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ABSTRACT

The benefit of tracking a probability distribution over mul-
tiple dialogue states has been demonstrated in the literature.
However, the dialogue state in past work has been limited to
a small number of variables, and growing the number of vari-
ables in the dialogue state prevents the probability distribution
from being updated in real-time. This paper shows how the
number of variables composing the dialogue state can be in-
creased while maintaining response times suitable for a spo-
ken dialogue system. Rather than performing exact inference
using the joint distribution over all variables, a particle filter is
employed to compute an approximate update. Dialogue states
(particles) are sampled, weighted by their agreement with the
speech recognition results, andmarginalized to produce a new
distribution over each variable. Results on a spoken dialogue
system for troubleshooting show that a relatively small num-
ber of particles are required to achieve performance close to
an exact update, enabling the dialogue system to run in real-
time.

Index Terms— dialoguemodelling, dialoguemanagement,
spoken dialogue systems, particle filter, Monte Carlo

1. INTRODUCTION

Traditional dialogue systems maintain a single hypothesis of
the dialogue state such as a form or frame. Recently, meth-
ods of maintaining a distribution over dialogue states have
been shown to yield better performance, including decision
theoretic methods [1], M-Best lists [2], and partially observ-
able Markov decision processes (POMDPs) [3]. The intu-
ition is that a distribution over dialogue states directly models
both the errors introduced in recognition and the variability
of the user’s responses, which allows it to consider multiple
dialogue histories. This enables a dialogue manager to better
cope with speech recognition errors and ultimately to choose
conversational actions more effectively.
Past research has assumed the dialogue state contains es-

sentially one persistent hidden variable – the user’s goal, such
as a flight itinerary – and that this variable is fixed through-
out the dialogue [1, 3, 4]. This is a significant limitation be-
cause in general there may be many hidden persistent vari-
ables which change state throughout the dialogue. For ex-

ample, in the troubleshooting domain, in which a dialogue
system helps a user to troubleshoot a product such as a failed
DSL connection, there are numerous persistent hidden vari-
ables, such as the power state of the DSL modem, whether
the username has been entered correctly, whether there is a
service outage, and whether the network cable is connected
correctly. These variables are interrelated and continuously
changing state throughout the dialogue – indeed, the goal of
the dialogue system is to guide each of the variables into
a working state. Updating the distribution over all of these
constantly-changing variables is impossible in real-time, and
the dialogue literature has not tackled this problem.
This paper proposes a new approach to updating a dis-

tribution over dialogue states which allows the number of
variables to be scaled. The dialogue state is cast as an ar-
bitrary Bayesian network and approximate updates are per-
formed with a particle filter, which is a general-purpose tech-
nique for approximate inference in Bayesian networks [5].
Dialogue states (particles) are sampled, weighted by their agree-
ment with the speech recognition result, and marginalized. As
particles are added, the accuracy of the estimate improves at
the expense of additional computation.
This paper is organized as follows: section 2 reviews the

probability update task, and explains relevant past work; sec-
tion 3 introduces our spoken dialogue system and illustrates
why the probability update is problematic; section 4 intro-
duces particle filters and shows how they can be applied to
spoken dialogue systems; section 5 explains our evaluation
and provides results; and section 6 briefly concludes.

2. BACKGROUND

In general, a dialogue system can be framed as a Bayesian
network consisting of the tuple (S, O, A, T, Z, b0). A repre-
sents the set of actions available to the dialogue system (such
as asking a question or consulting a database) with a ∈ A,
andO represents the set of observations the system may make
about its environment (such as output from the ASR and un-
derstanding process or a database result) with o ∈ O. S rep-
resents the space of possible dialogue states with s ∈ S, and
in practice s is usually decomposed into a number of compo-
nent variables s = (s1, . . . , sN)which track, for example, the
user’s goal, the user’s (true, unobservable) action, and the di-
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alogue history. T provides a model of how the dialogue state
changes in response to system actions P (s′|s, a), and Z pro-
vides a model of how the observations relate to the system
state P (o′|s′, a).
A key property of spoken dialogue systems is that the ob-

servation o provides noisy and incomplete information about
the state of the dialogue s, and the Bayesian network accounts
for this by tracking a distribution over dialogue states b(s)
called a belief state, with initial belief b0. At each time-step,
b is updated by summing over all possible state transitions:

b′(s′) = η · P (o′|s′, a)
∑

s

P (s′|s, a)b(s). (1)

