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ABSTRACT
In this paper, we propose a new scheme for variable frame

rate (VFR) feature processing based on high level segmenta-

tion (HLS) of speech into broad phone classes. Traditional

fixed-rate processing is not capable of accurately reflecting the

dynamics of continuous speech. On the other hand, the pro-

posed VFR scheme adapts the temporal representation of the

speech signal by tying the framing strategy with the detected

phone class sequence. The phone classes are detected and seg-

mented by using appropriately trained phonological features

(PFs). In this manner, the proposed scheme is capable of track-

ing the evolution of speech due to the underlying phonetic con-

tent, and exploiting the non-uniform information flow-rate of

speech by using a variable framing strategy. The new VFR

scheme is applied to automatic speech recognition of TIMIT

and NTIMIT corpora, where it is compared to a traditional

fixed window-size/frame-rate scheme. Our experiments yield

encouraging results with relative reductions of 24% and 8% in

WER (word error rate) for TIMIT and NTIMIT tasks, respec-

tively.

1. INTRODUCTION

Speech production is a highly non-uniform phenomena in terms

of the information flow rate. While both vowels and stops

qualify as phonemes, they exhibit highly disparate temporal

and spectral structures [1]. Hence, it is quite natural to as-

sume that speech recognition would benefit by moving away

from the standard inflexible spectro-temporal representation

provided by MFCCs (mel frequency cepstral coefficients) and

the popular framing scheme of 25ms window size/10ms skip

rate.

While there is a ready consensus on the need for a more

flexible feature representation scheme, the actual means of

achieving this is a subject of research. In this paper, we de-

velop a new technique towards variable framing rate (VFR)

which is both consistent and meaningful by design. Our fram-

ing strategy is based on a discriminative treatment of broad

phone classes, where we attempt to match a frame size and
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skip rate to the expected phonetic information flow rate. In

other words, we perform high level segmentation (HLS) of

speech into very broad phone classes, and tie a particular fram-

ing strategy with each class. The segmentation is assisted by

extracting and training a set of relevant phonological features

(PFs) [2].

The main argument for supporting VFR is the under repre-

sentation of certain phonetic/linguistic content under the con-

ventional framing policy. In general, relatively rapid acoustic

events such as obstruents, especially if they are components of

functional words (e.g., the if him etc.) in a sentence are more

ill-represented owing to their relatively informal articulation

effort and short duration. Evidently, the under-representation

of such phones form too few frames of acoustic evidence,

which is not sufficient to warrant successful recognition from

the ASR engine. On the hand, the ASR engine often confuses

these frames as being part of the succeeding or preceeding

words in an utterance, and thereby causes a mixture of dele-

tion as well as substitution errors. A straight-forward method

of mitigating under-representation is by employing a smaller

frame size and rate around these islands of ambiguity. While a

smaller frame size and skip rate does not necessarily result in

better spectral representation, it certainly increases the number

of frames used in capturing the information while simultane-

ously being more adept at tracking the evolution of the speech

signal. This amounts to more meaningful acoustic evidence

pointing towards the actual phonetic content.

The organization of this paper is as follows: In Sec. 2, we

review the popular VFR strategies followed by our proposed

method in Sec. 3.We describe our experimental setup in Sec.

4, and discuss the speech recognition results in Sec. 5.

2. REVIEW OF VFR SCHEMES

In past research, methods employed towards VFR are either

driven by prior knowledge of phone class association of speech

frames, or by information theoretic (IT) measures such as en-

tropy. Traditionally, the former strategy is a back-end ap-

proach which is a direct attempt at solving the problem, since

it attempts to customize the framing strategy to the phonetic
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Fig. 1. Variable Frame Rate Scheme.

content of the speech frame. In [1], the authors developed an

N-best list re-scoring strategy based on VFR where framing

was guided by the phonetic output hypothesis of the ASR en-

gine itself. The output hypothesis of the ASR engine was used

to form 3, 5, 7 and 11 broad phone classes, and a series of in-

creasingly refined framing schemes were adopted for each di-

vision resulting in multiple acoustic models. The final output

hypothesis of the entire system was a weighted combination

of all the individual frame rate acoustic models.

Other popular VFR strategies employ a number of front-

end measures of difference (or similarity) such as short term

entropy [3], frame by frame Euclidean distance [4, 5], and en-

ergy variations [6]. All of these measures are tuned towards

segregating transients and steady state components of speech.

In these methods, multiple thresholds are pre-assigned, and

usually an N-ary detection is performed to guide the framing

process. The major advantage of these techniques is that an

explicit segmentation of the speech signal is not required. On

the other hand, these techniques require heuristic tuning of the

thresholds which might reduce their general applicability. Fur-

thermore, if it is believed that VFR works due to its ability in

dealing with large temporal variations in phonetics, then the

best HLS of speech must also establish the theoretical upper

limit on the performance of the IT driven approaches. Under

this assumption, HLS seems to be a more direct methodology

of solving VFR, if it is available prior to framing.

