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ABSTRACT

In this paper, we present a new formulation and a new framework
for a new type of dialogue system, referred to as the type-II dialogue
systems in this paper. The distinct feature of such dialogue systems
is their tasks of information access from unstructured knowledge
sources, or the lack of a well-organized back-end database offering
the information for the user. Typical example tasks of this type of
dialogue systems include retrieval, browsing and question answering.
The mainstream dialogue systems with a well-organized back-end
database are then referred to as type-I dialogue systems here in the
paper. The functionalities of each module in such type-II dialogue
systems are analyzed, presented, and compared with the respective
modules in type-I dialogue systems. A preliminary type-II dialogue
system recently developed in National Taiwan University is also
presented at the end as a typical example.

Index Terms— Dialogue System, Information Access

1. INTRODUCTION

In recent decades, we have witnessed the wide application of many
successful spoken dialogue systems with various application tasks and
different capabilities [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Typ-
ical application tasks include travel information services, customer
inquiry services, car navigation and so on. In most cases, the research
issues are primarily focused on spoken language understanding (SLU)
and dialogue modeling. Spoken language understanding very often
tries to transform the input speech utterance into a proper form of
dialogue act with its parameter set, which can be readily mapped to a
proper query to a well-organized back-end database for the desired
information. Very often this is an SQL query for a relational database.
The approaches of SLU have evolved from knowledge-based to statis-
tical to alleviate the load of grammar development and maintenance
[5, 6, 8, 10]. On the other hand, the progress of dialogue modeling
has also been improved from rule-based methods to machine learning
approaches including reinforcement learning, Markov decision pro-
cesses (MDP) and the partially observable Markov decision process
(POMDP) [12, 13, 11].

In recent years, in addition to the mainstream dialogue systems
as mentioned above, a new type of dialogue systems also actively
emerged [15, 16, 17, 18, 19]. The distinct feature for this type of
dialogue systems is that instead of with a well-organized or relational
database at the back-end, the knowledge source to be explored by the
dialogue process is usually an unstructured archive of documents, in
either text or multimedia form. Typical examples of application tasks
of this type of dialogue systems include lecture or meeting minutes
retrieval, manual queries, question answering, and news story access.
Under such environment, we are actually faced with many new chal-
lenges. First, without a well-organized database at the back-end, the

goal of SLU becomes difficult to define. Semantic slots and frames
may still be useful, but they are not transformed into an SQL query.
Secondly, much wider spectrum and even unknown scope and scale
of the back-end knowledge source also imply a much higher degree
of variations in the user input utterances, which usually include very
short queries, homonyms words, polysemous words, and even OOV
words. Different from the mainstream dialogue systems, for which
the SLU component relies heavily on the ASR output words, here the
user’s intention may be difficult to correctly identify even with correct
ASR output words (e.q. very short queries), not mentioning that ASR
can never recognize OOV words. Thirdly, different from the main-
stream dialogue systems in which the user is usually very clear about
what kind of information is available and accessible; here the user is
usually not aware of the content and structure of the back-end knowl-
edge source. As a result efficient interaction and proper guidance by
the system during the dialogue process become necessary. Finally,
the back-end knowledge very often includes multimedia or spoken
documents. Therefore the system outputs are usually difficult to be
explained in short speech utterances or shown on the screen, and diffi-
cult to be browsed by the user, and the problem becomes even worse
when the user tries to access the information via small hand-held
clients with very small screen. Therefore the system output presented
to the user in a more compact, comprehensive, and structural way
becomes an important requirement for efficient interaction.

