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ABSTRACT Speech Decoding Score Re—ranke(
Signals | Conventional > Rescoring Candidates

This paper presents an investigation of the rescoring performance Decoder _ | Algorithm — >
using hidden Markov model (HMM) based attribute detectors. The Recogpitio?
minimum verification error (MVE) criterion is employed to enhance Candidates 2
the reliability of the detectors in continuous speech recognition. The . l Detector 1 l . E
HMM-based detectors are applied on the possible recognition can- =
didates, which are generated from the conventional decoder and or- b1
ganized in phone/word graphs. We focus on the study of rescoring I Thresholds 2
performance with the detectors trained on the tokens produced by '
the decoder but labeled in broad phonetic categories rather than the 1
phonetic identities. Various training criteria and knowledge fusion —»[W]—»

methods are investigated under various semantic level rescoring sce-
narios. This research demonstrates various possibilities of embed-
ding auxiliary information into the current automatic speech recog-
nition (ASR) framework for improved results. It also represents an
intermediate step towards the construction of a true detection-based
ASR paradigm [1].

Index Terms: rescoring, MVE, phone/word graph , detection-based
ASR

1. INTRODUCTION

It is well known that the state-of-the-art speech recognition frame-
work faces challenges in incorporating new knowledge or informa-
tion. The current techniques are inflexible and task-specific and in
general do not allow adaption to new applications without a sub-
stantial system adjustment. Furthermore, any mismatch between the
training and test environments such as out-of-vocabulary words or
different noise conditions would cause a serious performance degra-
dation. Detection-based ASR is an alternative paradigm [1]. It con-
ducts a bottom-up hypothesis testing framework based on the de-
tection theory. This framework is flexible in its ability to combine
different knowledge sources and the to fuse lower level information
into higher level hypotheses, while neglecting superfluous inputs.
‘We have already seen encouraging results in [2, 3, 4, 5, 6].

We have witnessed many related research in regard to the de-
tector design methodology and information integration approaches
[3, 4,7, 8]. We are reminded by the previous exploration that before
building a real and complete detection-based system, it is helpful
to incrementally investigate the effect of combining detectors and
conventional decoders. Thus a rescoring system, a hybrid of at-
tribute detectors and a conventional decoder, is the research objective
here. In [7], a frame-based detector was introduced and “knowledge-
based” front-end features are utilized to accomplish enhanced recog-
nition accuracy. A segment-based rescoring system was reported in
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Fig. 1. The rescoring diagram using HMM-based detectors.

[4], showing preliminary improvements; it exploits a set of HMM-
based detectors to help a conventional recognizer in reaching the
final decision. Two or more relatively independent “inference” mea-
sures were integrated in the same observation space.

In this paper, we follow the research in [4] and present a more
extensive study of the rescoring performance of HMM-based detec-
tors. Fig.1 depicts the general framework of our rescoring strategy.
We can replace any approach in the “Rescoring Algorithm” box, ad-
just the structure of recognition candidates, and tune thresholds in
any particular tasks.

According to Fig.1, the performance of a rescoring system is
decided by two key factors: the reliability of the detectors and the
effectiveness of the rescoring algorithms under different scenarios.
In this paper, a systematic investigation upon these two key issues
has been organized. First, to enhance the reliability of the detectors,
some effective discriminative training criteria are employed. The
minimum verification error (MVE) training [9, 10] is a well-suited
approach that aims at minimizing the empirical estimate of the total
detection error. We have seen a number of solid manifestations of the
effectiveness of the MVE modeling method for the detector design in
detection-based ASR literatures [9, 11]. However, the original MVE
training is designed for using isolated speech segments hence not
consistent to be combined with most of the rescoring algorithms for
continuous speech recognition tasks. To alleviate the mismatch be-
tween the detector training and rescoring scenario, we propose two
modified versions of the MVE training criteria. Second, we exam-
ine various rescoring algorithms under multiple rescoring scenarios.
We investigate two types of rescoring algorithms in terms of their
information fusion strategy — the scoring fusion rescoring and the

