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ABSTRACT

We describe a highly accurate large-vocabulary continuous Man-
darin speech recognizer, a collaborative effort among four research
organizations. Particularly, we build two acoustic models (AMs)
with significant differences but similar accuracy for the purposes
of cross adaptation and system combination. This paper elabo-
rates on the main differences between the two systems, where one
recognizer incorporates a discriminatively trained feature while the
other utilizes a discriminative feature transformation. Additionally
we present an improved acoustic segmentation algorithm and topic-
based language model (LM) adaptation. Coupled with increased
acoustic training data, we reduced the character error rate (CER) of
the DARPA GALE 2006 evaluation set to 15.3% from 18.4%.

Index Terms— Mandarin, character error rates, multi-layer per-
ceptrons, discriminative features, acoustic segmentation, LM adap-
tation, out-of-vocabulary.

1. INTRODUCTION

Based on the DARPA GALE Project [1], we seek to build a highly
accurate automatic speech recognizer (ASR) for continuous Man-
darin speech, particularly broadcast news (BN) and broadcast con-
versation (BC). This paper starts off with a description of the acous-
tic and text data used in building the system, followed by a descrip-
tion of the major differences between our two AMs. Section 3 il-
lustrates our decoding structure, including improvements in acoustic
segmentation to reduce deletion errors, and LM adaptation. Section
4 presents our experimental results, and in the last section we sum-
marize our findings and describe future work.

1.1. Acoustic Data

In this paper, we use about 866 hours of speech data collected by
LDC, including the Mandarin Hub4 (30 hours), TDT4 (89 hours),
and GALE Year 1 (747 hours) corpora for training our acoustic mod-
els. Chronologically, they span from 1997 through July 2006, from
shows on CCTYV, RFA, NTDTV, PHOENIX, ANHUI, and so on.

We test our system on three different test sets for various studies:
DARPA EARS RT-04 evaluation set (eval04), DARPA GALE 2006
evaluation set (eval06), and GALE 2007 development set (dev07). !
Each test set is selected from segments of different shows, as sum-
marized in Table 1.

I'The dev07 set used here is the IBM-modified version, not the original
LDC-released version.
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Table 1. Acoustic test data.

Data | year/month [ #shows | duration
eval04 2004/04 3 1 hr
eval06 2006/02 24 2 hr
dev07 2006/11 74 2.4 hr

1.2. Text Corpora and Lexicon

Our text corpora come from a wide range of data, in addition to
the transcriptions of the acoustic training data. Other sources of text
include the LDC Mandarin Gigaword corpus, all GALE-related Chi-
nese web text releases, other web text collected by National Taiwan
University and Cambridge University, and the conversational tele-
phone text described in [2]. The source text underwent a few passes
of cleaning to remove HTML tags, punctuation, corrupted GB2312
codes, the normalization of numbers from digits to spoken forms,
and so on, before being segmented into “word” units. All together,
there are over 1 billion words in this training collection.

Our Mandarin ASR system is based on “word” recognition. We
start from the BBN-modified LDC Chinese word lexicon, and man-
ually augment it with a few thousand new words (both Chinese and
English words) over time. We end up with a lexicon of 70,000 words
or so. For word segmentation (to insert space between sequences of
Chinese characters), we start off with a simple longest-first match
to segment our training documents and then train a unigram LM.
The most frequent 60,000 words are then selected as our decoding
lexicon and the unigram LM is trimmed back to these 60 K words.

Given this initial unigram, we then use the unigram to do
maximum-likelihood (ML) word segmentation on the training text.
Having done this, the only possible out-of-vocabulary (OOV) words
are OOV English words and OOV single-character Chinese words.
We do not add these OOV single-character words in our decoding
lexicon because (a) adding them would only increase n-gram per-
plexity and acoustic confusability among the existing vocabulary,
and (b) they are so rare that it is not worth the increased recogni-
tion difficulty. In our experience, ML word segmentation results in
only slightly better perplexity and usually translates to no further
improvement in recognition. However, we believe that the ML word
segmentation more often offers a semantically better segmentation
which helps downstream applications such as machine translation
(MT).