To address all the issues mentioned above, in this paper we
propose a new framework and a new formulation for the new type of
dialogue systems, which is referred to as the type-II dialogue systems,
while the mainstream dialogue systems with a well-organized back-
end relational database are referred to as the type-I dialogue systems.
Analytical formulation of the functionalities of all modules in the
type-II dialogue systems are presented in this framework and efforts
are made such that most existing systems of this type can be properly
analyzed with this framework. Each module in the well-known type-I
dialogue systems is also compared with the corresponding modules in
the type-II dialogue systems in detail. Below a brief summary of type-
I dialogue systems is given in Sec. 2, followed by the formulation of
type-II dialogue systems in Sec. 3. A preliminary type-II dialogue
system developed at National Taiwan University is then summarized
in Sec. 4 as a typical example, followed by the conclusion in Sec. 5.

2. BRIEF SUMMARY OF TYPE-I DIALOGUE SYSTEMS

A type-I dialogue system is a dialogue system with a well-organized
database/knowledge-source behind. We may depict the structure
diagram of type-I dialogue system as in Fig. 1 [1, 3]. There are
two main blocks of functionalities in the system, spoken language
understanding (SLU) and dialogue modeling as shown in the figure.
The output generator also shown in Fig. 1 usually includes natural
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language generation followed by text-to-speech synthesis, but will
not be discussed further here due to space limitation. In the following
we give brief descriptions about the two parts.
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Fig. 1. General form of a type-I dialogue system.

2.1. Spoken Language Understanding (SLU)

This is the block at the bottom of Fig. 1. The goal is to convert the
user’s input speech utterance U on the left of Fig. 1 into a proper user

act Âu on the right of the figure, given the current internal dialogue
state S at the middle of the figure, usually formulated as [3]

Âu = argmaxAu
P (Au|U ,S)

= argmaxAu
{P (U|Au,S)P (Au|S)} . (1)

By introducing a latent variable W , the possible word string carried
by U , with some assumptions and Viterbi approximation, we may
have [3]

Âu = argmaxAu
{maxW {P (U|W)

·P (W|S) · P (Au|W,S)}} . (2)

For sub-optimal solution, we may decompose Equ. (2) and first obtain

Ŵ , the estimate of W , by

Ŵ = argmaxW {P (U|W) · P (W|S))} , (3)

and then in turn have Âu based on Ŵ [3],

Âu = argmaxAu

n
P (Au|Ŵ,S)

o
. (4)

Similarly, by introducing another latent variable C, the possible se-
quence of semantic slots for the word string W , and with similar
assumption and approximation as above we may solve Equ. (4) as [5]

Ĉ = argmaxC
n

P (C|Ŵ,S)
o

. (5)

Âu = argmaxAu

n
P (Au|Ĉ,S)

o
. (6)

Equ. (5) alone is an important research issue and many works have
been done, very often considered as the core of SLU. Equ. (5) can
also be rewritten as [5]

Ĉ = argmaxC
n

P (Ŵ|C) · P (C|S)
o

, (7)

where P (C|S) is the semantic model and P (Ŵ|C) is the lexical
model, similar to the language model and acoustic model counterparts
in ASR and therefore we may use the traditional HMMs for Equ. (7).

In HMMs, however, the Markov assumption makes the adjacent
words only loosely coupled and complicated nested structure is not
handled. This is why the hierarchical or multi-step models were
also proposed to extend the finite state transition network structure
into a recursive transition network to support context-free languages
[9, 8, 5].

2.2. Dialogue Modeling

Internal states S at the middle of Fig. 1 are usually used to handle
the dialogue discourse and manage the possible actions taken by the
machine [1]. Although the state transition and machine action can be
rule-based, with growing scale and wider application domains, sta-
tistical approaches turned out to be more attractive for easier system
development and maintenance [1].

The dialogue process has been popularly modeled as a Markov
Decision Process (MDP) [20, 21], that is, (1) the current state tran-
sition from St−1 to St depends only on the last state St−1, the last
machine action At−1

m , and (2) the current machine action Am de-
pends only on the current state. To be explicit, we model the state
transition probability as P (St|St−1,At−1

m ) and the policy π(S,Am)
determines the probability of taking the machine action Am when in
state S. In this way, the proper action taken by the system in each
state can be learned by reinforcement learning, in which a reward
function rt+1 = r(St,At

m) is defined and the goal is to maximize

the total reward R0, where Rt =
PT

τ=t rτ and T is the time when
the dialogue is finished.