ASRU 2007



decision fusion rescoring. For the first type of algorithm, we com-
bined the scores from different information sources and make the
final rescoring decision based on those scores. For the second one,
the independent decisions are made before being transformed into
the final result. The study of the rescoring algorithms are conducted
on both the intra-semantic level rescoring (e.g., the rescoring is made
on the phone level and the objective of rescoring is to improve phone
recognition accuracy) and the inter-semantic level rescoring (e.g.,
the rescoring is made on the phone level and the objective of rescor-
ing is to improve word recognition accuracy) to find out the appro-
priate rescoring configurations under different scenarios. Note that
we are not claiming any “optimal” system. The objective of this pa-
per is to justify suitable combinations of the detector design and the
rescoring algorithms for future tasks. Further more, it is a helpful in-
termediate step towards the pure detection-based ASR applications.

This paper is organized as follows. Before any detailed discus-
sion of the detector design and the rescoring algorithms, we give
an overview of different rescoring scenarios. The introduction of
the intra-semantic level and the inter-semantic level rescoring sce-
narios is presented separately in the next section. In Section 3, we
briefly review the theory of MVE and its modification. Rescoring
algorithms are discussed in Section 4. Experiments and results in re-
gard to various combinations of training and rescoring methods are
presented in Section 5. Finally, we provide the conclusion and the
future work in Section 6.

2. RESCORING SCENARIOS

The function of a rescoring system is to improve the task perfor-
mance in terms of the ultimate design objective. With various situ-
ations of different speech recognition tasks, the detector design and
the information fusion algorithm, need to be tuned in order to op-
timize the performance of the entire rescoring framework. Briefly
speaking, there are two prevalent ASR rescoring scenarios in contin-
uous speech recognition tasks.

2.1. Intra-Semantic Level Rescoring

The first rescoring scenario is the intra-semantic level rescoring. In
this case, the accuracy of the decoding decisions determines the sys-
tem performance directly. For example, the decoders are constructed
by phone models and the system performance metric is the phone
recognition accuracy. If we built detectors on the same level with
the decoder, the scores or decisions generated by detectors can be
directly fused into the results of the decoder to affect the system per-
formance.

2.2. Inter-Semantic Level Rescoring

The second situation is the inter-semantic level rescoring. In this
case, the system performance is not decided directly by the accuracy
of the decoding decisions. We need to organize the decoding results
to form the output on the level of the performance metric. For exam-
ple, the decoders are constructed by phone models and the system
performance metric is the word recognition accuracy. Therefore, to
optimize the rescoring performance in terms of the system objective,
the scores or decisions of detectors have to be manipulated with the
decoding results to conduct a cross-level rescoring.
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3. DETECTOR TRAINING METHODS

3.1. Original Definition for MVE Training

The MVE method can be viewed as a special version of the MCE
method [12] for detection and verification problems. Analogous to
the MCE criterion, the essence of the MVE training [9] is to di-
rectly minimize the total detection errors. In detection problems,
there are two different kinds of errors: type I error (miss) and type
II error (false alarm). Viewed from a classification problem perspec-
tive, there are two misclassification measures respectively. Assume
there are M classes and K training tokens in the training set. For any
training token labeled in the ith class, a type I error (miss) may result
when applied to the detector of the ith class, and possibly M —1 type
II errors (false alarm) when applied it to detectors for all the other
classes. The type I misclassification measure for an incoming train-
ing token O labeled in the ith class can be formulated as

dr = —g{(0'0}) + g4 (0'0;) + v (1)

where g; and g, are the normalized log likelihood of the target model
and anti-model for the ith class, respectively. ©; and ©, are param-
eter sets of the target and the anti models. ~y; is the decision threshold
for class i.

