
DYNAMIC VOCABULARY PREDICTION FOR ISOLATED-WORD DICTATION ON 
EMBEDDED DEVICES 

Jussi Leppänen, Jilei Tian

Interaction Core Technology Center, Nokia Research Center, Tampere, Finland 
{jussi.ar.leppanen, jilei.tian}@nokia.com 

ABSTRACT
Large-vocabulary speech recognition systems have mainly been 
developed for fast processors and large amounts of memory that 
are available on desktop computers and network servers. Much 
progress has been made towards running these systems on portable 
devices. Challenges still exist, however, when developing highly 
efficient algorithms for real-time speech recognition on resource-
limited embedded platforms. In this paper, a dynamic vocabulary 
prediction approach is proposed to decrease the memory footprint 
of the speech recognizer decoder by keeping the decoder 
vocabulary small. This leads to reduced acoustic confusion as well 
as achieving very efficient use of computational resources. 
Experiments on an isolated-word SMS dictation task have shown 
that 40% of the vocabulary prediction errors can be eliminated 
compared to the baseline system. 

Index Terms: speech recognition, vocabulary prediction, 
embedded systems, isolated-word dictation 

1. INTRODUCTION
Over the past decades, speech technology has advanced 
substantially. It is becoming a more and more important input and 
output method for small embedded devices. Using a voice user 
interface (UI) is especially convenient when the device is being 
used in situations where normal input methods are restricted. 

For embedded devices, low memory and computational 
complexity implementations of the automatic speech recognition 
(ASR) algorithms is crucial. Even though the computational power 
of embedded devices is rising constantly, cost will always be an 
important factor in designing mass-market products. Moreover, 
there will always be an increasing amount of applications 
competing for the same computational resources as the voice UI. 
There are many different aspects to look at in embedded ASR 
systems to reduce their computational complexity and memory 
requirements and increase the speed of the system. Such aspects 
include, for example: the acoustic model and language model 
complexity, vocabulary size and decoder structure. A lot of work 
has been done optimizing performance with respect to the above 
mentioned parts of ASR systems. Profile compression for language 
model size reductions [1], probability calculation speed-up through 
Gaussian selection [2] and quantized HMMs for reducing storage 
space required for acoustic models [3] have been proposed earlier. 

Research on approaches similar to what is presented in this paper 
has been carried out for large-vocabulary continuous speech 
recognition with a different context and a different goal. Adaptive 
vocabularies are used for reducing the number of out-of-
vocabulary words for languages that have a large number of 

inflections in [4]. In [5], the focus is on refining the vocabulary 
between recognition passes based on information gathered from the 
previous recognition pass. 

In this paper, the focus is on lowering computational complexity 
by decreasing the size of the active vocabulary in the decoder of an 
embedded isolated-word recognition system. More specifically, 
improvements to the vocabulary prediction algorithm of the system 
are proposed. Vocabulary prediction is used for generating the 
active vocabulary that is used for recognizing a word. The 
prediction is based on the words that have already been recognized. 
The predicted active vocabulary is a small subset of the entire 
vocabulary of the dictation system. 

The rest of the paper is organized as follows. First, the dictation 
system and general vocabulary prediction method are briefly 
overviewed in Section 2. In Section 3, a dynamic vocabulary 
prediction approach is proposed to enhance the performance of 
vocabulary prediction. The experimental results shown in Section 4 
compare the dynamic and original vocabulary prediction. Finally, 
the conclusions are drawn in Section 5. 

2. DICTATION SYSTEM OVERVIEW

In this section, we describe our embedded isolated-word dictation 
system. First, the front-end processing and acoustic modeling are 
briefly outlined. Then we introduce the modular architecture of the 
system as well as word- and sentence-level decoding approach in 
Section 2.1. Finally, language modeling and vocabulary prediction 
are overviewed in more detail in Section 2.2. 

The front-end of the system extracts a set of 12 MFCC 
coefficients and log-energy, together with their first- and second-
order time derivatives, from a continuous-time speech signal 
sampled at 8 kHz. A feature vector normalization scheme is then 
applied on the features. The log-energy and its time derivatives are 
mean and variance normalized, and for the rest of the coefficients 
only mean subtraction is applied [6]. 

The acoustic models are decision-tree state-tied 3-state biphone 
hidden Markov models. Each state consists of 16 Gaussians that 
have been tied across states. The total number of distinct Gaussians 
in the system is two thousand. The continuous density Gaussian 
parameters have also been quantized [3]. 

