
A DATA-CENTRIC ARCHITECTURE FOR DATA-DRIVEN SPOKEN DIALOG SYSTEMS∗

Sebastian Varges, Giuseppe Riccardi

Department of Information and Communication Technology
University of Trento

38050 Povo di Trento, Italy

ABSTRACT

Data is becoming increasingly crucial for training and (self-)

evaluation of spoken dialog systems (SDS). Data is used to

train models (e.g. acoustic models) and is ‘forgotten’. Data is

generated on-line from the different components of the SDS

system, e.g. the dialog manager, as well as from the world it

is interacting with (e.g. news streams, ambient sensors etc.).

The data is used to evaluate and analyze conversational sys-

tems both on-line and off-line. We need to be able query such

heterogeneous data for further processing. In this paper we

present an approach with two novel components: first, an ar-

chitecture for SDSs that takes a data-centric view, ensuring

persistency and consistency of data as it is generated. The ar-

chitecture is centered around a database that stores dialog data

beyond the lifetime of individual dialog sessions, facilitating

dialog mining, annotation, and logging. Second, we take ad-

vantage of the state-fullness of the data-centric architecture

by means of a lightweight, reactive and inference-based dia-

log manager that itself is stateless. The feasibility of our ap-

proach has been validated within a prototype of a phone-based

university help-desk application. We detail SDS architecture

and dialog management, model, and data representation.

Index Terms— Spoken Dialog Systems, Dialog System

Architecture, Dialog Management, Data Management, VXML

Generation

1. INTRODUCTION

Data is becoming increasingly important for spoken dialog

systems, not just in speech processing but also in spoken lan-

guage understanding, dialog management and language gen-

eration. It is used for data mining, training of language mod-

els, system evaluations, and forms the basis for annotation

efforts. In contrast to previous work that treats data as pe-

ripheral and focuses on inter-agent communication [1, 2], in

our approach a database management system (DBMS) is at

the center of our system, both handling data and managing

communication flow. Database triggers and server-side stored

∗THIS WORK WAS PARTIALLY SUPPORTED BY THE EURO-

PEAN COMMISSION MARIE CURIE EXCELLENCE GRANT FOR THE

ADAMACH PROJECT (CONTRACT NO. 022593).

procedures make the architecture reactive, resulting in a per-
vasive blackboard model for dialog management, spoken lan-

guage understanding and generation (in contrast to standard

pipeline architectures). From a practical point of view, the

availability of high-quality open source DBMSs such as My-

SQL and PostgreSQL, and of free versions of commercial

DBMSs such as DB2, Oracle and MS SQL Server, allows one

to take advantage of the robustness and scalability of these

systems.

We distinguish dialog management from the architecture
level. A dialog manager (DM) keeps track of dialog moves

and turn taking between participants, and generally maintains

the dialog context [3, 4, 5, 6, 7]. Within the DM, particular di-
alog models can be realized, for example based on the notions

of state machine, ATN/RTNs, or Information State Update. In

this paper, we present a lightweight, reactive, and inference-

based dialog manager as an example of the kinds of DMs af-

forded by the architecture. The DM takes advantage of the

state-fullness of the data-centric architecture by being itself

stateless, i.e. purely functional. Its input is selected from the

database by SQL statements, and its output is again stored in

tables in the database. The output of the dialog manager is a

set of declarative statements that are used to dynamically gen-

erate Voice XML (VXML; [8]) pages. Our dialog model is a

combination of state-based and Information State Update ap-

proach: the dialog manager moves from named state to named

state by making transitions that are conditioned on a broader

Information State (dialog context). Once a new named state

is reached, this context is updated.

The feasibility of our approach has been validated in a

prototype of a phone-based help-desk application at our Uni-

versity. Its functionality has been modeled after a previously

and independently developed pure VXML/PHP application.

In this paper, we use examples from this application to illus-

trate dialog management, model, and data representation.

This papers is organized as follows: in section 2 we de-

scribe the data-centric architecture, including possible usage

scenarios (sec. 2.1), relevant database characteristics and gen-

eral SDS architecture (sec. 2.2), options for implementing

processing modules (sec. 2.3), the communication protocols

for the VXML server and basic data organization for SDS

(sec. 2.4), and related work on SDS architectures (sec. 2.5).