At the same time, the type II misclassification measure is

d},(0'67) = +¢{(0'6]) — g1 (0'1607) + @
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The two misclassification measures can be embedded into smoothed

loss functions written as

1
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where the parameter set © is defined by © = {©},0%},i =1,2,..., M.

The composite error estimation function % ,,,;, (0%|©") is a combi-
nation of type I and type II errors.

liotal(Ox|©") = PE1l7(0x]0")
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PE; and PEj; are penalty weights for type I and type II errors. The
minimization of l+otq; can be done through the generalized proba-
bilistic descent (GPD) method [12] w.r.t. all parameters.

3.2. MVE Maodifications for Continuous Speech Recognition

In most of ASR tasks, the MVE training routine is applied to the
phone level using isolated speech tokens which are usually not seg-
mented as consistent and accurate as expected. Further more, the
decoded candidates are generated in a fashion of continuous recog-
nition that may cause mismatch between the detector construction
and rescoring conditions. Therefore, in this section, we propose two
modifications of the MVE method that are more suitable in the con-
text of continuous ASR but still inherit the merits from the original
MVE criterion.



3.2.1. Substring MVE Training

The first modification of the MVE training is named substring MVE
training (S-MVE). This method concatenates the target and anti-target
models of contiguous phones respectively to form a set of substring
detectors which may contain arbitrary number of phones. The MVE
training is conducted from the start and shifts all along the utterance.
For example, if the utterance is “sil sh iy hh aa s, the first sub-
string training could be applied to the detector model “sil+sh+iy”
and the second one could be applied to the model “sh+iy+hh”, etc.
This method inherits the discriminative ability of the MVE criterion
and avoid setting the phone boundaries inside the substring explic-
itly. The other advantage of this modification is that it exploits some
context dependency.

3.2.2. Relaxed-Boundary MVE Training

Though the substring MVE method could alleviate the effects of the
unreliable phone boundaries, the start and end time of each substring
are still subject to errors. Thus, we develop the second modifica-
tion of the MVE criterion, the relaxed-boundary MVE training (RB-
MVE). This is a more advanced modification of the original MVE
criterion based on the S-MVE method. The essence of the RB-MVE
method is that the phone boundaries are re-defined by the detector
models. We form the utterance target model and anti-model as the
concatenation of all phone models in the utterance. For each state
J in the sequence of the phone models, the forward and backward
likelihood ratio vector ] and 3] can be computed for each frame
t. Assume there are N states in each phone model, we then can de-
termine the “best” segment [ts, te] for each phone in terms of the
highest forward likelihood ratio represented by ai\i - a}s. The S-
MVE method is then carried out based on the adjusted segments. It
is a data-driven procedure to set up better phone boundaries based
on the best detector models we have. The training and boundary
determination can be repeated iteratively until satisfaction.

4. RESCORING ALGORITHMS

In this section, we investigate two types of rescoring algorithms: the
score-fusion algorithm and the decision-fusion algorithm. Three al-
gorithms are proposed respectively for each type.

4.1. Score-Fusion Algorithms

Score fusion is a technique that combines the detectors scores and
the decoder scores. The decoding candidates are re-ranked based on
the new scores. In this section, we review three score-fusion meth-
ods proposed in [4]. Suppose there are M corresponding detectors
that each of them consists of a target model and an anti-model. For
a speech segment that is decoded as the <th class with log likeli-

hood S((iecode, its jth ( = 1,2, ..., M) detector scores are ngt and
S é]n)tl, respectively. Namely, the likelihood ratio for the jth detector

is ratio?) = S(j) s

anti®

belonging class ¢ after combination Snew

We call the score for the test segment

4.1.1. Naive-Adding

The first method is called Naive-Adding (NA). From its name we
can know that it is a quite naive score combination scheme. In this
approach, the new score of each segment being decoded as the ith
class is

S =89 e — SO+ ratio™ (6)

decode anti
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The reason for subtracting .S éer is to scale the decoding score into

a relatively close dynamic range with the likelihood ratio. This pro-
cedure is also taken in the following two methods.

