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ABSTRACT

Although user simulations are increasingly employed in the
development and assessment of spoken dialog systems, there
is no accepted method for evaluating user simulations. In this
paper, we propose a novel quality measure for user simula-
tions. We view a user simulation as a predictor of the perfor-
mance of a dialog system, where per-dialog performance is
measured with a domain-specific scoring function. The qual-
ity of the user simulation is measured as the divergence be-
tween the distribution of scores in real dialogs and simulated
dialogs, and we argue that the Cramér-von Mises divergence
is well-suited to this task. The technique is demonstrated on
a corpus of real calls, and we present a table of critical val-
ues for practitioners to interpret the statistical significance of
comparisons between user simulations.

Index Terms— User simulation, user modelling, dialog
simulation, dialog management

1. INTRODUCTION AND BACKGROUND

Recently, researchers have begun applying machine learning
techniques to the problem of dialog design. The essential idea
is that a human designer provides high-level objectives, and
an optimization or planning algorithm determines the detailed
plan. This optimization usually requires a user simulation,
which is a computer program or model that is intended to be
a appropriate substitute for a population of real users. A user
simulation consists of a user behavior model which gener-
ates textual synthetic user responses and a speech recognition
model which simulates the speech recognition process, pos-
sibly introducing errors. Common optimization techniques
for dialog systems including Markov decision processes [1,
2, 3, 4, 5] and partially observableMarkov decision processes
[6, 7, 8, 9, 10] require a user simulation.
In evaluations with real users, dialog systems augmented

with machine learning have outperformed reasonable base-
lines [1]. Unfortunately, evaluations with real users are rarely
conducted; instead, it is much more common for machine
learning applications to be evaluated exclusively with a user
simulation, for which no measurement of accuracy or relia-
bility is reported [2, 3, 4, 5, 6, 7, 8, 9, 10]. As such, it is hard

to judge whether performance improvements will hold once
systems are deployed to real users. To address this problem,
we seek a quality measure for user simulations, akin to word
error rate (WER) for speech recognition accuracy, perplexity
for language modelling, or BLEU score for machine transla-
tion.

In past work, Cuayahuitl et al [11] evaluate a user sim-
ulations by computing the “dialog similarity” of a real and
simulated corpus. Each of these two corpora are viewed as
the output of a hidden Markov model (HMM), and the dialog
similarity measure is defined as the divergence between the
distributions estimated for these two HMMs. This method
has the desirable property of producing a scalar-valued dis-
tance which can be used to rank order different user simu-
lations. However, casting dialog as the output of an HMM
makes strong structural assumptions, and it is not clear how
to determine how well the estimated HMMs match the cor-
pora. In addition, it is unclear how to express the relative
importance of different dialog elements, such as task comple-
tion and dialog length, in a given domain. Finally, to present
an evaluation, many details of the HMMs such as their states,
transition structures, parameterizations, estimation methods,
etc. would need to be discussed, which is cumbersome for
practitioners and researchers. In other work, Schatzmann et al
[12] propose a broad toolkit of tests for comparing simulated
and real dialogs, such as computing the precision and recall
of simulated and real user responses. However, the authors do
not take up the problem of a single quality measure for a user
simulation. In sum, in the field there is no accepted, easily
reportable statistic providing an indication of the quality of a
user simulation.

This paper is organized as follows. First, section 2 states
our assumptions and presents the evaluation procedure. Then,
section 3 provides an illustration using real dialog data, and
confirms that the evaluation procedure agrees with common-
sense intuition. Finally, recognizing that there may be a small
number of real dialogs available, section 4 tackles the prob-
lem of data sparsity and develops a concise table of critical
values for practitioners to easily interpret the reliability of an
evaluation. Section 5 then concludes.
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2. METHOD

Although past work has argued that the aim of a user simula-
tion is to engage in “realistic” dialogs [12, 11], in practice it is
unclear how realism could be implemented as a quantitative
metric. Here we take a slightly different view. We believe that
the role of a user simulation is to accurately predict the per-
formance of a dialog system when it is deployed to a certain
user population. More formally:

For a given dialog system D and a given user population
U0, the goal of a user simulation U1 is to accurately pre-
dict the performance of D when it is used by U0.