In maximizing the total reward, the value function for policy π is
usually introduced:

Vπ(S) = Eπ

˘
Rt|St = S¯

, (8)

which gives the expected total reward after time t given the state S
at time t by following the policy π defined for every state. We can
then decompose Vπ(S) by different machine actions At

m, that is the
action-value function for policy π:

Qπ(S,A) = Eπ

˘
Rt|St = S,At

m = A¯
, (9)

which gives the expected total rewards after time t given state S and
taking machine action A while following π thereafter. We can then
describe the optimal value function as

V ∗(S) = maxπVπ(S),

and also the optimal action-value function

Q∗(S,A) = maxπQπ(S,A).

By the Bellman equation, we then have

V ∗(S) = maxA
n

r(S,A)+

P
S′

˘
P (St = S ′|St−1 = S,At−1

m )V ∗(S ′)¯ o
, (10)

and also

Q∗(S,A) = r(S,A)+P
S′

˘
P (St = S ′|St−1 = S,At−1

m )maxA′Q∗(S ′,A′)¯
.

(11)

If the state transition probability P (St = S ′|St−1 = S,At−1
m ) is

known, Equ. (11) can be solved by dynamic programming. If the state
transition probability is not known, methods based on sampling actual
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dialogues can be used. For example, in on-policy temporal difference
learning [20], after each visit from (S,A) to (S ′,A′), that is, in state
S and taking action A, we reach state S ′ and take another action A′,
we may update the optimal action-value function Q(S ′,A′) as

Q∗(S,A) = Q∗(S,A) + α[r(S,A) + Q∗(S,A) − Q∗(S ′,A′)],
(12)

where α determines the learning rate. In both cases, once we can find
Q∗(S,A), the optimal policy can be found by

π(S) = argmaxAQ∗(S,A).

In the case of on-policy temporal difference learning, in order to visit
each possible (S,A), most of the time we choose the optimal action
according to argmaxAQ∗(S,A), but occasionally (with probability
ε) we also randomly choose other actions, and this is called ε-greedy
method.

Above is the basic formulation for modeling the dialogue proce-
dure by an MDP [20]. But in realistic cases with uncertain inputs, at
each time we are not sure about the exact state we are in. To handle
such uncertainties, another modeling approach, Partially Observable
Markov Decision Process (POMDP) is formulated. The basic idea of
POMDP is to keep a distribution over a set of states instead of only
one, which is the belief state. In this way it is possible to model the
best actions for each possible distribution [11].

3. TYPE-II DIALOGUE SYSTEMS

From Fig. 1, it can be found that for type-I dialogue systems, after
the user produces his utterances, the system tries to interpret the
utterances in form of semantic frame, whose format, structure and
possible content are actually determined during system development
in order to be consistent with the back-end well-organized database,
for the ease of accessing the database, for example by SQL queries.
For type-II dialogue systems, however, very often we do not have a
well-organized database at the back-end, thus the semantic frame/slot
is difficult to define. Instead, we need to access the information
from some unstructured knowledge sources in the World Wide Web,
which includes huge quantities of multi-media data in addition to text
information for browsing, retrieval, or question answering purposes.
It is infeasible or even impossible to structure all these data into a
well-organized database. So when the well-organized database as in
Fig. 1 is missing, and the formulation of type-I dialogue systems in
the above becomes inadequate.