4.1.2. Competitive-Rescoring

The second method is named Competmve-Rescormg (CR). In this
approach, we define a new “competitive” score 5

M
5S¢ = ratiol log{ Zexp n-ratio )Y (7)
J#l
and _
S’f(lle)w = Sc(le)code S((ertz + S( g (8)

In the first method only the likelihood ratio from underlying class of
detectors are used for rescoring. But in this case, we first compute a
distance measure between the claimed class to a geometric average
of the other competitive classes. This quantity S is similar to the
“misclassification measure” function d in MCE training [12] but us-
ing the corresponding detectors’ likelihood ratio and there is a sign
difference.

4.1.3. Remodeled Posterior Probability

The third method is called Remodeled Posterior Probability (RPP).
Borrowing from the idea of the recognition phone graph, we formed
a pseudo-graph for each phoneme segment using detector arrays. We
can consider the detection results of the total M detectors are M
extra pathes for the testing speech segment. A remodeled posterior
probability of the claimed class  is defined as the ratio of two scores.
The score on the numerator is the scaled decoding score of claimed
class ¢ plus the likelihood ratio of the detector for class i. The score
on the denominator is the sum of the numerator score and all the
other detection scores. i.e,

o0 —  OD(Sicase ~ Sumui) +exp(ratio)
exXP(SYhoge — Siiui) + S0 exp(ratiol))

(C)]

4.2. Decision-Fusion Algorithms

In many rescoring tasks, the detector design is on the different se-
mantic level compared to the recognized candidates thus the inter-
semantic level rescoring is required. The score-fusion mechanisms
such as the RPP method may only gain incremental impact in the
inter-semantic level rescoring because they do not affect the rescor-
ing decisions directly. One alternative rescoring method is to fuse
the independent decisions from both the decoder and the detectors to
prune the recognized candidates. In this paper, three decision-fusion
methods are proposed and compared under the cross-semantic level
rescoring scenario in which the phone-level detectors are employed
to improve the word accuracy.

To apply the phone-level detectors upon the word graph, the
decision-fusion methods prune the candidates in word graphs based
on the reliability of the phone sequence in each word. In other words,
each phone in every decoded word is examined by the corresponding
detectors. We define a “miss” error in this situation if a recognized
phone belongs to the ith class but the likelihood ratio of the corre-
sponding ¢th detector is less than the threshold. Similarly, a “false
alarm” error occurs when a recognized phone belongs to the 4th class
but the likelihood ratio of any detectors other than the ¢th detector is
larger than the threshold.



4.2.1. Strict-Pruning

The first method, the strict-pruning (SP) prunes the whole word if
any phone in the word is detected as an “miss” error. This method
maps the phone errors and the word errors directly in a strict one-by-
one manner.

4.2.2. Relaxed-Pruning 1

The second method prunes the word only if at least two or over half
of the phones are detected as “miss” errors. This method relaxes
some constraints compared to the first method (SP) but still concen-
trates on the “miss” errors. We name it Relaxed-Pruning I (RP-1).

4.2.3. Relaxed-Pruning I1

The third method is similar to the second one except an additional
provision in which the pruning shall not occur unless there exist
“false alarm” errors at the same time. We call this method Relaxed-
Pruning Il (RP-II).