Here, user population is defined to include the variations
expected across users and the variations expected for each in-
dividual user, including variations in initiative levels, dialog
act frequencies, patience, and so on. For a goal-oriented dia-
log system, the user population includes the variety and fre-
quency of the tasks that users are trying to accomplish.
We next address performance in a single dialog:

The performance of a dialog system D in a particular dia-
log d(i) can be expressed as a real-valued score x(i), com-
puted by a scoring function Q(d(i)) = x(i).

The scoring function itself is dependent on the dialog sys-
tem and is created by its designer. The scoring function takes
as input all of the factors that the designer believes are rele-
vant – such as task completion, dialog length, and user satis-
faction. The designer may base the scoring function on busi-
ness requirements [13] or a weighted sum of factors intended
to predict user satisfaction such as the PARADISE method
[14]. Often, the scoring function is already available since it
is required by many machine learning algorithms, where it is
sometimes called a reward function [2, 8].
Next, these scores can be aggregated into lists:

A given user population U0 using dialog system D will
yield a list of scores S0 = (x0

(1), . . . , x
0
(N0)

). Similarly, a
user simulation U1 using dialog system D will yield a list
of scores S1 = (x1

(1), . . . , x
1
(N1)).

With these two lists, we can now state the basic intuition
of our quality measure for a user simulation:

A user simulation U1 may be evaluated by computing a
real-valued divergenceD(S0||S1).

In this paper we define a divergence D(X||Y) to be a
scalar, non-negative measurement of how well some list X ,
which are samples from a “true” distribution, is matched by
some other list Y , which are samples from a “model” of the
truth. If D(X||Y) = 0, then Y is taken to be a perfect model
of X .
In the limit of an infinite number of dialogs, the sets S0

and S1 could be described by probability density functions
p0(x) and p1(x). In practice, however, collecting real di-

alogs is expensive and time-consuming, and there may only
be N0 = 50 or 100 real dialogs available. Moreover, it seems
unlikely that we will know the parametric form of p0(x) in
advance. Thus, an estimate of the density is unlikely to be
reliable, and the divergence measure should not depend on a
density.
Given this consideration, a natural choice of divergence

measure is the normalized Cramér-von Mises divergence:

D(F0||F1) = α

√√√√ N0∑
i=1

(F0(x0
(i))− F1(x0

(i)))
2 (1)

where Fj is the empirical distribution function (EDF) of the
data Sj = (xj

(1), . . . , x
j

(Nj)
):

Fj(x) =
1

Nj

Nj∑
i=1

⎧⎪⎨
⎪⎩

1 if xj

(i) < x
1
2 if xj

(i) = x

0 if xj

(i) > x

(2)

and α =
√

(12N0)/(4N2
0 − 1) is a normalizing constant

which scales D(F0||F1) to the range [0, 1].
The normalized Cramér-vonMises divergence is based on

a family of statistical tests originally developed by Cramér
[15] and von Mises [16] which measure agreement between
observed sets of real-valued data. Equation 1 is based on a
variant of the Cramér-von Mises test studied by Anderson
[17], augmented here with a normalization constant α.
The normalized Cramér-von Mises divergence has a host

of desirable properties for evaluating user simulations. Be-
cause it operates on the empirical distribution function (EDF),
it makes no assumptions about the parametric form of p(x)
and requires no tuning parameters. In this respect it is prefer-
able to divergencemeasures which require an estimate of den-
sity, such as the Kullback-Leibler divergence. In addition, the
Cramér-von Mises family of tests is regarded as having more
statistical power than other non-parametric methods for com-
paring EDFs [18]. Moreover, because a divergence is a scalar,
divergences to different user simulations can be rank-ordered,
enabling direct comparisons to be made between different
user simulations. Also, no assumptions about the structure
of dialogs are made, and so it is concise to report. Finally, the
normalization provides a common scale of [0, 1] across exper-
iments and domains, independent ofN0. This feature enables
scores to be easily interpreted and compared across different
experiments and different domains.
Of course, this method has several limitations. First, even

if the dialog scores in the sets S0 and S1 and co-incident,
the true and modelled dialogs may still be quite different in
terms of (for example) length or task completion. This is in-
evitable with any scalar evaluation metric: for example, in
speech recognition, identical word error rates may have differ-
ent numbers of deletions, insertions, and substitutions. Here,
the intention is that the domain-specific scoring function Q
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Dialog
Speaker Transcript score
System AT&T Dialer. −1
Caller [silent]
System First name and last name? −1
Caller Jeannie Smith