2.1. Modular architecture 

The modular design can certainly result in more useful information 
for improving the system performance and drive more valid 
conclusions about the performance of different algorithms.  
This modular approach allows meaningful comparisons and the 
pinpointing of problems in the algorithms used in the modules. In 
addition, new progress can be achieved on individual modules to 
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allow identifying the best techniques in the different modules and 
comparing different modules. 

The system is designed for voice input where a clear pause is 
kept between words. A voice activity detection module is used for 
identifying word segments. For each of these word segments, a 
word-level Viterbi decoding is performed. The decoder vocabulary 
for each word segment changes from segment to segment and is 
built based on the previously recognized words and the language 
model (see Section 2.2). The word-level decoder outputs an N-best 
list of candidate words which are stored in a word lattice. Finally, 
after the whole sentence has been recognized, a sentence-level 
decoder carries out a search on the word lattice and outputs the 
final recognized sentence.  

Thus as shown in Figure 1, the isolated-word dictation system is 
composed of three cascaded decoders. The text decoder predicts a 
small subset of the full recognizer vocabulary for building a 
recognizer network. The word decoder then performs an acoustic 
word-level Viterbi search on the network. The acoustic scores 
output from the search are appended with language model scores 
and the words are inserted into a lattice. The syntactic decoder uses 
LM to rescoring on the lattice to generate output sentence. The 
performance of the system can be thought of as the product of the 
accuracies of these three decoders. 

Recognition accuracy =  
      (prediction rate) * (word decoding rate) * (syntactic rate) 

Looking at the different accuracies, it is easy to identify the 
modules of the system that need the most improvement For 
example, if the vocabulary prediction in the text decoder does not 
perform well, then the prediction algorithm has to be improved or 
the subset vocabulary has to be enlarged. Otherwise, the power 
of acoustic and LM model are strictly limited because the final 
recognition accuracy can’t be higher than the prediction accuracy. 
The memory and complexity can also be optimized in the module.  
The paper focus on efficient approach of text decoder. In next 
Section 2.2, text decoder is overviewed in more detail. 

Figure 1. Modular architecture of three cascaded 
decoders.

2.2. Language modeling and vocabulary prediction 

The language model used in the system consists of first- and 
second-order n-grams, i.e. unigrams and bigrams. In addition to 
providing probabilities for sentence modeling, the language model, 
or more specifically the bigram part, is used for vocabulary 
prediction. Vocabulary prediction is used after every recognized 
word to build a list of candidates used for recognizing the next 
word. This list of words comprises what is referred to here as the 
decoder or active vocabulary.  

The motivation behind using a predictive scheme is to avoid 
taking the whole recognizer vocabulary into use during word-level 
decoding. This improves the speed of the decoder as well as lowers 
the amount of memory required. From the recognition accuracy 
point of view, vocabulary prediction can be seen to have a positive 
and a negative effect. On one hand, the reduced size of the decoder 
vocabulary reduces confusion during word-level decoding. On the 
other hand, prediction errors that exclude the correct word from the 
decoder vocabulary decrease performance.  

Vocabulary prediction works as follows. First, a word is spoken 
and the decoder outputs an N-best list of possible recognized 
words. Then, all bigrams in the language model whose first word is 
one of the N-best list words are found. The predicted vocabulary 
for the next word is then the union of all the follower words in the 
previously found bigrams as shown in Figure 2. 

Figure 2: Vocabulary prediction.

The language model used in the current setup of the embedded 
system is trained on an in-house English SMS text corpus and 
contains approximately 32k unigrams and 400k bigrams. On 
average, each unigram has then about 12.5 followers in the bigram 
part. Thus, if the N-best list size was, for example, 8, the size of the 
predicted vocabulary would be on average in the order of 100 
words. However, the distribution of the number of follower words 
is not uniform over the 32k words in the recognizer vocabulary. 
The words with the highest unigram probabilities tend to have the 
most followers. So, in fact, the size of the predicted vocabulary is 
much larger than the 100 words mentioned above. As will be 
shown in Section 4.1, the predicted vocabulary size is about one 
tenth of the size of the full vocabulary of the system, i.e. around 3k 
words. In our implementation, this corresponds to reducing the 
memory required for the decoder grammar to approximately one 
sixth of the memory required when the full vocabulary is used.  