5. EXPERIMENTAL RESULTS

The experiments are conducted on the TIMIT database. The training
set has 3,696 utterances and the test set has 1,344 utterances (the ut-
terances for speaker adaptation are ignored). The acoustic model of
the baseline decoder consists of 41 CI phones that are folded from
the 48 monophone set defined in [13]. The phones “vcl cl epi” are
folded into “sil”. The phones “ix el em en” are folded into “ih 1 m
n” respectively and there is no phone labeled as“dx”. Each phone
is modeled by a 3-state HMM. The decoder uses 32 mixtures for
each state in the intra-semantic level rescoring and 70 mixtures in
the inter-semantic level rescoring. The model parameters are trained
by embedded Baum-Welch algorithm [14] using 39 dimensional fea-
ture vectors with 12MFCC,12A, 12A? and 3 log energy values.
The recognition candidates are organized using phone/word graphs
rather than N-best lists because phone/word graphs represent more
information in a much compact topology than N-best lists. The
phone/word graphs are generated using HVite in the HTK toolbox
(http://htk.eng.cam.ac.uk/) in the way that the pruning criterion is
set that only 3 recognition candidates can survive simultaneously. In
one graph, each node represents a time instance and each arc repre-
sents a phone/word.

Three taxonomical phonetic category detectors are defined and
trained first by the Baum-Welch algorithm [14] then adjusted by the
variations of the MVE method. These categories include 6 classes
[14], 14 classes [15], and 41 classes phonemes respectively. Ta-
ble 1 and 2 show the mapping rules from the 41-class phone set
to the 6-class and 14-class set, respectively. The target models and
anti-models in detectors are constructed using 3-state HMM with
32 Gaussian mixtures in each state. In our experiments, we employ
these three detectors separately to conduct the cross-category rescor-
ing for the 41-class phone/word graphs in each scenario.

Based on the decoder and the detectors described above, we con-
duct extensive investigations on rescoring performance under dif-
ferent detector building and information fusion scenarios. We ex-
amine two prevalent rescoring situations — the intra-semantic level
rescoring and the inter-semantic level rescoring. The experiments
of the intra-semantic level rescoring are organized using the phone-
graph rescoring to enhance the phone recognition accuracy. Com-
parative results are organized to show the performance difference
between various combinations of different detector training methods
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Table 1. Mapping rule from the 41-class to the 6-class category.

[ 6class | monophones ‘
fricatives | chdhfjhsshthvzzh
vowels aa ae ah ao aw ax ay eh
er ey ih iy ow oy uh uw
nasals m n ng
stops bdgkpt
others hhlrwy
silence sil

Table 2. Mapping rule from the 41-class to the 14-class category.

| 14-class [ abbreviation H monophones ‘
front vowels fv ae eh ey ih iy
mid vowels mv ah ax er
back vowels bv aa ao ow uh uw
voiced fricatives vf dhvz
unvoiced fricatives uf fth s shzh
affricatives aff ch jh
voiced consonants ve bdg
unvoiced consonants uc kpt
nasals na mnng
diphthongs di aw ay oy
liquids li ellr
glides gli wy
whispers wh hh
silence sil sil

and score-fusion algorithms. On the other hand, the inter-semantic
level rescoring experiments are presented using the phone-level in-
formation integration on word-graphs in order to boost the word
recognition accuracy. We concentrate on the result comparison be-
tween the decision-fusion algorithms in this case.

5.1. Intra-Semantic Level Rescoring Using Phone Graphs

The system performance reaches its upper bound when selecting the
candidate from the phone graph which best matches the reference
phone transcription. To evaluate a rescoring algorithm, the relative
accuracy improvement is defined by the ratio of the absolute im-
provement over the offset between the upper bound accuracy and the
baseline accuracy. In this section, we only focus on the score-fusion
methods. Table 3 shows phone recognition accuracy of the baseline
decoder and the upper bound of the phone graph using 0-gram and
bigram, respectively.

Table 3. Baseline phone accuracy and upper bounds.

[ Acc(%) [ O-gram [ bigram |
Baseline 56.78 63.93
Upper bound | 63.27 70.75

We first compare the results between the different rescoring al-
gorithms using the conventional MVE training. Then, three varia-
tions of MVE training methods are compared using the best rescor-
ing method.



Table 4. Intra-semantic level rescoring performance for different
rescoring algorithms (The first row is the rescored accuracy and the
second row is the relative improvement).

Table 5. Intra-semantic level rescoring performance for different
detection training methods(The first row is the rescored accuracy and
the second row is the relative improvement).