In this paper, we use prior knowledge of HLS to guide our

framing process, and implement the VFR within the speech

recognition front-end itself. In comparison to back-end tech-

niques, this approach allows for a reduced complexity and

faster system.

3. PROPOSED VFR SCHEME

As shown in Fig. 1, the proposed VFR scheme first performs

a 3-ary HLS of speech into sonorants, obstruents, and silence,

Algorithm 1 Proposed HLS scheme

1: Obtain the VAD decisions Vd.

2: Obtain ΛN (z ∈ Gi) using (2).

3: if Vd == 0 then � (To obtain raw decisions)

4: Dr = 0 � (silence frame)

5: else if Vd == 1 then
6: if ΛN (z ∈ G1) > ΛN (z ∈ G2) then
7: Dr = 1 � (sonorant frame)

8: else if ΛN (z ∈ G1) <= ΛN (z ∈ G2) then
9: if ΛN (z ∈ G2) <= 0.33 then

10: Dr = 0 � (silence frame)

11: else
12: Dr = 2 � (obstruent frame)

13: end if
14: end if
15: end if
16: Form group decisions DG

i by grouping successive similar

raw decisions Dr.

17: All obstruents, DG
2 flanked by pause, DG

0 on both sides

are forced to pause.

18: loop for every DG
i , i = 0, 1 � (Tag unreliable Dr)

19: if duration of DG
1 <= 50ms then

20: DG
1 is unreliable

21: end if
22: if duration of DG

0 <= 90ms then
23: DG

0 is unreliable

24: end if
25: end loop
26: loop for every unreliable DG

i � (Correct unreliable Dr)

27: if neighbors of DG
i belong to same group then

28: Assign DG
i to same group as neighbors

29: else
30: Assign DG

i to obstruents.

31: end if
32: end loop

and then uses a preassigned phone-class based framing strat-

egy. The HLS of speech is accomplished by means of a voice

activity detector (VAD) and PFs (phonological features). The

VAD scheme is based on competitive Neyman-Pearson (CNP)

hypothesis testing which was earlier presented in [7]. The

VAD output is denoted as Vd, and the values Vd = 0 and

Vd = 1 represent pause and speech, respectively. The pause

decisions of the VAD are retained and speech decisions are fur-

ther processed to obtain sonorant/obstruent classification. The

PFs used in the proposed VFR scheme are trained to distin-

guish between sonorants and obstruents. In contemporary lit-

erature, a number of classification techniques such as artifical

neural networks (ANNs), GMMs (Gaussian Mixtures Mod-

els), HMMs (Hidden Markov Models) and Dynamic Bayesian

Networks (DBNs) [8–10] have been employed to train PF de-

tectors. In this paper, we employ a set of PFs based on 256-

mixture gender-independent GMMs to distinguish between sono-
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Fig. 2. Illustrating the three-way detection between sonorant, obstruents and silence for a TIMIT sentence: “Her wardrobe

consists of only skirts and blouses.” Ideal decisions represent the phone level alignments available for TIMIT.

rants and obstruents. Furthermore, unlike most PF based sys-

tems which employ MFCCs as the standard spectral represen-

tation, we experimented with alternate feature representations

to choose the most robust scheme. In our experiments, we

found that the PMVDR (perceptual minimum variance distor-

tionless response) based PF scheme gives the best performance

in terms of sonorant/obstruent classification [11].

The procedure for the HLS scheme is described below. We

denote the GMM models for sonorant, obstruent and silence

to be G1, G2 and G3, respectively. Next, the likelihood of a

speech frame z belonging to GMM Gi is given by:

Λ(z ∈ Gi) = p(z|Gi), i = 1, 2, 3. (1)

In order to make useful comparisons across different speech

frames, we normalize the likelihood scores, (i.e., we define

ΛN (z ∈ Gi) =
p(z|Gi)

∑3
j=1 p(z|Gj)

, i = 1, 2, (2)

as the normalized scores for sonorant (G1) and obstruent (G2)

models). The speech frames are labeled as sonorants or ob-

struents by performing a simple comparison between the nor-

malized likelihoods (ΛN (G1) and ΛN (G2)) and choosing the

maximum value as the correct phone class. The 3-ary deci-

sions obtained at this point are termed as the raw decisions

(Dr). The raw decisions for a TIMIT sentence are shown in

Fig. 2. The ideal decisions for the same sentence built from the

TIMIT transcriptions is also included for comparison. It can

be seen that while the raw decisions show good sonorant de-

tection, they contain numerous obstruent/silence confusions.