3. DYNAMIC VOCABULARY PREDICTION 

The predictive scheme explained in Section 2.2 is by no means the 
best way of building the recognition vocabulary. Since a dictated 
word is not always the 1-best recognition result (or the 2nd or 3rd

best for that matter), we have to keep N sufficiently large to have 
the correct word used for prediction in all cases. In most cases, 
though, the dictated word is actually the 1-best result. In such 
cases, in addition to the 1-best result, we would use the rest of the 
N-best list as well for prediction. This leads to larger than 
necessary decoder vocabularies. In addition, unwanted words are 
unnecessarily added to the vocabulary as they are predicted based 
on misrecognized words. 
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Based on the observations above, it would seem beneficial 
having a different N value for different word segments. For 
example, when the 1-best result is the correct one, N would be set 
to 1 and so on. Of course, it’s not possible to know how high in the 
N-best list the correct result is. It is, however, possible to make an 
estimate based on some kind of confidence measure. This leads to 
the main idea presented in this paper: dynamic vocabulary 
prediction, where a variable number of words are chosen, based on 
a confidence measure, for prediction. 

3.1. Confidence measures 

Given a word sequence W and an observation sequence X, the 
posterior acoustic probability P(W|X) is calculated by applying the 
Bayes rule as shown below. 
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where P(X) is usually not considered because it is difficult to 
estimate reliably. This, however, introduces a problem when taking 
use of P(X|W) P(W) as confidence measure since it no longer 
indicates the absolute and context independent confidence value. 
The problem can be solved by introducing normalization on the 
reference score. There are many implementations using different 
references such as shown in (2). 
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where Ŵ is the reference word sequence. 
Four confidence measures have been investigated for vocabulary 

prediction in this paper. The first one is a simple measure which 
looks at the time-normalized difference of the log-likelihood of the 
best word hypothesis and the other word-hypotheses:
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In the above equation, LLi is the acoustic log-likelihood of the ith 
word in the N-best list of the current word segment. T is the length 
of the current word segment, which is used to have similar sized 
confidence values regardless of the word length. The measure is 
used such that all words in the N-best list whose confidence is 
above a certain threshold will be selected for vocabulary 
prediction. In this case, this means that all words whose log-
likelihood score is close to the score of the best hypothesis are 
selected. Note that here we are thus assuming that one of the words 
in the N-best list is always correct and when one or more scores are 
close to the best score we are not sure which one of these is 
correct. 

The next confidence measure considered is similar to the one 
shown in (3). The difference is that here we have the average of the 
log-likelihood scores in the N-best list as the reference value 
instead of the best log-likelihood value: 
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The above confidence measures are purely based on the acoustic 
log-likelihood scores of the words in the N-best list of the current 
word segment. We do, however, have more information available 

for us to base the confidence measure on. For example, token-
scores, calculated from the beginning of the sentence to the current 
word segment, carry language model score information as well as 
the acoustic scores. So, the confidence measures can be calculated 
using the token-score, rather than the acoustic log-likelihood as 
shown in (5) and (6).  

t
TSTS

iC i
scoretoken

−
=−

1)(  (5) 

t
TSTS

iC iavg
scoreavgtoken

−
=− )(  (6) 

Notice that in (5) and (6) the normalization is still done using the 
length of the current word. This results in both the acoustic model 
and the language model probabilities being normalized. The reason 
for applying the normalization in this manner is that this way the 
ordering of words does not change whether it is done by the token-
score or the confidence value. As the N-best list is obtained by 
ordering based on the token-scores it would otherwise be possible 
that words not appearing in the N-best list are used for prediction. 

4. EXPERIMENTS
In this section, results of speech recognition experiments using 
dynamic vocabulary prediction are shown. The performance of the 
various test set-ups are measured in terms of both prediction 
accuracy and recognition accuracy. Prediction accuracy indicates 
how often the recognition vocabulary contains the word that is to 
be recognized. The test set used in the experiments contains a total 
of 5500 SMS messages (100,000 words) from 23 US English 
speakers (male and female). The speakers have been selected so 
that different dialect regions and age groups are well represented. 

4.1. Baseline 

The prediction accuracy of the baseline system is 96.44%. This is 
obtained by using 8-best words in each word segment for 
predicting the vocabulary for the next segment. This results in the 
average vocabulary size for each word segment to be 3240 words. 
Table 1 shows the prediction accuracies and average vocabulary 
sizes when using a different number for words for prediction. The 
results are intuitive; as the number of words used for prediction is 
lowered, the average vocabulary size is decreased. This results then 
in lower prediction accuracy. 