532978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007

In section 3, we discuss the dialog manager: its general prop-

erties within the architecture (sec.3.1), the characteristics of

our particular dialog manager (sec.3.2), the implemented di-

alog model for the help-desk application (sec.3.3, 3.4), and

related work (sec.3.5). Section 4 concludes this paper.

2. A DATA-CENTRIC ARCHITECTURE FOR SDS

2.1. Data-generating scenarios

We envision various types of data and data-generating scenar-

ios, which we want a SDS architecture to be able to handle.

First, data is generated during user interaction, either by hu-

man users (in which case maintaining a user profile across

sessions will become increasingly important), or by Wizard-

of-Oz experiments, or by simulated users (e.g. for policy

planning in reinforcement learning [9, 10]). Second, anno-

tation is a source of data, either in the form of off-line annota-

tion or as annotation during system interaction (for example,

a human supervisor commenting on the actions of the SDS).

Additional training data produced in other contexts/projects

will often be used. In all the above cases, data may also

be multi-modal (gesture, face recognition, eye tracking etc).

There may be multiple speakers in the same dialog, or mul-

tiple dialogs running independently (where one would want

to learn from one user and apply the results to next one, for

example).

Separate from the dialog aspect, domain/task data, fre-

quently non-linguistic, may arrive asynchronously, originat-

ing from web mining, sensor data streams, or queries to struc-

tured domain data (e.g., flight schedules). These examples

show that we will need to handle large amounts of hetero-

geneous data, provide asynchronous read/write access and a

communication infrastructure for the various SDS components.

We thus need a flexible architecture, without constraining fu-

ture developments.

2.2. Database characteristics and SDS architecture

Our proposal is to use a Database Management System as the

central component of the SDS. Current DBMSs offer capa-

bilities in two dimensions: First, a theoretically well-defined

data model, i.e. a model of data and data manipulation (SQL),

which is becoming increasingly hybrid, combining relational

and XML-based data (with extensions to the SQL query lan-

guage). Second, DBMSs provide an implementation of a

database server that allows one to store terabytes of data and

includes mechanisms for replication and concurrent access

and communication, amongst others.

Figure 1 shows a sketch of the overall architecture, with

the DBMS at the heart of the system, taking into account

some of the scenarios outlined above. The user accesses the

VXML platform by means of either a fixed phone line or an

IP SoftPhone. In our implementation, a PostgreSQL database

receives ‘speech events’ from a VXML speech server and

ASR
TTS

Speech
Server Word

Lattice
Confusion
Network DBMS

Web
Miner

wizard/
annotator

Other
Modalities

Data streams/
sensor networks

user

DBMS

SLU
DM

NLG

Fig. 1. Vision of general architecture for data-centric SDS

makes them available to a dialog manager (see section 2.3),

which in turn posts its response to the database, where it is

picked up by the VXML server for TTS. However, a data-

(base)-centric architecture is more general than our specific

implementation: it can handle a wide range of data, from

multi-modal input, various content sources to human (wizard)

intervention in the dialog. Furthermore, ASR input could be

provided by SLMs and stored as word lattices or word confu-

sion networks in the database.

2.3. Processing modules

DBMSs provide two mechanisms that are relevant for its use

within a dialog system: triggers and stored procedures. Trig-

gers initiate a trigger function when an SQL-relevant event

occurs (INSERT, UPDATE, or DELETE statements). Thus,

Triggers make a system event-driven and enable a blackboard-

style architecture that, for example, reacts to ‘speech events’.

Trigger functions can be stored procedures, which are user-

defined, server-side functions that are loaded upon first use.

They can access the database tables and can be written in a

variety of programming languages, depending on the DBMS.

The combination of triggers and stored procedures results

in a wide range of implementation options for processing mod-

ules such as dialog management and language understanding

and generation: all modules of the SDS could be defined as

stored procedures, which has the advantage of built-in con-

currency, speed and avoidance of module/data interface prob-

lems. However, it also requires one to use the implementation

languages that are available in the DBMS, and there may be

restrictions on the use of stored procedures. A more conven-

tional option is to use triggers to call modules/agents that live

outside the DBMS. This option can benefit from the client li-

braries that are usually available for DBMSs. However, it also

requires a greater effort for developing independent process-

ing agents. Here, we explore a third option that combines the

two extremes: we use state-less functions similar to stored

533

procedures but implement them outside the DBMS (by us-

ing triggers that call dialog management functions at the OS-

level). This has the advantage that any function that can be

invoked on the OS-level can be called from the DBMS, giv-

ing us much greater flexibility of implementation choices than

stored procedures inside the DBMS. Data exchange with the

DBMS is done by invoking standard, safe data access func-

tions.