Substituting in s = (s1, . . . , sN),

b′(s′1, . . . , s
′

N) = η · P (o′|s′1, . . . , s
′

N , a)·
∑

s1,...,sN

P (s′1, . . . , s
′

N |s1, . . . , sN , a)b(s1, . . . , sN ) (2)

where η is a normalization constant [6]. The process of main-
taining b at each time step is called belief monitoring.
The belief state b is used at run-time to select a system

action using some policy π : b → a. This policy can be
produced using techniques such as POMDPs [3], decision-
theory [1], or by hand crafting [2]. The method used is not
important to this paper; the key point is that all probabilistic
techniques rely on being able to compute b(s) in real time, as
the dialogue is progressing.
When the number of possible dialogue states |S| is small,

the update in equation 2 is straightforward. However, for di-
alogue systems of a realistic size, the number of possible di-
alogue states is very large. Since the dialogue state s is typi-
cally decomposed into component variables s = (s1, s2, ..., sN )
with si ∈ Si, the total number of dialogue states is

∏
i |Si|,

which grows exponentially in the number of variables.
Past work has focused on the slot-filling domain and sought

to grow the number of distinct values that a single variable –
the user’s goal – can take on. For example, one can assume
that each slot si can be tracked independently [3], avoiding
computing a joint distribution over (s1, s2, ..., sN ). Alterna-
tively, an M-Best list of dialogue states can be used to ap-
proximate a distribution over all states by tracking only the
hypotheses suggested by the ASR N-Best list [2], and it has
been shown how this M-Best list of user goals can be main-
tained exactly [4]. Crucially, past work has assumed that the
user’s goal is fixed: in other words, past work has shown how
to perform belief monitoring when there is a single persistent
variable which takes on a fixed value. In this work, we tackle
the problem of belief monitoring when there are many vari-
ables, and when the variables are constantly changing state,
as is the case in domains such as troubleshooting. The next
section shows an example dialogue system in this domain and
illustrates why belief monitoring here is difficult.

3. EXAMPLE SPOKEN DIALOGUE SYSTEM

A general-purpose model for POMDP-based dialogue sys-
tems for troubleshooting has been previously presented in [7].
This model has been used to build a spoken dialogue system
which helps a user restore a failed DSL connection that mod-
els many, but not all, aspects of DSL troubleshooting.
In our system, the dialogue state s is decomposed into 19

components, and the observation o is decomposed into 2 com-
ponents, listed in Table 1, with dependencies shown in Figure
1. The models of user behavior (nodes 12 and 20) are stochas-
tic and are estimated from annotated conversations between
users and DSL technicians. The models of the product behav-
ior (remainder of the state nodes) were handcrafted based on
interviews with DSL technicians, and most of these models
are deterministic: for example, if the power to the DSL mo-
dem is off (node 13), then the power and network lights will
both be off (nodes 17 and 18). Concept recognition errors
were generated with p = 0.30, and confidence scores were
drawn from an exponential distribution such that (at an equal
error rate confidence threshold) about half of the concept er-
rors could be identified. The reward function gives -1 for each
action until the end of the dialogue when it gives +100 for cor-
rectly restoring service or -100 for failing to restore service.
A dialogue manager was created using an optimization

process described in [8]. This technique takes as input a POMDP
model (i.e., a Bayesian network and a reward function) and
a “seed” finite-state-based dialogue controller, and produces
an improved dialogue controller which maximizes the sum
of rewards gained over the dialogue. Here, the input seed
finite-state-based controller was created by hand, reflecting
the agents’ troubleshooting practices [7]. Space limitations
prevent a full description of the improvement algorithm; the
intuition is that the algorithm exploits the belief state of the
Bayesian network at runtime to “rewire” the dialogue con-
troller to achieve an improvement in total reward. Below, this
hand-crafted controller will be used as a baseline to measure
the gain in performance achieved by performing belief moni-
toring.
Before each system turn, the belief state must be updated

as shown in equation 2. This is problematic in this dialogue
system because applying equation 2 directly requires iterating
over all approximately 40 million dialogue states, requiring
between 13s and 48s, which is clearly too slow to run in real
time. (The response time varies because, at certain points in
the dialogue, a variable’s value may be known with certainty
and this can be used to speed up belief monitoring: for ex-
ample, if a DSL modem responds to a ping, then there is def-
initely not a service outage.) Moreover, standard techniques
for passing evidence through the network incrementally (such
as Junction Trees [9]) are not of help here: evidence exists
at both the root nodes and leaf nodes, and because there are
multiple paths from root to leaf, it is not possible to isolate
(“D-separate”) different parts of the network. To perform ex-
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Fig. 1. Bayesian network showing the troubleshooting spoken
dialogue system. Node labels refer to Table 1. Gray nodes
have “soft” evidence (a distribution), black nodes have “hard”
evidence (a known value), and the aim is to infer the posterior
distribution over the white nodes.

act inference, we are forced to compute the joint distribution.
Since this is impossible in real-time, we instead turn to an
approximation technique, described next.

