MCE 1.28 2.78 3.23 92.72 74.79 34.77 27.56
E-MCE 2.07 2.33 2.63 92.98 75.99 37.10 31.01

dig. rer. sen. rer.Testing set MODEL dig. acc. sen. acc.Ins. Del. Sub.

MAT-TS

NTUT-CARD

NTUT-
CONFUSION

ITRI-ID

On the other hand, Table 3 also demonstrates that E-MCE can 
overcome the potential drawback of conventional MCE and did 
reduce or balance all three types of errors at the same time. It 
eventually achieved a better overall performance. This is true even 
for the case of the worst situation with the NTUT-CONFUSION 
corpus which has the most vowel-vowel and confusion pairs. 

Since the proposed E-MCE training framework had shown 
consistent improvement over various testing set, we therefore 
conclude that E-MCE outperforms the MCE approach, and 
achieved a significant improvement on recognition accuracy when 
compared with ML training. 

5. CONCLUSION 

An E-MCE training framework has been successfully developed to 
directly control and automatically balance the insertion, deletion 
and subtraction errors when optimizing a set of acoustic models. 
Experimental results on five Mandarin digit recognition tasks have 
consistently shown that E-MCE outperforms the conventional 
MCE approach. The same concept can be applied to lattice-based 
MCE and other discriminative training methods. 
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