2.4. Dialog Data Modeling

Determining the appropriate table structure is an important

step in designing a data-centric SDS, since all dialog data is

represented in the database. This includes questions such as

where triggers should be attached, how primary keys should

be defined (taking into account that many dialog sessions will

be stored), and what queries we want to ask.

We distinguish between three sets of tables: the basic

stream of utterances of the participants, the dialog manager

state, and the user/task model (the latter two are described in

section 3.3). The basic stream of utterances minimally com-

prises user and system utterances. They are represented by

separate tables, which one can think of as parallel ‘tracks’

since participants may speak concurrently (as a consequence,

each table has independent ‘turn ids’). The precise table struc-

ture constitutes the communication protocol to/from the speech

server, and depends on the information provided by ASR and

accepted by TTS.

The nbest ASR results of the VXML platform are stored

in a table user turns, including utterance, VXML interpre-

tation, rank, confidence, session-ids, and timestamps. ASR-

relevant information is collected by an ECMAScript [11] func-

tion and inserted into the database by PHP scripts. There are

separate tables that record VXML events such as <nomatch>

and <noinput>, which do not result in new rows in table

user turns.

System turns generated by the dialog manager follow the

communication protocol from DBMS/DM to VXML server.

They contain system utterance, turn-id and various parame-

ters for dynamic VXML generation, e.g. maxnbest, con-

fidencelevel, sensitivity, grammar name for recogni-

tion and languages to be used for TTS and ASR. The dialog

manager can produce a set of ranked responses (section 3.2);

only the highest ranked system turn is verbalized.

Since all dialog data is stored in the database, we can

obtain the utterances of the participants of an ongoing dia-

log by a SQL UNION of the relevant rows of the two tables

user turns and system turns ordered by time (table 1).

2.5. Related work

Current dialog system architectures such as the Open Agent

Architecture [1] or DARPA Communicator [2] provide a (cen-

tralized) communication infrastructure that matches informa-

tion providers with recipients. The set of triggers in our ap-

proach serves a similar role to Communicator hub scripts.

However, current approaches treat data as peripheral: they

were not designed to handle large volumes of data, and data

is not automatically persistent. On the other hand, consid-

erable effort has been spent on developing external logging

facilities, for example [12].

The Florence dialog manager/architecture [3] also takes

advantage of industry standards, albeit in the different area of

web application servers. The Florence DM inherits the ses-

sion management capability of these servers to serve multiple

users. However, dialog data is not automatically persistent

across sessions or is accessible to all its modules (pipeline

model).

Pure VXML platforms severely limit the choice of dialog

modeling options, processing modules, and suffer from a sim-

ilar lack of data persistency. However, they can provide the

basis for other systems, as we have done in this work.

3. DIALOG MANAGEMENT

3.1. Functional dialog management

As as consequence of the stateful, data-centric architecture,

the dialog manager, i.e. the component that encapsulates the

‘dialog logic’ by analyzing user utterances and generating

system turns, can be stateless. (As outlined above, there are

alternative options for more conventional, stateful dialog man-

agement.) A stateless dialog manager can be defined as a

function from sets of database n-tuples (the domain d of the

function) to sets of database tuples (its range r):

fDM (rd1, rd2, ..., rdn) −→ (rr1, rr2, ..., rrn) (1)

where each rxn represents a (possibly empty) set of n-

tuples of an n-ary relation. In our implementation, the func-

tional DM reads from and writes to the same relations, i.e.

tables. Function fDM is a partial function since the n-tuples

in the domain of the function form a subset of the set of n-

tuples of the relation.

A functional approach to dialog management inherits the

advantages of functional computational models in general:

functions can be parallelized, which in this context means

that the DM can entertain separate dialogs with an in prin-

ciple arbitrary number of users at the same time (in between

invocations to respond to user A, it can respond to user B,

etc). Furthermore, since the result of a function call only de-

pends on its inputs, functions calls can be repeated, which in

practice facilitates development and the construction of test

cases. Any DM state can be retrieved from the database,

which means that states deep into dialog can just as easily

be reinvoked as states at the beginning of the dialog, without

the need to run the dialog system through a sequence of user

turns from the ‘start state’.