4. PARTICLE FILTER METHOD

Particle filters are a general-purpose approximation technique
for performing inference in Bayesian networks [5]. A parti-
cle filter operates by sampling values for unobservable vari-
ables, where each sample is called a “particle”. Each parti-
cle is weighted by the likelihood that it would generate the
observable evidence and these weights are normalized to pro-
duce an estimate of the posterior given the evidence.1
Here, a particle filter will be used to approximate the up-

date in Equation 2. The method itself makes two approxima-
tions. First, the joint distribution b(s1, s2, ..., sN ) is approxi-
mated by the product of the marginals:

b(s1, s2, ..., sN ) ≈
∏

i

bi(si) (3)

1Gibbs sampling, another method for approximate inference, was also
considered, but was found to be unsuitable because it cannot admit networks
with deterministic variables.

Type ID Description Size
A 1 System’s action 19

S

2 Service outage 2
3 Upstream network failure 2
4 Unknown, unfixable problem 2
5 Correct username in browser 2
6 Correct username saved to modem 2
7 Correct password in browser 2
8 Correct password saved to modem 2
9 Correct service type in browser 2
10 Correct service type saved to modem 2
11 Config screen visible in browser 2
12 User’s troubleshooting action 13
13 State of DSL modem 3
14 Modem configuration is correct 2
15 DSL connection is working properly 2
16 User successfully opened a webpage 2
17 State of modem power light 2
18 State of modem network light 3
19 Dialogue is in progress vs. finished 2
20 User’s communicative action 11

O
21 ASR/NLU result, incl. conf. score 11
22 Troubleshooting test result 2

Table 1. Description of the variables used in the troubleshoot-
ing dialogue system. A refers to action variables, S to state
variables, and O to observation variables.

so that the belief update can be restated as

b′(s′1, . . . , s
′

N ) ≈ η · P (o′|s′1, . . . , s
′

N , a)·
∑

s1,...,sN

P (s′1, . . . , s
′

N |s1, . . . , sN , a)
∏

i

bi(si). (4)

This first assumption will enable particles to be sampled at
each time-step. However, it also discards dependencies be-
tween the variables, and so empirical evaluation is important.
The particle filter itself is used to approximate Equation

4. The procedure is shown in Algorithm 1, which samples
X particles for each update. For each particle, first values of
variables in the current time-step are sampled by drawing a
value s(i) from each marginal bi(si) (line 2). Then, values for
variables in the next time-step s′(j) are sampled according to
the transition dynamics (line 3) and saved as particle x (line
4). Finally, the weight for this particle is computed as the like-
lihood that it would have generated the observation (line 5).
After sampling is complete, the particle weights are normal-
ized (line 7), and the new estimated marginals are computed
by summing the normalized weights for like variable values
(line 8).
As the number of particles approaches infinity, the error

(in the second approximation) goes to zero under mild as-
sumptions [10]. The amount of computation and storage re-
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Algorithm 1: Particle filtering process.
Input: bi(si), i = 1 . . .N ; a; o′

Output: b′j(s′j), j = 1 . . .N

for x = 1 toX do1

s(i) ∼ bi(si), ∀i2

s′(j) ∼ p(s′j |s
′

(1), . . . , s
′

(j−1), s(1), . . . , s(N), a), ∀j3

px(j) = s′(j), ∀j4

wx = p(o′|s′(1), . . . , s
′

(N), a)5

for x = 1 toX do6

wx = wx∑
x̂

wx̂
7

b′j(s
′

j) =
∑

x:px(j)=s′

j
wx, ∀j8

quired both grow linearly in the number of particles, so the
number of particles sets the trade-off between speed and ac-
curacy: as particles are added, the belief estimate improves
at the expense of additional computation. This allows the
method to be “tuned” to deliver a response within a specified
time, which is an important property in a real-time environ-
ment such as a dialogue system.
While testing the method using small numbers of parti-

cles, it was noticed that occasionally observations which were
always reliable (such as a network test operation) caused all
particles to receive zero weight. This occurred when a speech
recognition error earlier in the dialogue caused the belief in
the correct (though unlikely) value for a variable to go unsam-
pled and receive no probability mass. To prevent this from
happening, the belief b′j(s

′

j) (in line 8) is never allowed to
go below a threshold. Experimentation found that a thresh-
old of 1/(X ∗ |Si|) works well in practice, and each variable
value was always allocated at least this much mass. Since
the reserved mass approaches zero as the number of parti-
cles approaches infinity, this modification does not change the
asymptotic accuracy of the estimate.