People may wonder that, retrieval and question answering sys-
tems have been well developed for a long time, and why we need
at this moment the somewhat different concept of type-II dialogue
systems for an existing problem. The important point here is that the
conventional approaches and frameworks for text/spoken document
retrieval and question answering are actually not adequate without
dialogue functionalities due to the several real scenarios below. First,
the user’s query during retrieval is usually very short which inevitably
includes ambiguity and therefore results in too many outputs. For
example, given the query “George Bush”, the user may be interested
in the Iraq or China issue. The system can tell the difference only
with following-up interactions, or dialogue functionalities. Secondly,
OOV word problem for spoken document retrieval (SDR) is often
handled by subword-based indexing and retrieval techniques, but such
techniques also naturally lead to many irrelevant retrieved documents
and thus low precision. Following-up interactions or dialogues are
therefore very helpful for the user to identify and select the desired
information. Thirdly, the gap between the system and the user in
such scenarios is usually huge. It is difficult for the user to formulate

his queries precisely to retrieve efficiently. The user knows what he
needs, but not how to translate it into a good query; while the system
knows exactly which query leads to which set of documents, but
needs a good mechanism to probe the user’s needs. As a result, a
series of follow-up questions and interactions is certainly very helpful.
Dialogues are certainly a good solution to this problem.

For the issues discussed above, we propose here the concept of
type-II dialogue systems for information access from unstructured
knowledge sources. Such dialogue systems are certainly qualified
to the called dialogue systems but they are quite different from the
mainstream dialogue systems as we summarized in Sec. 2 due to the
absence of a well-organized database. Such dialogue systems are
thus referred to as type-II dialogue systems in this paper, while those
summarized in Sec. 2 are referred to as type-I dialogue systems.

The block diagram of the proposed type-II dialogue systems is
shown in Fig. 2. This block diagram is primarily for information
retrieval task. Minor modifications may be needed for other tasks
such as question-answering. There are three major building blocks in
Fig. 2: spoken language based information access, dialogue modeling,
and multi-modal user interface. They will be discussed in detail in
the following sections. The comparison of each module in the type-
I dialogue systems with the corresponding module in the type-II
dialogue systems in Sec. 2 will be discussed.
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Fig. 2. Structure of a type-II dialogue system.

3.1. Spoken Language based Information Access

This is the block at the bottom of Fig. 2, corresponding to the block of
SLU in Fig. 1. In type-I dialogue systems, SLU is to understand the
user’s utterance in terms of the format of semantic frames, which is
tightly coupled with the back-end database. In other words, the goal
of understanding is to access the back-end database efficiently, for
example, with SQL queries. In type-II dialogue systems, however, the
back-end multimedia document archive no longer has clear metadata
tags and rigid structure. We are not able to access the database
via tags (the semantic slots), but have to rely on other linguistic
features. Such issue has been extensively investigated in the area of
Spoken Document Retrieval (SDR). Multimedia content very often
carries speech information, so they can be similarly accessed by the
associated spoken documents. Note that although Spoken Document
Retrieval (SDR) is quite different from SLU in Fig. 1, the basic
concept is similar in some sense. We try to perform better matching
between the input spoken query with the information in the back-end
document archive. Below we present this block of Fig. 2 primarily as
an SDR task. Extension to other related tasks are natural.

While the well-organized database in type-I dialogues can be
accessed efficiently by SQL queries with clear tags, the spoken docu-
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ments in type-II dialogues are conventionally accessed by the words
in the query and the documents. The problem considered here can
then be formulated as ranking the documents d ∈ D (here in this
paper by document we mean either a document or other proper el-
ements for retrieval, such as a segment of information significantly
shorter than a document; D is the entire archive) given the user’s
input spoken query q according to P (d|q). With an approach similar
to Equ. (1) to (2), by introducing a latent variable W , possible word
sequence for q, and with the Viterbi approximation we may have

P (d|q) ≈ maxW {P (d|W) · P (W|q)} . (13)

Similarly Equ.(13) can be solved in a sub-optimal way by first finding

the optimal word sequence Ŵ according to P (W|q), and then P (d|q)
can be approximated with P (d|Ŵ). Actually if the user’s input query
is in textual form, which is the scenario for many SDR tasks, the
exact word sequence W is known and the term P (d|q) in the above
can be simply replaced by p(d|W). For spoken queries it is for sure
that information in addition to the one-best transcription Ŵ , such as
word/phone lattices, are helpful. This is equally true for the spoken
documents d with unknown transcriptions, and is why lattices for
both q and d are shown in Fig. 2. All the above formulation based on
Equ. (13) carries some concept similar to that of SLU as summarized
in Sec. 2.1. Note that there are also other very successful models for
SDR, for example the vector space model, which may not be well
represented by the probabilistic formulation of P (d|q) here.