534

turn id participant utterance

3913 system Welcome to the University Help Desk! You can either subscribe to an exam ,

or verify an exam , or cancel a registration . How may I help you?

1453 user subscribe

3914 system I see, you have chosen subscribe . Please tell me the the name of the exam.

1454 user informatics one

3915 system Okay, please tell me your student I D number, spelling each digit individually .

1455 user one two oh three four five

3916 system I understood student I D 1 2 0 3 4 5 , is that correct?

1456 user no no

3917 system Please tell me again your student I D number.

1457 user one two three four five

3918 system I understood student I D 1 2 3 4 5 , is that correct?

1458 user yes correct

3919 system Do you confirm that you would like to subscribe to exam

Informatics One, and that you have student I D number 1 2 3 4 5 ?

1459 user yes

3920 system Thank you, your data has been stored. Good Bye.

Table 1. Result of SQL UNION of (subset of) tables user turns and system turns

An apparent disadvantage of functional dialog manage-

ment is the need to reinvoke the dialog manager for every new

input, while the user is waiting for a system response. How-

ever, we argue that first, the DM can be lightweight due to the

data-centric architecture, and second, it is often possible to

speed up start-up times even for interpreted (rather than com-

piled) implementation languages by saving ‘images’ – this is

what we do in our system; see below. Furthermore, this is-

sue does not arise at all for dialog managers implemented as

stored procedures inside the DBMS since these are loaded

only once upon first use.

It is an important aspect of a functional approach to dia-

log management that the DM can be supplied with relevant

information such as the user profile before it processes the

next turn: in the implementation described in sections 3.2 and

3.3, we always execute a SQL query that tries to obtain the

relevant user profile; as long as the user’s ID is not known

(‘nil’), the result set of the query is empty, and the DM

has to generate its response without detailed user profile. (Of

course, one could alternatively issue a separate database query

during DM processing, but this is not necessary.)

3.2. An inference-based dialog manager

Our dialog manager, in addition to being functional, is in-
ference-based: it uses a set of inference rules/productions

to transform input data (ASR results, the current DM state,

and relevant domain knowledge) into output data (system re-

sponses, DM states, and domain knowledge). Inference rules

fire by executing a function when a set of conditions is met.

These conditions react to changes in the program-internal data-

base (the knowledge base, KB), resulting in a blackboard-

style control flow [13]. Thus, our approach uses two black-

boards, a coarse-grained one at the architecture level (to ac-

tivate modules such as SLU or DM), and a fine-grained one

at the dialog management level. An inference-based dialog

manager allows one to easily integrate task-level inferences

(next section), and it is adaptive in the sense that new rules

can be constructed on-the-fly (not exploited yet).

The inference-based DM can produce more than one re-

sponse and result state, each derived from another ASR hy-

pothesis: inference rules fire for every matching set of facts

and do not need to be limited to ASR hypotheses of rank

1. Since the database can be used to store large numbers of

states, this opens up a way to model probability distributions

over possible states [9, 10]. In our current implementation,

we store different states and system responses in the database,

but only retrieve the highest-ranked state (based on ASR con-

fidence) for the next system turn. Thus, we effectively do

search with a beam size of 1.

3.3. Dialog model and example application

Our dialog model can be characterized as a hybrid of state ma-

chine and Information State approach [5]: the system follows

transitions from named states to named states. We thus dis-

tinguish two notions of dialog ‘state’: the Information State

(IS), which is a subset of the KB, and the ‘named state’ in

the sense of a state machine, which consists of just one type

the fact. These transitions are conditioned on further infor-

mation that needs to be present in the IS, without the need

to match the entire IS. For example, the rule in figure 2 ap-

plies if the system was ‘in’ state 5 in the previous turn1, the

VXML interpreter found a grammar match for the user ut-

terance (‘vxml event filled’), which can be interpreted

1For simplicity, we omit the book-keeping of turn-ids etc: state 5 is the

state of the previous turn.