Table 1: Baseline prediction accuracy vs. average 
vocabulary size. 

# of words used 
for prediction 

Average predicted 
vocabulary size 

Prediction 
accuracy 

8 3240 96.44% 
6 3028 96.17% 
4 2733 95.65% 
3 2531 95.11% 
2 2258 93.94% 

4.2. Confidence measure comparison 

The baseline results showed that the average decoder vocabulary 
size can be made smaller by using fewer words for prediction. This, 
however, introduces prediction errors. Next, we try out the four 
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confidence measures (Equations 3-6) to see if we can improve the 
prediction accuracy without increasing the average vocabulary size. 

Figure 3 and Figure 4 show prediction accuracy vs. vocabulary 
size for the different confidence measures, obtained by varying the 
confidence thresholds. Figure 3 shows the results for the 
confidence measures that use the best score for reference (Cacoustic
and Ctoken-score). Figure 4 shows the results for the other two 
confidence measures (Cavg_acoustic and Cavgtoken-score). For 
comparison, the accuracy when using a fixed number of words for 
prediction is also shown in both figures.  This baseline figure uses 
the values from Table 1.  

93.50 %

94.50 %

95.50 %

96.50 %

2000 2500 3000 3500

constant

acoustic

token-score

Figure 3: Prediction accuracy vs. average vocabulary size 
for Cacoustic and Ctoken-score. 

92.00 %

93.00 %

94.00 %

95.00 %

96.00 %

97.00 %

2000 2500 3000 3500

constant

acoustic

token-score

Figure 4: Prediction accuracy vs. average vocabulary size 
for Cavgacoustic and Cavgtoken-score. 

From Figure 3 and Figure 4 we can see that the best choice for 
confidence measure is Ctoken-score, shown in (3). While it performs 
the best over the whole range of vocabulary sizes shown here, the 
largest increase in performance is seen for the smallest vocabulary 
sizes. Prediction accuracies for Cacoustic do not differ from the 
baseline prediction accuracies significantly. Both of the confidence 
measures that use the average of the N-best scores as the reference 
score have the worst performance as shown in Figure 4. Their 
performance is actually lower than that of the baseline. This is seen 
especially at the lower vocabulary sizes. Based on the above 
results, Ctoken-score will be used as the confidence measure for the 
following experiments. 

4.3. Adding a minimum predicted vocabulary size 

The prediction errors are partially due to words that are not well 
represented in the bigram part of the LM. Such words do not have 
many continuations and thus, do not contribute much to the 
predicted vocabulary. If the prediction is done solely on such 
words, the predicted vocabulary is small and the risk of a 
prediction error is high. In addition, the LM training corpus can 
not cover all the cases in real-life use, resulting in a mismatch 
between training and testing. 

This problem can be alleviated by setting a minimum predicted 
vocabulary size. If the decoder vocabulary size after prediction is 
below a minimum value, commonly used words (based on the 
unigram part of the LM) are appended until the minimum value is 
reached. Figure 5 shows prediction accuracy vs. average 
vocabulary size when using a minimum vocabulary setting and the 
Ctoken-score as the confidence measure for vocabulary prediction. The 
minimum vocabulary sizes used here were 250, 500 and 1000. 

94.00 %

95.00 %

96.00 %

97.00 %

98.00 %

2000 2500 3000 3500

token-score

+ min 250
+ min 500
+ min 1000

Figure 5: Effect of having a minimum vocabulary size.

The results shown above indicate that using dynamic vocabulary 
prediction with a minimum vocabulary setting outperforms just 
using dynamic vocabulary prediction. This is partly due to solving 
the problem of very small predicted vocabularies mentioned above. 
In addition to this, some of the gain in accuracy is due to the fact 
that the words appended to the predicted vocabulary are the words 
with the highest unigram probability. Thus they are likely be good 
candidates following any recognized word. 