After the ML word segmentation, we then re-train our n-gram
LMs using the modified Kneser-Ney smoothing method [3].
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Table 2 lists the sizes of the full n-grams with different frequency
cutoffs, and their pruned versions. For example, our full 4-gram
LM has 316 million 3-gram probabilities and 201 million 4-gram
probabilities. Section 3 will describe how these n-grams are used in
our system.

Table 2. Numbers of entries of n-gram LMs.

#entries | full LM | pruned LM

lexicon size 60421 60421
3-gram

n2 58M 6.6M

n3 108 M 33M
4-gram

n2 58M 19M

n3 316 M 24M

n4 201 M 6M

2. TWO ACOUSTIC SYSTEMS

A key component of our system is cross adaptation and system com-
bination between two subsystems. We seek to create two subsystems
having approximately the same error rate performance but with error
behaviors as different as possible, so that they will compensate for
each other. The differences between our two acoustic systems are
summarized in Table 3.

Table 3. Differences of our two acoustic models.

[ System-ICSI [ System-PLP ‘
feature dim | 74 (MFCC+MLP) | 42 (PLP)
fMPE no yes
phones 72 81

2.1. System-ICSI

The first system uses 70 phones for pronunciations, inherited from
the BBN dictionary. Additionally, there is one phone designated for
silence, and another one for noises, laughter, and unknown foreign
speech. Both the silence phone and the noise phone are context-
independent.

The front-end features consist of 74 dimensions per frame, in-
cluding

e 13-dim MFCC, and its first- and second-order derivatives;

e spline smoothed pitch feature [4], and its first- and second-
order derivatives;

e 32-dim phoneme-posterior features generated by multi-layer
perceptrons (MLP) [5, 6].

The MLP is designed to provide discriminative phonetic information
at the frame level. The MLP feature generation involves three main
steps. We first, for each input frame, concatenate its neighboring 9
frames of PLP and pitch features as the input to an MLP. Each output
unit of the MLP models the likelihood of the central frame belonging
to a certain phone, given the 9-frame intermediate temporal acous-
tic evidence. We call this vector of output probabilities the Tandem
phoneme posteriors. Particularly in our case, there are 42*9 input
units, 15000 hidden units, and 71 output units in the Tandem MLP.
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The noise phone is excluded from the MLP output because it is pre-
sumbly not a very discriminable class. It is aligned to many kinds
of noises and foreign speech, not any particular phonetic segment.
The acoustic training data are Viterbi aligned using the best existing
model, to identify the target phone label for each frame. The data for
the noise phone are excluded from MLP training.

Next, we separately construct a two-stage MLP where the first
stage contains 19 MLPs and the second stage one MLP. The pur-
pose of each MLP in the first stage, with 60 hidden units each, is to
identify a different class of phonemes, based on the log energy of a
different critical band across a long temporal context (51 frames ~
0.5 seconds). The second stage of MLP then combines the informa-
tion from all of the hidden units (60*19) from the first stage to make
a grand judgment on the phoneme identity for the central frame. This
merger MLP has 8,000 hidden units. The output of the second stage
is called the HATs phoneme posteriors (hidden activation temporal
patterns) and is illustrated in Figure 1.

Finally, the 71-dim Tandem and HAT's posterior vectors are com-
bined using the Dempster-Shafer [7] algorithm. Logarithm is then
applied to the combined posteriors, followed by Principal compo-
nent analysis (PCA) to (a) make each dimension independent, as our
HMM models use Gaussian mixtures with diagonal co-variances,
and (b) reduce the dimensionality from 71 to 32. The 32 dimensions
of phoneme-posterior features are then appended into the MFCC and
pitch features. This system with 74-dim features is thus referred to
as System-ICSI because of the use of the MLP features produced at
ICSI, Berkeley.