[JENNY SCHMIDT U S ∼ 85]
System Jenny Schmidt, USA −1
Caller No

[NO ∼ 95]
System First name and last name? −1
Caller Jeannie Smith

[JEANNE SMITH ∼ 98]
System Jeanne Smith. Office or cell? −1
Caller Office

[OFFICE ∼ 82]
System Office phone. −1
Caller [silent]
System Dialing. +20

Total dialog score +14

Table 1. An example conversation with the AT&T dialer.
Text in brackets shows ASR recognition result and confidence
score, which ranges from 0 to 100. The dialog scoring func-
tion is described in the text below and summarized in table 2.
Names have been changed for privacy.

weights the relevant factors of the dialog appropriately, such
that any aliasing is by definition acceptable. Also, just as
evaluation metrics like word error rate do not suggest how
a speech recognizer could be improved, we do not expect that
our metric will suggest how a user simulation could be im-
proved. Schatzmann’s toolkit [12] seems more appropriate
for this type of analysis. Finally, our method requires real
dialog data from the dialog system being evaluated, but in
practice, a user simulation is often used to build (via machine
learning) a new dialog manager. Theoretically, it is not correct
to make claims about the quality of a user simulation interact-
ing with some new dialog system for which real dialogs do not
exist. Nonetheless, we expect that – all else being equal – a
user simulation that is a better performance predictor of some
dialog system is likely to be a better performance predictor on
a new dialog system.

3. EXAMPLE APPLICATION

In this section, we strive to show that the normalized Cramér-
von Mises evaluation procedure agrees with common-sense
intuition by studying a corpus of real human-computer di-
alogs. A series of user simulations are created, and it is shown
that increasingly accurate user simulations yield decreasing
Cramér-von Mises divergences. In other words, it is shown
that the Cramér-von Mises divergence correlates well with
the qualitative difference between the real environment and

Dialog
Condition score

System transfers caller to the correct destination 20
System transfers caller to the incorrect destination −20

System hangs up for any reason −20
Caller hangs up at very first turn 0
Caller hangs up after very first turn −5

Each system turn −1

Table 2. The scoring function used for the voice dialer.

the user simulation.
The dialog system presented here is a voice dialer applica-

tion. This application is accessible within the AT&T research
lab and receives daily calls. The dialer’s vocabulary consists
of approximately 30,000 distinct callees across many business
units, not just staff in the research lab, and can disambiguate
between people with the same name, and between multiple
phone listings for the same person (e.g., office and mobile).
Table 1 provides the transcript of an example dialog.
The dialer application was selected for this study because

it is used by people with real information needs. Since our
focus is on user behavior, it would be less desirable to use
dialogs collected from paid subjects, who in effect role-play
and do not really suffer the consequences of system failures.
The corpus used here, which excludes calls from system

developers, consists of 468 calls from 40 distinct callers. These
calls were divided into a training set of 320 calls with 1265
caller turns, and a test set of 148 calls with 581 caller turns,
with disjoint sets of callers.
To illustrate the evaluation method, we begin by creat-

ing a scoring function (table 2), which reflects the design pri-
orities of this system. Next, two user behavior models and
two ASR models were built. A handcrafted user behavior
model was designed which assumed that the user is coopera-
tive and patient, always answering questions as requested, and
never hanging up. Second, a stochastic user behavior model
was estimated from the training dialog data. At each system
prompt, categories of user responses were counted, includ-
ing different kinds of cooperative answers, out-of-grammar
speech, silence, and hang-ups. These frequency counts were
used to form a statistical model of user behavior using simple
maximum-likelihood estimation. For example, in the situa-
tion s = the user was asked for a name, the model for the
user’s action a is P (a =say first and last names|s) = 0.692,
P (a =say name with city and state|s) = 0.033, to P (a =say
something out of grammar|s) = 0.147,P (a =remain silent|s) =
0.039, and P (a =hang up|s) = 0.089.
Next, two speech recognition simulations were created.

Each speech recognition simulation takes as input the text of
the user’s speech, and produces as output a (possibly erro-
neous) text string and a confidence score, which is used by
the dialog manager to decide whether to accept or discard the
output.
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Fig. 1. Empirical distribution function of all user simulations,
the training set, and the test set. “HC” is the handcrafted user
behaviormodel, “Stoch” is the stochastic user behaviormodel
estimated from data, and “errors” refer to simulated speech
recognition errors.