Hence, further processing of raw decisions becomes necessary

in order to improve the overall detection rate. To achieve this,

we first reassign obstruent frames with normalized likelihood

values below 0.33 to silence. This enables the HLS scheme to

recover some silence frames which were mistaken for obstru-

ents by the VAD and PFs. Now, similar contiguous decisions

are further aggregated into blocks of continued sonorant, ob-

struent or silence periods. We denote these grouped decisions

or periods of silence, obstruent, and sonorant as DG
0 , DG

1 , and

DG
2 , respectively. Aggregating the similar decisions allows

us to exploit durational constraints on speech production in

correcting obvious errors in frame level decisions. First, we

recover silence frames that are erroneously tagged as obstru-

ents by finding all DG
2 (obstruents) that are flanked by DG

0

(silence) on both sides. Since the occurance of isolated ob-

servations of obstruents is highly unlikely, these frames must

actually belong to silence or non-speech sounds such as a lip-

smack, throat clearing etc. Next, all DG
i are scanned and their

component frames are tagged as reliable or unreliable deci-

sions. Herein, all obstruent groups are assigned as reliable;

and sonorant groups that last 50ms or less, as well as silence

groups that last 90ms or less are tagged as unreliable. Again,

sonorants and silence periods lasting for such short durations

are unlikely and therefore believed to be erroneous decisions.

Finally, the unreliable decisions are corrected in the follow-

ing manner. The frames of an unreliably tagged group are
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assigned to the neighoring reliable group if both neighbors be-

long to the same phone class. On the other hand, if the two

neighboring decision groups belong to different phone classes,

then the current unreliable group in question is always as-

signed to obstruents. The design of the above-described HLS

scheme largely helps in resolving the ambiguity between si-

lence and obstruents. In Fig. 2, the processed HLS final deci-

sions are also shown for the same TIMIT sentence. Finally, all

the steps of the HLS algorithm are summarized in the pseudo-

code shown as Algorithm 1.

Upon obtaining the final decisions in terms of the assigned

phone class, the speech signal is framed using a pre-assigned

VFR strategy. Finally, in order to smooth the transitions into

and out of obstruents, the detected transitions are always ad-

vanced and delayed by two frames, respectively. This also

permits the ASR to capture transient information which is be-

lieved to be critical towards obstruent perception. It may be

useful to note that the proposed VFR scheme forms a generic

framework within which more refined phone-class segmenta-

tion, and a variety of framing schemes are possible.

4. EXPERIMENTAL SETUP

In order to evaluate the VFR scheme, we established a contin-

uous speech recognition task for the TIMIT and NTIMIT cor-

pora using the Sphinx speech recognition engine. The TIMIT

corpus was suitably downsampled to 8kHz prior to training or

testing. For both corpora, we use content dependent phone

models with 600 senonically tied-states and diagonal covari-

ance matrices [12]. Furthermore, the HMM topology used for

modeling was a 5-state left-to-right model with no state skip-

ping. In each experiment, the utterances are preemphasized

with a factor of 0.97 and then appropriately framed. Subse-

quently, each frame is Hamming windowed and 13 dimen-

sional MFCCs (mel frequency cepstral coefficients) are ex-

tracted for each frame. For obtaining MFCCs, the mel-scale

is simulated using a set of 40 triangular filters. Furthermore,

the delta, and delta-delta of the MFCC were concatenated to

the static vector to form a single 39-dimensional feature vec-

tor. Cepstral mean substraction (CMS), variance normaliza-

tion and automatic gain control (AGC) were also employed as

part of the overall system. For the purpose of our experiments,

we also employed a trigram language model.

In order to test the effectiveness of VFR across different

speech features, we also employ PMVDR and WDCTC (warped

discrete cosine transform cepstrum [13]) as alternate speech

features to MFCC in our experiments. Since the VFR fo-

cuses on refining the temporal representation of speech, we

expect the VFR to be beneficial across all spectral representa-

tions. Using the above-mentioned speech recognition system

and speech features, a baseline performance of 12.1%, 12.7%

and 10.2% WER (word error rate) is obtained for TIMIT us-

ing MFCC, PMVDR and WDCTC, respectively. Similarly,

a baseline of 16.7%, 16.2% and 17.4% WER is obtained for

Table 1. Raw and Processed Detection Accuracy on TIMIT

TIMIT Raw Detected Processed Detected

INPUT Sil Snt Obs Sil Snt Obs

Sil 39.22 4.9 56.05 83.24 3.55 13.25

Snt 0.35 96.34 3.32 0.77 94.95 4.29

Obs 9.60 21.32 68.98 13.02 19.71 67.17
Avg 68% 81%

Table 2. Raw and Processed Detection Accuracy on NTIMIT

NTIMIT Raw Processed Detection

Sil Snt Obs Sil Snt Obs

Sil 23.79 17.77 58.61 74.52 10.36 15.17

Snt 0.36 94.39 5.26 1.72 92.66 5.64

Obs 5.30 35.96 58.62 19.55 33.02 47.27
Avg 59% 71%

(Sil: Silence, Snt: Sonorant, Obs: Obstruent)

NTIMIT using MFCC, PMVDR and WDCTC.