Fig. 1. The HATs feature, computed using a two-stage MLP. Notice
the output from the hidden units of the first-stage MLPs is the input
to the second-stage MLP.
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MLP feature extraction as described in this paper differs from
our 2006 system [8] in three principal ways: (1) the amount of train-
ing data is doubled, (2) pitch features are added to the Tandem MLP
input layer, and (3) to combine the two posterior feature streams
(Tandem and HAT's), we use the Dempster-Shafer theory of evidence
rather than inverse-entropy weighted summation.

While it is clearly advantageous to use more training data, this



introduces considerable practical complications for MLP training
since the online training algorithm cannot be easily parallelized
across multiple machines. To address this, we optimized our multi-
threaded QuickNet code to run on an 8-core server in a quasi-online
batched mode: each network update is performed using the feed-
forward error signal accumulated from a batch of 2048 randomized
input frames. Additionally, we decrease the training time by par-
titioning the training data and applying the learning schedule de-
scribed in [9].

A cross-word triphone model with the ICSI-feature is trained
with an MPE [10, 11] objective function, and an SAT feature trans-
form, based on 1-class constrained MLLR [12]. Decision-tree based
HMM state clustering [13] is applied. There are 3500 shared states,
each with 128 Gaussians. This model size is denoted as 3500x128.

2.2, System-PLP

The second acoustic system contains 42-dimension features with
static, first- and second-order derivatives of PLP features. Simi-
larly, a 3500x128 cross-word triphone model with the PLP-feature
is trained with an MPE objective function and an SAT feature trans-
form, using decision-tree based state sharing. Moreover, to compete
with the ICSI-model which has a stronger feature representation,
an fMPE [14] feature transform is learned for the PLP-model. The
fMPE transform is trained by computing the high-dimension Gaus-
sian posteriors of 5 neighboring frames, given a 3500x32 cross-word
triphone ML-trained model with an SAT transform. Therefore, in

Yt = Tt + Mhy,

the dimension of h; is bigger than 3500 * 32 * 5 = 560K (includ-
ing context-independent Gaussians), and M is on the order of 42 x
560K.

To tackle spontaneous speech which occurs more often in BC
shows than BN, and which tends to be spoken more quickly than
narrative speech, we introduce a few diphthongs in the PLP-model
as shown in Table 4, where phone names are case-sensitive and vow-
els with no tone represent all four tones. The addition of diphthongs
naturally removes the need for the syllable-ending Y and W sounds.
Combining two phones into one reduces the minimum duration re-
quirement by half and hence is likely better for fast speech. Addi-
tionally the 72-phone set does not model the neutral tone, or tone
5, but instead the third tone is used as a replacement. As there are a
few very common characters that are 5-th tone, we add three neutral-
tone phones for them. Furthermore, we add the context-independent
phone /V/ for the v sound in English words, as this phone is missing
in Mandarin but not difficult at all for Chinese people to pronounce
accurately. For the two common filled-pause characters (JE,78), we
use two separate context-independent phones to model them individ-
ually, so that they are not sharing parameters with regular Chinese
words. In addition, to keep the size of the new phone set manage-
able, we merge /A/ into the /a/ sound, and both /I/ and /IH/
into /i/. We rely on triphone modeling to distinguish these allo-
phones of the same phoneme. Finally, the 72-phone set does not
model the somewhat-rare phone /I2/ as in I7; instead we use
/I1/. Thus with /I2/ represented by /12 /, the second tone of
the non-retroflex /1i/ sound is now modeled correctly. To sum up,
the new phone set has 81 base phones, including three extra context-
independent phones.
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Table 4. Difference between the 72-phone and 81-phone sets. As-
terisks indicate context-independent phones.
l example [ phone-72 [ phone-81 [ #additions ‘

= aW aw +4-1
it EY ey +4-1
H oW ow +4
& ayY ay +4
Z@ AN aN -4
X I i 3
R H i 4
T e3 e5 +1
ng a3 a5 +1
¥ i3 i5 +1
victory w % +1
WE 03 fpo* +1
mE e3N fp_en* +1
Total +9

3. DECODING ARCHITECTURE

Figure 2 shows a simplified representation of our recognition archi-
tecture.