The first speech recognition simulation made no errors:
in-grammar speech was recognized accurately (with the max-
imum confidence score of 100), silence was correctly iden-
tified, and out-of-grammar speech was discarded (via a con-
fidence score of zero). The second speech recognition sim-
ulation modelled the errors and confidence scores found in
the training set. Error statistics were computed by exam-
ining each recognition attempt and determining whether the
user’s speech a was in-grammar, out-of-grammar, or empty,
and also determining whether the recognition outcome ã was
correct, incorrect, or empty. Counts of each (a, ã) pair were
made and used to compute conditional probabilities P (ã|a).
For example, when the user said an in-grammar name (action
a), the model for the outcome ã is P (ã =recognized cor-
rectly|a) = 0.795, P (ã =recognized incorrectly|a) = 0.190,
P (ã =mistaken for silence|a) = 0.015. In addition, for each
(a, ã) pair, confidence score frequencies were counted and
used to simulate confidence scores in simulation.

Each of the two user behavior models (handcrafted and
stochastic) was run with each of the ASR simulations (with
errors and without errors) for 1000 dialogs, and each dialog
was scored using the scoring function described in table 2.
The EDF for each user behavior model/ASR model pair was
then computed and plotted in figure 1. Finally, the normalized
Cramér-von Mises divergences from the test set were com-
puted, shown in table 3.

The handcrafted user behavior model with no ASR er-
rors produces the largest Cramér-von Mises divergence; the
stochastic user behavior with ASR errors produces the small-
est Cramér-vonMises divergence; and the other combinations
are between these two. In other words, as the predictive ac-
curacy of the user simulation increases, its Cramér-von Mises
divergence decreases. In this experiment, the best and worst

Dialogs used to compute EDF F̂ D(F ||F̂ )
Handcrafted behavior + no ASR errors 0.36
Stochastic behavior + no ASR errors 0.21
Handcrafted behavior + ASR errors 0.20
Stochastic behavior + ASR errors 0.067
Training set (real dialogs) 0.098

Table 3. Cramér-von Mises divergence between the EDF of
the test set of dialogs (F ) and other corpora.

user simulations were known in advance by design: the key
finding is that the Cramér-von Mises divergence has recov-
ered this ordering, and this result lends support to our claim
that the normalized Cramér-von Mises divergence is a suit-
able quality measure for user simulations.
In addition, the divergence from the held-out test set to the

training set is slightly greater than that to the best use simu-
lation, indicating that the predictive accuracy of the best user
simulation is within the bounds of sampling error measured
with held-out data. Yet this raises an important question: Is
the difference between the best and worst user simulations
reliable? More generally, what magnitude of difference in
divergence is statistically significant? This is the question ad-
dressed in the next section.

4. STATISTICAL SIGNIFICANCE

To begin, consider the cumulative distribution functionsPj(x)
and probability density functions pj(x) for the user popula-
tion and two user simulations. By definition, these describe
the true cumulative distribution and probability densities of
the user population and the two user simulations in the pres-
ence of an infinite number of samples. The normalized Cramér-
von Mises divergence on the true distributions is [19]:

D∗(P0||Pj) = β

√∫
(P0(x)− Pj(x))2p0(x)dx (3)

where β =
√

3 is a normalization constant that scales the
divergence to the range [0, 1].
If this test is applied to each user simulation and it is

found that D∗(P0||P1) < D∗(P0||P2), then it could be con-
cluded that user simulation 1 is better than user simulation 2
(and visa-versa). Since these quantities are exact, there is no
chance that an observed difference would be due to noise:
any difference is statistically significant. In practice how-
ever, we will not have access to Pj(x) nor pj(x). Rather, we
have samples from these distributions Sj = (xj

(1), . . . , x
j

(Nj)
)

which are used to compute D(F0||Fj). The key issue is that
D(F0||Fj) is an estimate ofD∗(P0||Pj) and therefore subject
to sampling error.
Developing critical values for Cramér-vonMises-type tests

is analytically quite difficult [18]. Here we tackle this prob-
lem by constructing a simulation experiment. We randomly
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Fig. 2. Measured divergence to user simulation 1 D(F0||F1) and user simulation 2 D(F0||F2) vs. ordering reliability for
N1 = N2 = 1000 dialogs with each user simulation and various numbers of “real” user dialogsN0.