NA CR RPP MVE S-MVE RB-MVE
Ogram | bigram | Ogram [ bigram | Ogram | bigram Ogram | bigram | Ogram [ bigram [ Ogram [ bigram
6 57.04 63.93 57.29 63.94 58.04 64.05 6 58.04 64.05 58.10 64.20 58.98 64.25
4.01 0.0 7.86 0.15 19.41 1.76 19.41 1.76 20.34 3.96 33.90 4.69
14 | 57.08 63.93 57.40 63.96 58.01 64.20 14 | 58.01 64.20 58.10 64.35 59.01 64.60
4.62 0.0 9.55 0.44 18.95 3.96 18.95 3.96 20.34 6.16 34.36 9.82
41 | 57.62 63.95 57.94 63.99 58.41 64.35 41 58.41 64.35 58.90 64.40 59.21 64.78
12.94 0.29 17.87 0.88 25.12 6.16 25.12 6.16 32.67 6.89 37.44 12.46

5.1.1. Rescoring Algorithms Comparison

Table 4 displays the performance of all three rescoring approaches
by using all three taxonomical phonetic detectors upon phone graphs
for cross-category rescoring. In Table 4, the first row of results are
the rescored accuracy and the second row contains the relative im-
provement (%). For all three detectors, with the detectors trained
using the conventional MVE method, we tried three rescoring algo-
rithms: the Naive-adding (NA) method, the Competitive-Rescoring

(CR) method and the Remodeled Posterior-Probability (RPP) method.

In addition, the rescoring effect under two kinds of different lan-
guage models, 0-gram and bigram, are respectively investigated in
the experiments.

Since the phone graphs are generated over the 41-class phone
set, we map each phone back to the 6-class and 14-class phone
set and compute detection scores when conducting cross-category
rescoring. Based on the experiment results, first, we can see that the
Naive-adding (NA) method has the least performance boosting and
the Remodeled Posterior-Probability (RPP) method obtains the most
gain. It is not surprising since NA is the most naive approach among
those three while the RPP method tries to find a candidate with max-
imum value of a remodeled posterior probability, which bears rela-
tionship to Bayes risk. Second, the 41-class detector displayed the
highest performance in cross-category rescoring. Third, rescoring
techniques showed much higher performance improvement when 0-
gram is used. The reason of this observation might be that the use
of better language model eliminates some errors due to inaccurate
acoustic modeling.

5.1.2. Detector Training Methods Comparison

Upon the phone graph, the rescoring results of using all three tax-
onomical phonetic detectors with different detector training strate-
gies are presented in Table 5. In Table 5, the first row of results
are the rescored accuracy and the second row contains the relative
improvement. For all three detectors, we tried three MVE train-
ing methods: the original one, the substring MVE (S-MVE) and the
relaxed-boundary MVE (RB-MVE). The rescoring algorithm is the
RPP method. In addition, the rescoring effect under two kinds of
different language models, zero-gram and bigram, are respectively
investigated in the experiments.

From Table 5 we can also make some conclusive observations as
in the last section. First, the RB-MVE method and S-MVE method
outperform the original MVE method no matter what kind of detec-
tor is employed. Second, the 41-class detector displayed the highest
performance as expected. Finally, as we observed before, the im-
provement of rescoring using 0-gram graphs is higher than that of
bigram phone graphs.
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5.2. Inter-Semantic Level Rescoring Using Word Graphs

The inter-semantic level rescoring is conducted by using the phone-
level detectors to rescore phones inside each recognized word can-
didate to improve the word recognition accuracy. In this section,
we study the rescoring performance for both the score-fusion and
decision-fusion methods. In the score-fusion rescoring part, as the
RB-MVE method and RPP method outperformed their competitors
in our previous research, we employ them as the detector training
and score combination approach respectively for cross-category rescor-
ing using three taxonomical phonetic detectors. The focus of this
section is the decision-fusion rescoring, in which we compare three
decision-fusion methods in terms of the final word accuracy using
the best configuration obtained from the previous experiments. Ta-
ble 6 shows phone recognition accuracy of the baseline decoder and
the upper bound of the phone graph using bigram.