535

(defrule user-answer-possible-student-id
(state (name 5)) ; condition 1
(control-asr (vxml_state dialog_loop) (vxml_event filled)) ; condition 2
(user-turn (interpretation ?student-id) (rank ?rank) ; condition 3

(confidence ?confidence&:(< ?confidence (confidence-threshold student-id))))
(possible-student-id ?student-id) ; condition 4
=>
(assert (system-response (utterance (generate-yesno-question student-id ?student-id)) ; action 1
(application exam) (rank ?rank)))
(assert (move-yesno-question (participant system) (parameter student-id) (value ?student-id) ; action 2

(value-confidence ?confidence) (value-rank ?rank)
(next-positive 8) (next-negative 9)))

(assert (state (name 7)))) ; action 3

Fig. 2. Rule that expects user answer providing student ID

as a possible student ID. This is tested by requiring the pres-

ence of a fact ‘possible-student-id’ for the ID, which is

generated by domain inferences triggered by the correspond-

ing ASR result. This shows the tight integration of dialog

processing with domain-level reasoning that is possible in an

inference-based DM: a ‘possible ID’ is a sequence of a cer-

tain number of digits; there is the further notion of a ‘valid ID’

which is based on the actual student IDs in the database. It can

be used in the next system turn if the user confirms the yesno

question produced by the rule in figure 2, which happens if

the confidence of the ASR result is below a given threshold

(which can change dynamically since confidence-thres-

hold is a function call). More precisely, the right-hand side

of the rule generates three facts: First, a system response that

is used for TTS. It contains a large number of default values

(not shown) to comply with the DB-to-TTS communication

protocol (for TTS language, barge-in etc; section 2.4). Sec-

ond, a move-yesno-question is generated that states the

parameter in question and its value, and the next named states

the system should visit in case the user gives a positive or

negative answer (next-pos; nextneg). This fact is stored

in the database and retrieved for the next system turn, i.e. it

becomes part of the Information State. Finally, the rule gen-

erates a new named state 7.

One of rules that can be used in the next system turn (not

shown) expects the DM to be ‘in’ state 7, a yesno question

of the previous turn, and a “yes” answer by the user that is

ranked more highly than a “no” answer. If these conditions

are met, the parameter in question is added as explicitly con-

firmed to the application information for the current session.

Like the dialog context, the application parameters are stored

in the database (table 2).

Once the user has supplied all the required application pa-

rameters and confirms them, the chosen action is stored in a

separate table for exam subscriptions, which is the final out-

come of the dialog. It is only possible to cancel exams for

which the user has subscribed to before (an appropriate re-

sponse is generated if cancellation fails).

The currently implemented dialog manager uses 30 rules

for modeling dialog with 15 named states. It furthermore con-

user turn id parameter value confd. confirmation

1453 goal register 0.562 assumed

1454 exam-name info 1 0.839 assumed

1457 student-id 12345 0.774 YES explicit

Table 2. Application parameters in DB for dialog in table 1

tains 31 generation functions that generate system responses.

The language of the responses (and the ASR/TTS settings)

can be switched between English (US and GB), and Italian

and German.

3.4. Preliminary SDS prototype

We tested a prototype of our SDS from the point of view of

real-time processing by asking 6 users (colleagues), who were

given student IDs in advance, to call the system and subscribe

to an exam (in Italian). They were then asked to call again

and cancel the subscription. (Some were also asked to try

and cancel a non-existing subscription or exam.) 5 users ac-

complished the task, with 2 restarts/calls required. The use

of a database allows us to analyze the user dialogs directly by

using SQL queries. We find that the mean response time of

the SDS architecture is 849 msecs (σ = 46 msecs), as mea-

sured by the time difference between ASR entries (entered

by the VXML server into the database) and system responses

(entered by the DM). We are currently evaluating the system

further and will report results at the workshop.

3.5. Discussion and related work

It is instructive to compare the inference-based approach with

a pure VXML application: A VXML <form> element typi-

cally encapsulates a system prompt, a grammar specification

for matching the user response, some case distinctions for the

different responses/values, and VXML event handlers. In an

inference-based approach, each of these are handled by differ-

ent rules; in particular, rules do not cross ‘turn boundaries’.

In contrast to a pure finite state machine, our dialog model

is much more compact, using, for example, boolean expres-

536

sions in rule conditions ((or (state (name 7)) (state

(name 6)))), or variable state names, which we use to han-

dle VXML events generically.

Our dialog model is similar to an ATN, which can be

implemented in an Information State-based dialog manager
[5]. There is clearly a trade-off between the compactness of

named states, and the generality of explicit representations of

dialog context: it seems that named states are more mean-

ingful for a system-initiative dialog model than for a user-

initiative one.