In several works it is assumed that P (d|W) is proportional to
P (W|d), or how often the word string W occurs in d. This is a
reasonable assumption, with which the original problem can be re-
duced to ranking the posterior probabilities P (W|d). An efficient
way for indexing W given the lattices generated from d was also
proposed [22], which can be considered as a direct inversion of the
whole lattice. In this way the posterior probabilities can be produced
in a precise way, although high storage space is required.

Some other approaches were then developed recently to use the
lattice information in an approximate but space-efficient way. An
efficient approach was proposed to cluster the word arcs in a lattice
according to their positions and then obtain Position Specific Posterior
Lattices (PSPL) [23]. Such position knowledge is very useful for
the proximity information and P (W|d) can be easily approximated
by each compositional substrings in W with appropriate positions.
More possible approaches were proposed for clustering the word arcs
in a word lattice to make the index file as small as possible at very
limited performance degradation [24]. In other approaches confusion
networks are also proposed for efficient lattice information utilization
with much less space requirement compared with a direct lattice
inversion [17, 18].

Out-of-vocabulary (OOV) word is always another important issue
in SDR. Many keywords in the documents may be OOV words and
cannot be recognized. A useful approach to this problem is to repre-
sent the query and/or documents as sequences of subword units either
in a lattice or in a one-best transcription [22, 25, 26, 27]. The feasibil-
ity of such subword-based SDR approaches have been well verified,
although it is also true that subword units inevitably bring more false-
positives. In our recent work [28], an approach to easily evaluate
the position specific posterior probabilities for subword units in a
word lattice was proposed, referred to as subword-based PSPL, which
was shown to provide significant performance improvements over
PSPL for either in-vocabulary or out-of-vocabulary queries. When
integrated with the original word-based PSPL, the improvements can
be even higher.

All the above formulation is more or less based on the probability
P (d|W), which may be somehow assumed to be proportional to

P (W|d), or how often W occurs in d. Actually, some documents
should still be regarded as relevant even W never appears wholly or
partially. Such relationships can be evaluated via semantic analysis
by additional approaches like Latent Semantic Analysis (LSA), Prob-
abilistic LSA (PLSA) or Latent Dirichlet Allocation (LDA) or similar.
To cover OOV or rare words, subword sequences can be regarded as
basic units and included in such semantic analysis [29].

3.2. Multi-Modal User Interface

This is the block at the top middle of Fig. 2. In type-I dialogue systems
the system output is usually natural language generation followed by
text-to-speech synthesis, as presented by a block of “output generator”
in Fig. 1. For type-II dialogue systems, however, unstructured doc-
ument archive gives unstructured retrieved information for the user.
Such information are usually very difficult to summarize in simple
comprehensive utterances. When such information are multimedia,
they are even difficult to be shown on the screen and difficult to
browse. Therefore special efforts have to be made in the presentation
of the system output so as to allow multi-modal interaction between
the user and the system, and the system output and user input both can
have many different forms in addition to speech. This is why in Fig. 2
there is such a block including Output Presentation, and is another
distinct feature of type-II dialogue systems. Here a visual display
screen is helpful, but we should try to make such screen as small as
possible to make the system compatible to hand-held devices.

For text information retrieval, interface design for better user feed-
back has been an important issue with many interesting approaches.
In an example [30], a delicate interface was developed for further
interactions including document title, query-biased summary of the
document, a list of top-ranking sentences, a sentence in the document
summary and each summary sentence in the context it occurs in the
document. As other examples, in MIT’s lecture browser, the interface
includes the video player for the retrieved results and the recognition
results with the matched query terms highlighted [31]. In Kyoto
University’s Information Guidance system, the interface includes the
retrieved documents, the explicit answer to the user’s question, and
also possible following-up questions to draw user’s interest [15]. All
of these are typical examples of type-II dialogue systems with special
multi-modal user interface.