Table 6. Baseline word accuracy and upper bounds with bigram

[ Acc(%) | bigram |
Baseline 50.28
Upper bound | 65.46

5.2.1. Score-Fusion Rescoring

We use a similar rescoring method as we did for the intra-semantic
level rescoring. The detectors are trained using the RB-MVE crite-
rion. The RPP method was applied to calculate new scores for each
phone in every word in the word graphs. The final rescored word
score is the summation of all rescored phone scores in the word. As
we did in phone graph rescoring, we mapped each phone back to
the 6-class and 14-class phone set and computed detection scores
when conducting cross-category rescoring. Table 7 shows the per-
formance of the inter-semantic level rescoring using the best score-
fusion method selected from the intra-semantic level rescoring ex-
periments. Still, among all cross-category rescoring experiments,
the 41-class phonetic detectors displays the highest improvement of
the word accuracy.

5.2.2. Decision-Fusion Rescoring

Table 8 displays the experimental results of using three taxonomi-
cal phonetic detectors with all three decision-fusion methods. As
we did in the intra-semantic level rescoring, we mapped each phone
in the 41-class category back to the 6-class and 14-class phone set
when making cross-category decisions. We can see that for all types



Table 7. Inter-semantic level rescoring performance using the best
score-fusion method (RPP) among our experiments

| Detector [ [ Rescored Acc(%) ‘
6-class Rescored 50.82
Relative 3.56
14-class | Rescored 50.70
Relative 2.77
41-class | Rescored 51.25
Relative 6.39

Table 8. Inter-semantic level rescoring performance using decision-
fusion methods.

[ phoneclass | Acc(%) [ SP [ RP-I | RP-II |
6-class Rescored | 50.20 | 50.98 | 51.27
Relative -0.53 4.61 6.52
14-class Rescored | 50.01 | 50.87 | 51.46
Relative | -1.78 | 3.89 7.77
41-class Rescored | 50.24 | 51.02 | 52.39
Relative | -0.26 | 4.87 | 13.90

of detectors, the Strict-Pruning method (SP) overprunes and leads
to a slight performance drop because of its strict constraint. The
Relaxed-Pruning I (RP-I) method shows some positive gains and the
Relaxed-pruning II (RP-II) method achieves the best performance in
the inter-level experiments. Though there is no substantial improve-
ment as we expected, the decision-fusion methods do show higher
performance enhancement than the score-fusion approaches.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we present extensive investigation for the rescoring
performance on continuous speech recognition tasks. The study is
based on a general framework depicted in Fig.1 and two key compo-
nents of the rescoring system, the attribute detector design and the
rescoring algorithms, are examined under the intra-semantic level
rescoring and the inter-semantic level rescoring, respectively.

For detector design methods, two variations of the MVE training
criterion, the S-MVE method and the RB-MVE method, are intro-
duced for continuous speech recognition scenarios. We find out that
the RB-MVE criterion achieves the best result in the performance
comparison. We introduce two types of the rescoring algorithms,
the score-fusion algorithms and the decision-fusion algorithms. The
score-fusion algorithms are tested in the intra-semantic level rescor-
ing, in which the RPP method shows the best performance. The
decision-fusion algorithms is examined in the inter-semantic level
rescoring and the RP-II method displays the best performance over
other decision-fusion methods.

The future work includes developing more efficient training cri-
teria for continuous speech recognition and propose more effective
rescoring methods. Further more, the experiments currently are con-
ducted on the TIMIT database, which is artificial and phoneme-
balanced. We will eventually conduct experiments on conversational

speech such as the switchboard database (http://www.ldc.upenn.edu/).

In the future, we will migrate to construct a complete detection-
based ASR system.
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