Our inference-based DM is similar to the Dipper [6] and

TrindiKit [5] DMs in its use of condition-action rules. A key

difference is that our architecture handles data management

and communication, increasing robustness and allowing the

DM to be more lightweight. Furthermore, our DM uses a

standard production system and therefore inherits the ability

to efficiently perform matching with complex conditions and

large sets of rules and facts.

4. CONCLUSIONS

We propose a data-centric architecture that is designed to meet

the future needs of data-intensive processing of heterogeneous

types of data. By using a standard database management sys-

tem, we take advantage of available industrial strength in-

frastructure and support tools (JDBC/ODBC database drivers,

client libraries, GUI DB management tools etc.). The pre-

sented data-centric system uses a purely relational data model.

This could be combined in the future with XML data which

is becoming available in hybrid relational-XML DBMSs.

We take advantage of the architecture by defining an in-

ference-based dialog manager that is purely functional, and

realizes a hybrid finite state/Information State-based dialog

model. A functional DM enforces a strict discipline of storing

all relevant data in the database. The architecture can also be

used with stateful processing modules. The combination of a

relational database with a production system for dialog man-

agement largely eliminates the ‘impedance mismatch’ that is

typical for example for object-relational systems: the data

structures (facts) of the DM directly correspond to rows in

the database.

5. REFERENCES

[1] David L. Martin, A. J. Cheyer, and D. B. Moran, “The

Open Agent Architecture: A framework for building

distributed software systems,” Applied Artificial Intel-
ligence: An International Journal, vol. 13, no. 1-2, pp.

91–128, January-March 1999.

[2] Stephanie Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid,

and V. Zue, “GALAXY-II: A reference architecture for

conversational system development,” in Proc. of ICSLP
1998, Sydney, Australia, 1998.

[3] Giuseppe Di Fabbrizio and Charles Lewis, “Florence: a

dialogue manager framework for spoken dialogue sys-

tems,” in Proc. of INTERSPEECH ’04, Jeju Island, Ko-

rea, 2004.

[4] Roberto Pieraccini, Sasha Caskey, Krishna Dayanidhi,

Bob Carpenter, and Michael Phillips, “ETUDE: A re-

cursive dialog manager with embedded user interface

patterns,” in Automatic Speech Recognition and Under-
standing Conference 2001 (ASRU), Keystone, Colorado,

2001.

[5] Staffan Larsson and David Traum, “Information State

and dialogue management in the TRINDI Dialogue

Move Engine Toolkit,” Natural Language Engineering,

vol. 6, no. 3–4, pp. 323–340, 2000.

[6] Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi

Oka, “DIPPER: Description and Formalisation of an

Information-State Update Dialogue System Architec-

ture,” in SIGdial Workshop on Discourse and Dialogue,

Sapporo, Japan, 2003.

[7] Danilo Mirkovic and Lawrence Cavedon, “Practical

Plug-and-Play Dialogue Management.,” in Proceedings
of the 6th Meeting of the Pacific Association for Compu-
tational Linguistics (PACLING), Tokyo, Japan, 2005.

[8] World Wide Web Consortium, “Voice Ex-

tensible Markup Language (VoiceXML) Ver-

sion 2.0, W3C Working Draft, 23,” See

http://www.w3.org/TR/2001/WD-voicexml20-

20011023/, October 2001.

[9] Nicholas Roy, Joelle Pineau, and Sebastian Thrun,

“Spoken dialog management for robots,” in Proc. Asso-
ciation for Computational Linguistics (ACL-00), Hong

Kong, 2000.

[10] Jason D. Williams and Steve Young, “Partially Observ-

able Markov Decision Processes for Spoken Dialog Sys-

tems,” Computer Speech and Language, vol. 21, no. 2,

pp. 393–422, 2006.

[11] ECMA, “Standard ECMA-262. EC-

MAScript Language Specification. 3rd Edition,”

http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM,

1999.

[12] Stephanie Seneff, R. Lau, and J. Polifroni, “Organiza-

tion, Communication, and Control in the Galaxy-II Con-

versational System,” in Proc. of Sixth European Confer-
ence on Speech Communication and Technology (EU-
ROSPEECH’99), Budapest, Hungary, 1999.

[13] Peter Jackson, Introduction to Expert Systems, Addison-

Wesley, Reading, Massachusetts, 2nd edition, 1990.

537