In our experimental setup, we found that distinguishing

between obstruents on one side, and silence/sonorants on the

other gives the greatest benefit to the ASR performance. It

seems that the ASR system is quite effective at distinguish-

ing between sonorants and silence, and requires assistance in

separating obstruents and silence. Hence, for our experiments

we choose a standard frame rate of 25ms window/10ms skip

rate for sonorants and silence, and a shorter 10ms/5ms for ob-

struents. It is worth mentioning that the need to distinguish

between sonorants and silence may become more relevant in

speech with more higher noise backgrounds than that observed

in TIMIT and NTIMIT.

5. RESULTS AND DISCUSSIONS

The frame level detection accuracy of the sonorant and ob-

struent PFs are illustrated in Table 1 and 2 for TIMIT and

NTIMIT, respectively. The benefit in processing raw PF de-

cisions is clear, with processed decisions showing a relative

improvement of 40% and 30% detection accuracy over the

baseline performance. It is observed that the HLS scheme is

able to recover numerous silence-obstruent confusions as in-

tended by its design. The most important shifts in performance

from Table 3 and 4 represent the reduction of silence detected

as obstruent (56% to 13%) for TIMIT and (58% to 15%) for

NTIMIT. Since silence and sonorant are treated equivalently

by the frame settings (size and skip rate), confusions among

them do not impact performance. It is also useful to note that

since the HLS scheme always advances and delays all non-

obstruent obstruent and obstruent non-obstruent boundaries,

respectively by two frames, the VFR scheme is inherently tol-

erant towards errors in segmentation.

Recognition results for TIMIT and NTIMIT using the pro-

585



Table 3. TIMIT: VFR compared to conventional framing

TIMIT Acc Sub Del Ins WER

MFCC Fixed Rate 86.2 8.8 3.3 1.7 12.1
VFR 89.6 6.7 2.5 1.1 9.2

PMVDR Fixed Rate 85.6 9.3 3.3 1.7 12.7
VFR 88.9 7.3 2.5 1.3 9.7

WDCTC Fixed Rate 89.1 6.0 4.2 0.7 10.2
VFR 91 5.5 2.7 0.8 8.2

Table 4. NTIMIT: VFR compared to conventional framing

NTIMIT Acc Sub Del Ins WER

MFCC Fixed Rate 81.4 12.2 4.5 1.9 16.7
VFR 82.7 11.3 4.4 1.6 15.7

PMVDR Fixed Rate 81.9 11.9 4.3 1.8 16.2
VFR 82.8 11.6 4.2 1.5 15.7

WDCTC Fixed Rate 81.6 11.2 6.2 1.0 17.4
VFR 82.9 10.9 5.2 1.1 16.0

(Acc: Word Recognition Accuracy, Sub: Substitution, Del:

Deletion, Ins: Insertion, WER: Word Error Rate)

posed VFR and conventional framing are shown in Tables 3

and 4, respectively. Using the proposed VFR scheme, we ob-

tain a relavant WER improvement of 24%, 23.6% and 20%

for MFCC, PMVDR, and WDCTC on TIMIT. Similarly, we

obtain relative WER improvements of 6%, 3% and 8% on

NTIMIT. Furthermore, it is observed that the VFR scheme re-

sults in an improvement in all error types (, i.e., substitutions,

deletions and insertions), except for WDCTC where the inser-

tions increase slightly. However, the increase in insertions for

WDCTC is nominal owing to very low baseline insertion rate.

On the other hand, we observe the greatest relative reductions

in deletion errors followed by substitutions as a result of using

VFR for TIMIT across all features. In the case of NTIMIT,

the reductions in substitution errors is more significant than

deletions. The results therefore show the clear benefit of the

proposed variable frame rate method using phonological fea-

tures for high level segmentation based ASR.

6. CONCLUSION

In this paper, a new variable frame rate (VFR) scheme was pro-

posed as an alternative to the conventional fixed-rate framing.

The proposed VFR scheme is based on high level segmenta-

tion (HLS) of speech where appropriately trained (phonologi-

cal features) PFs were employed to segment speech into broad

phone classes. The entire VFR scheme was implemented as

the front-end of our speech recognition engine, which resulted

in an efficient and cost-effective system. The proposed scheme

was evaluated for speech recognition of the TIMIT and NTIMIT

corpora, and benchmarked against the conventional fixed frame

rate scheme. The proposed VFR scheme demonstrated very

encouraging relative WER improvements of 24% and 8% on

the TIMIT and NTIMIT tasks.
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