5. EVALUATION

First, the accuracy of the method was evaluated. 500 simu-
lated dialogues were produced using exact belief monitoring
(i.e., enumerating the joint as in Equation 2). For each joint,
the (true) marginal over each variable was then computed.
Next, the sequence of system actions and observations gen-
erated in these dialogues were provided to the particle filter
method, and its estimate of each variable’s marginal at each
time-step was obtained. For each time-step in each dialogue,
the true and estimated marginals were compared for each vari-
able, and the maximumL1 error across all variables was com-
puted. These L1 errors were averaged across dialogues to ob-
tain an average error per time-step.
Results are shown in Figure 2 for various numbers of par-

ticles. When only 10 particles are used, the error quickly rises
to nearly its upper bound of 1.0, indicating a complete mis-
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Fig. 2. Average error for various numbers of particles.
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Fig. 3. Number of particles vs. average dialogue length and
task completion rate. Error bars are 95% confidence interval.

estimate of the belief in at least one the variable values. As the
number of particles is increased, the average error decreases.
As has been found in other domains such as robotics [11],
the error appears to plateau after a few time-steps rather than
steadily growing. This is an important result because it indi-
cates that the error is likely to remain constant over the course
of the dialogue rather than steadily increasing, suggesting the
method is suitable for both long and short dialogues.
In practice we are not interested in estimation error, but

rather in the performance of the spoken dialogue system in
terms of task completion rate and dialogue length. In other
words, estimation error is only significant if it impacts per-
formance. To measure this, simulated dialogues were run
using approximate belief monitoring for various numbers of
particles. Results are shown in Figure 3. As the number of
particles is increased, task completion increases and dialogue
length decreases, to an asymptote at about 1000 particles.
This performance was then compared to two baselines,

previously presented in [7]. The first baseline uses exact (joint)
belief monitoring, which shows performance if no approxi-
mations are made. This provides an upper bound on perfor-
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Particle Filter Exact Hand-crafted
N 1000 1000 1000

Reward 71.0 75.3 6.6
TCR 94.8% 96.1% 77.8%

Length 19.5 17.9 76.8
Response Time 3.5-3.8s 13-48s 0.91-1.4s

Table 2. Performance of particle filter (with 1000 particles),
exact updating, and a hand-crafted dialogue controller. N in-
dicates the number of simulated dialogues; TCR is task com-
pletion rate; and dialogue length is measured in turns.

mance for the particle filter method. The second baseline does
not perform belief monitoring at all, but rather uses the same
hand-crafted finite-state-based dialogue controller which was
used as a “seed” for POMDP optimization in section 3. This
second baseline provides an indication of the gain in perfor-
mance resulting from the addition of belief monitoring. 1000
simulated dialogues were run using the particle filter method
and each of the baselines. Results are shown in table 2. The
particle filter method incurs a slight decrease in performance
compared to exact belief monitoring, and maintains a signif-
icant margin of improvement over the hand-crafted dialogue
manager.
Our ultimate aim is to obtain good performance in a real-

time environment, and so we lastly investigated response time.
Response timewas measured by installing each dialogueman-
ager in an end-to-end spoken dialogue system. Several dia-
logues were run with each of the two baselines, and with the
particle filter method using various numbers of particles. In
each turn of each dialogue, the time between the end of the
user’s speech and the beginning of the system response was
measured. During this time, the dialogue system is perform-
ing speech recognition, the belief state update, action selec-
tion, and text-to-speech generation.
Results are shown in Figure 4 and also in Table 2. The

end-to-end response time of the particle filter with 1000 (or
fewer) particles is faster than exact belief monitoring. More-
over, the response time of the particle filter is less variable
than exact updating: for example, the particle filter with 1000
particles ranges from 3.5s to 3.8s, whereas exact updating
ranges from 13s to 48s. This illustrates another benefit of the
particle filter method: whereas the running time of an exact
update depends on the current belief state, the running time
of the particle filter scales with the number of particles and is
largely invariant to the current belief state. In other words, the
running time of the particle filter method is more predictable,
which is important in a real-time environment.
In sum, whereas exact belief monitoring is impossible in

real-time, a particle filter yields an acceptable response time
while incurring only a small decrease in performance. In ad-
dition, the particle filter out-performs a hand-crafted baseline
by a very large margin while incurring an acceptable increase
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in response time.

6. CONCLUSIONS

This paper has shown how to use a particle filter for belief
monitoring in probabilistic spoken dialogue systems. In the
troubleshooting domain under dialogue simulation, the parti-
cle filter approximation achieved performance very close to
exact calculation while providing significant computational
savings, enabling belief monitoring to run in real-time.
Past work has addressed how to perform belief monitor-

ing efficiently when there is a single persistent variable with
fixed state; this paper has demonstrated how particle filters
can be used to tackle belief monitoring when there are many
variables with constantly changing state. Even so, in the eval-
uation presented here, the number of values for each variable
was rather small, and it seems likely that the number of par-
ticles required may grow with the size of the largest variable.
We intend to explore this in future work.
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