generate distributions for a user population P0(x) and two
user simulations P1(x) and P2(x). Then, we compute the
true ordering of the two user simulations as the ordering of
D∗(P0||P1) and D∗(P0||P2). Next, we sample from P0(x),
P1(x), and P2(x) to produce F0(x), F1(x) and F2(x), and
compute predicted ordering of the two user simulations as the
ordering ofD(F0||F1) andD(F0||F2). Finally we determine
if the predicted ordering agrees with the true ordering, and set
an indicator variable q to 1 if the predicted ordering matches
true ordering, and to 0 if not. This whole process is repeated
M times, and for each iteration m, D(F0||F1), D(F0||F2),
and q are stored as Dm

1 , Dm
2 , and qm, respectively. Once the

sampling is complete, a plot is constructed which quantizes
D1 and D2 into square regions. Within each region, the av-
erage value of q (notated q) is computed, which corresponds
to the percentage of the time that the sampled data yields the
same ordering as the true data. In other words, the end re-
sult is a statement of the accuracy of the ordering of 2 user
simulations for a givenD1, D2, N0, N1 and N2.
Concretely, pj(x) are bi-modal densities represented as

the weighted sum of Gaussians, with means sampled uni-
formly from [0, 100], variances sampled from [1, 5], and weights
sampled from [0, 1] and normalized.1 In these experiments,
the number of dialogs from each user simulation is N1 =
N2 = 1000, and M = 40, 000 iterations are run for each
experiment. Experiments were run for various number of di-
alogs from the “real” userN0 ranging from 50 to 1000.
Figure 2 shows results. In this figure, black regions indi-

cate q < 0.95, white regions indicate q > 0.99, and various
shades of gray indicate intermediate values. As the number
of real dialogs increases, the (dark) region of low ordering re-
liability becomes more confined. In addition, the regions of
lower probability lie along essentially straight lines parallel to
D1 = D2. This is significant because it implies that the reli-
ability of an ordering is determined mainly by the difference
betweenD1 andD2, rather than being dependent on their ac-
tual values. This result is summarized in table 4, which pro-
vides an indication of what differences in divergences are re-

1Additional experimentation (not described here) showed that the findings
below were unchanged for larger numbers of modes.

N0 p > 0.90 p > 0.95
50 0.08 0.12
100 0.06 0.09
200 0.05 0.07
500 0.04 0.05
1000 0.03 0.04

Table 4. Difference in normalized Cramér-von Mises di-
vergence between two user simulations required for rank-
ordering to be correct for 1000 simulated dialogs and various
numbers of real dialogs N0 with confidence p > 0.90 and
p > 0.95.

quired to conclude an ordering of user simulations is reliable
with confidence 90% and 95%.
Returning to the illustration in section 3, the results in ta-

ble 4 indicate that, for 100 dialogs in the test set, a difference
of 0.06 indicates a 90% ordering accuracy, and a difference of
0.09 indicates a 95% ordering accuracy. This implies that the
handcrafted user behavior with no ASR errors is indeed sig-
nificantly worse than the other user simulations (p > 0.95),
because |0.36− 0.21| = 0.15 > 0.09. Similarly, the stochas-
tic user behavior with ASR errors is significantly better than
the other user simulations (p > 0.95). Further, the differ-
ence observed between the stochastic user behavior model
with ASR errors and the training set does not allow a statis-
tically significant ordering to be inferred (|0.067− 0.098| =
0.031 < 0.06), which is consistent with the hypothesis that
the ordering here is due to sampling noise.

5. CONCLUSIONS

This paper has sought to provide system designers and prac-
titioners with a simple, principled method of evaluating and
rank-orderinguser simulations, based on the normalized Cramér-
vonMises divergence. An illustration with a corpus of dialogs
collected from real system usage confirms that as the predic-
tive accuracy of a user simulation is improved, the normal-
ized Cramér-von Mises divergence between the real dialogs
and the synthetic dialogs decreases. Further, a series of sim-
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ulation experiments has explored what magnitude of differ-
ence in Cramér-von Mises divergences is required to infer a
statistically significant rank-ordering, and we have developed
a concise table that enables researchers and practitioners to
judge whether an observed ordering of two user simulations
is statistically significant.
We anticipate that dialog systems will make increasing

use of machine learning. Since evaluations with real users
will remain expensive, we therefore foresee that evaluations
with user simulations will also become more widespread. For
these evaluations to be accepted, the quality of the user sim-
ulations must themselves be tested in some way. The evalu-
ation metric suggested here is straightforward to apply, con-
cise to report, and easy to interpret, and we hope that it will
go some way toward satisfying this need.
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