In our recent work [19], we propose to construct in real time a
topic hierarchy to present the system output as an interface between
the user and the system. Every node in this hierarchy represents
a set of retrieved documents with similar semantic content, and is
labeled by a key term, or the topic. So the user can easily select
the set of retrieved documents by the topics, or expand his query
by adding extra query terms chosen from the topic hierarchy. In
this way, the system can summarize and structure the documents
retrieved under user’s current input queries, and gives the user some
clues for further query term selection. The user can also make his
query more specific by approving or disapproving the topics in the
hierarchy, or directly expand his query with other key terms. This
provides an efficient channel for interactions between the user and
the system. This topic hierarchy is constructed in two steps. The first
is to extract key terms (topics) from the retrieved spoken documents,
and the second is to use these key terms to construct a balanced tree
structure. In the first step, PLSA models trained from the back-end
archive can be used to evaluate the topic entropy for each term in the
transcriptions. Those terms with topic entropy below a threshold carry
more topical information and therefore are chosen as the key terms
[32]. In the second step, the Hierarchical Agglomerative Clustering
and Partitioning algorithm (HAC+P) [33] can be performed on the
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key terms extracted above based on some linguistic and statistical
features for these key terms [19].

3.3. Dialogue Modeling

This is the block also at the top middle of Fig. 2. Dialogue modeling
has been the core module for type-I dialogue systems. For type-
II dialogues, however, not too much work on this part has been
reported, probably because the concept of considering the necessary
interactions between the user and the system for retrieval, browsing,
question answering and so on as dialogue systems is still new. In
our recent work on Interactive Spoken Document Retrieval [34, 35],
however, we proposed an approach for dialogue modeling based on
Markov Decision Process (MDP) as mentioned in Sec. 2.2. This
approach is thus summarized below as an example approach for
dialogue modeling for type-II dialogue systems.

The approach presented here is based on the output presentation
approach we proposed and summarized above in Sec. 3.2 for retrieval
of spoken documents, in which a topic hierarchy with nodes labeled
by key terms or topics is constructed for system outputs. At the early
stage of the dialogue, because the user doesn’t know what can be
found from the back-end archive and how to enter the query efficiently,
very often he only enters very short queries. With such very short
queries, the retrieved documents can be many, a large number of key
terms can be extracted, and as a result the topic hierarchy constructed
can be very large. The purpose of dialogue modeling here is therefore
to rank the key terms before constructing the topic hierarchy. The
goal of ranking here is to minimize the number of key terms the
user needs to enter before his information needs are satisfied. In this
way, the key terms ranked the highest will appear on the top of the
constructed topic hierarchy, so the user may spend only minimum
time in navigating across the hierarchy, and the system may use
only limited space in the screen of hand-held clients to show the
most important topics first. This is the basic scenario for dialogue
modeling discussed here.

First of all, we define an internal state S for the dialogue as
the And-combinations of all the query terms the user has entered
from the beginning, and the machine action Am as the change in the
internal state when an extra query term is entered by the user to further
expand the query. For example, in the state S2 = s[ti, tj ] (ti, tj are
two query terms), if a new term tk is entered, this automatically leads
to a new state S5 = s[ti, tj , tk]. In this way the state transition
function of P (St|St−1, At−1

m ) as mentioned in Sec. 2.2 is actually
deterministic, which is somehow different from the conventional
MDP framework mentioned above. The goal of dialogue modeling
here is to minimize the number of query terms a user has to enter
before his information needs are satisfied. We thus define the total
reward R0, to be maximized as mentioned in Sec. 2.2 in the MDP
framework, as the above number of query terms the user has to enter.
But the latter number should be minimized rather than maximized,
or the total reward R0 should be negative of the above number. We
therefore define the reward function of r(S, Am) as negative one if
the action Am leads the state S to a new state S′ and the documents
retrieved by S′ doesn’t satisfy the user, and zero otherwise.