4.4. Effect on recognition accuracy 

So far, only the prediction accuracy has been considered. Here we 
present word recognition accuracies for selected setups from the 
above tests. The recognition accuracies are of course lower than the 
prediction accuracies as mistakes are introduced in the word-level 
decoding as well as the sentence-level decoding. Figure 6 shows 
the recognition accuracies for the baseline system as well as two 
different dynamic vocabulary prediction setups. One of these has a 
minimum vocabulary setting and the other does not. Both of the 
dynamic vocabulary prediction setups use Ctoken-score for the 
confidence measure. As it can be seen, the recognition accuracy 
figures look similar to the vocabulary prediction figures in terms of 
relative trend.  
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Figure 6: Recognition accuracy vs. average vocabulary 
size. 

4.5. Modular accuracies 

In Section 2.1 we discussed the modular architecture of our 
recognition system. Table 2, below, shows the accuracies of the 
three components for the same systems as shown in Figure 6. The 
average vocabulary size for each of the systems was set to 
approximately 2700. As it can be seen, the dynamic vocabulary 
prediction improves the vocabulary prediction rate while the word 
decoding and syntactic rates remain unchanged. 

Table 2: Accuracies of the three different system 
components. 

Prediction Prediction 
rate 

Word 
decoding 

rate 

Syntactic 
rate 

Recognition 
accuracy 

constant 95.65% 98.69% 96.01% 90.63% 
Token-score 96.16% 98.67% 96.01% 91.10% 
Token-score 
+ min 1000 97.29% 98.61% 95.91% 92.01% 

4.6. Experiments with a static vocabulary 

All of the experiments presented so far have been done using some 
form of vocabulary prediction. It is, of course, possible to 
recognition with a static vocabulary, i.e. by using the same 
vocabulary for each word segment. Table 3, below, lists the 
vocabulary prediction and recognition accuracies for several 
different sized static vocabularies. The same language model is 
used as in the previous experiments. The words in the vocabulary 
are determined by the unigram section of the language model.  

Table 3: Prediction accuracy vs. average vocabulary size for 
static vocabulary systems. 

Vocabulary size Prediction 
accuracy 

Recognition 
accuracy 

3500 96.86% 91.53% 
3000 96.37% 91.20% 
2500 95.74% 90.78% 
2000 94.96% 90.23% 

From Table 3 we can see that the vocabulary prediction and 
recognition accuracies are higher than the baseline accuracies 

(Table 1 and Figure 3). However, when compared to the dynamic 
vocabulary prediction scores (token-score + minimum vocabulary 
size, Figure 5 and Figure 6), the scores are lower.

When comparing systems with static and dynamic vocabularies, 
looking at just the vocabulary size might not be the best choice for 
measuring complexity. This is due to the fact that in a static 
vocabulary system there is no need to rebuild the decoder tree for 
every word segment and the time needed to build the decoder tree 
is saved. In the current version of our embedded SMS dictation 
system running on a mobile phone [7], however, the time to build 
the decoder tree is less than one tenth of the time that is required 
for decoding a segment of 100 frames (1 second of speech). Thus, 
for the same vocabulary size, decoder building and decoding on the 
dynamic system is less than 10% slower than a static system. 
However, with the same average vocabulary size, the dynamic 
vocabulary based system outperforms the static vocabulary one 
(approx. 97.1% vs. 95.7% prediction accuracy at 2500 average 
vocabulary size). To get the same performance as the dynamic 
vocabulary prediction scheme, when the average vocabulary size is 
the same 2500, the static vocabulary would need to be larger than 
3500. In this case the static system would be slower. 

5. CONCLUSSIONS

In this paper, we proposed dynamic vocabulary prediction for 
improving vocabulary prediction in our embedded isolated-word 
dictation system. In this approach a confidence measure is used to 
determine the number of words used for prediction instead of using 
a constant number.  

Compared to the baseline system, dynamic vocabulary prediction 
achieved improved vocabulary prediction rates. This was especially 
true when reducing the average predicted vocabulary size. For an 
average predicted vocabulary size of around 2500, for example, the 
proposed algorithm had a prediction accuracy of 95.70% compared 
to 95.11% of the baseline system. When a minimum vocabulary 
size setting was used in conjunction with dynamic vocabulary 
prediction, even better results were obtained. At the same average 
vocabulary size of approximately 2500, this setup reached a 
prediction rate of 97.00%. Compared to the baseline, this 
corresponds to approximately a 40% prediction error rate 
reduction. It was also shown that the word recognition accuracy of 
the system goes hand in hand with the prediction accuracy. In other 
words, improvements in the vocabulary prediction rate improved 
the word recognition rate as well. 
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