With the above definitions we can see that the reward function
is determined by each specific user rather than a predefined function.
The learning process can then be represented as a state transition
tree structure as shown in Fig. 3, in which each node is an internal
state, or a series of query terms entered. The tree in Fig. 3 is for a
specific user, in which the leaf nodes represented by double circles
are those states where the user is satisfied. Each of these leaf nodes
are labeled by a score m(·), which is the negative of the number of

Fig. 3. A typical learning tree constructed for the retrieval states for
a specific user.

the query terms successively entered in order to arrive at the state,
or the total reward R0 to be maximized. By Equ. (10) we give the
score u to each intermediate state as shown in Fig. 3, which is the
maximum score m(·) for all child leaf nodes of the intermediate state
, u = maxi[m(si)], where the maximization is performed over all
child leaf nodes of the state. Such a learning process can be performed
with a huge number of training users to obtain the dynamics of the
reward function and a balanced view of how efficient a query term
entered at each state can satisfy the user. The scores u for all the
states averaged over a huge number of training users is then used to
rank the key terms. The query term ranking and the internal states
then determines the operations of the dialogue manager, including
the construction of the topic hierarchy [34, 35].

4. A PRELIMINARY TYPE-II DIALOGUE SYSTEM

An initial prototype of type-II dialogue system was successfully devel-
oped at National Taiwan University for retrieval of Mandarin Chinese
broadcast news segments, with an archive of 10,000 news stories
serving as the back-end unstructured knowledge source. The topic hi-
erarchy presenting the system output for Multi-modal User Interface
discussed in Sec. 3.2 and the term ranking approach for Dialogue
Modeling discussed in Sec. 3.3 were both implemented [19, 34, 35].In
the test, 5,000,000 users were simulated in training the dialogue mod-
eling module, while another 1,000 users were simulated for test. We
evaluated the performance of this type-II dialogue system in terms of
task success rate and the average number of query terms needed for a
successful retrieval. The task was defined to be successful if the user
is satisfied or the recall is above a given threshold [34]. Recognition
errors for queries and documents were simulated by generating fea-
ture vectors according to the Hidden Markov Models with increased
Gaussian mixture variances, and then recognized normally [35]. The
dialogue modeling discussed in Sec. 3.3 is compared against two
previously proposed term selection algorithms, the wpq method [36]
and the tf-idf method.

Fig. 4(a) shows the detailed numbers of failure trials and success-
ful trials completed in different number of query terms out of the
1000 simulated testing users. The queries was assumed to be 100%
correct, and 1000 out of the 10,000 news stories were assumed to
be spoken with character accuracy of 71% (the rest in text form and
completely correct). It can be found that with the tf-idf method, 746
out of the 1000 trials failed; all successful trials were finished within
7 turns. Much better performance was obtained for the wpq method.
However, when the proposed dialogue modeling was used, only 120
trials failed, and all trials were completed within 4 turns. Similar
plots can be seen in Fig. 4(b), in which query accuracy was reduced
to 74% and 1700 out of the 10,000 news stories were spoken with
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character recogniztion accuracy of 77%.
In Fig. 5(a)(b) we plot the task success rate and the average

number of query terms needed in successful trials for the same three
methods as discussed above as functions of the query recognition
accuracies, where in case (1) all the 10,000 news stories were 100%
correct, and in case (2) 1700 of them has accuracy of 77%. It can be
found that the performance of the dialogue modeling was very well,
and quite robust with respect to recognition errors.

5. CONCLUSION

In this paper we propose and formulate the framework of type-II
dialogue systems, which may become more and more important as
the data on the networks are increasing exponentially. The initial
prototype mentioned above is still very preliminary though. Much
more work is needed in the future.
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