Fig. 2. System decoding architecture. Single arrows represent top 1
word sequence output, while block arrows represent top-n best word
sequences.
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GALE test data comes in as per-show recordings; however, only
specified segments (usually a few minutes long per segment) in each
recording need to be recognized. Instead of feeding the whole show
into our decoder, we segment each 0.5-1 hour of recording into ut-
terances of a few seconds long, separated by long pauses, and run
utterance-based recognition. Next we perform speaker clustering us-
ing Gaussian mixture models of static MFCC features and K-means
clustering. We call these speakers auto speakers. Vocal tract length
normalization (VTLN) is then performed for each auto speaker, fol-
lowed by utterance-based cepstral mean normalization (CMN) and
cepstral variance normalization (CVN).



3.1. Acoustic Segmentation

In error analysis of our previous system, we discovered that deletion
errors were particularly serious. Deletion errors not only degrade
ASR performance, but are particularly bad for downstream process-
ing such as machine translation; their effect is worse than insertion
errors. Our system has a noise phone to model garbage/noises. We
found that some of the deletion errors were caused by false alarm
garbage words. To control these garbage false alarms, we introduce
a garbage penalty into the decoder, which is successful in remov-
ing some deletion errors. However, most of the deletion errors came
from dropped speech segments due to faulty acoustic segmentation.
Therefore, we attempt to improve acoustic segmentation such that
not only fewer speech segments are dropped, but new insertion er-
rors are simultaneously avoided [15].

3.1.1. Previous Segmenter

Our previous segmenter is a speech-silence detector given the whole-
show recording. A recognizer is run with a finite state grammar
as shown in Figure 3(a). There are three words in the vocabulary
of the decoder: silence, noise, and speech, whose pronunciations
are shown in the figure. Each pronunciation phone (bg, rej, £g)
is modeled by a 3-state HMM, with 300 Gaussians per state. The
HMMs are ML trained on Hub4, with 39-dimension features of
MEFCC and its first-order and second-order differences. The seg-
menter operates without any knowledge of the underlying phoneme
sequence contained in the speech waveform. More seriously, due
to the pronunciation of “speech”, each speech segment is defined as
having at least 18 consecutive £gs, which forces any speech segment
to have a minimum duration of 540 ms.

Fig. 3. Acoustic segmenters: (a) previous segmenter, (b) new seg-
menter.

end end

start start
silence /bg bg/

\‘ Onoise /rej rej/
O ) I€)

speech /fg"™"/

silence /bg bg/
Onoise Jrej rej/

man; /11 F/

man, /12 F/
(2) eng /forgn forg (b)

After speech/silence is detected, segments composed of only
silence and noises are discarded. The segmenter then attempts to
merge short speech segments into at most 9 seconds long per utter-
ance, if it judges that two consecutive segments are from the same
speaker (based on MFCC Gaussian-mixture models) and the pause
in between is under a certain threshold.

3.1.2. New Segmenter

Our new segmenter, shown in Figure 3(b), makes use of broad pho-
netic knowledge of Mandarin and models the input recording with
five words: silence, noise, a Mandarin syllable with a voiceless ini-
tial, a Mandarin syllable with a voiced initial, and a non-Mandarin
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word. Thus there are 6 distinct HMMs for speech-silence detection
and the minimum speech duration is reduced to 60 ms. Except for
the finite state grammar and the pronunciations, the rest of the seg-
mentation process remains the same. As shown later in Section 4.1,
we are able to recover most of the discarded speech segments via the
new finite state grammar and the new duration constraint.

3.2. Search with Trigrams and Cross Adaptation

The decoding is composed of three trigram recognition passes:

1. ICSI-SI: We begin with a quick search using a speaker-
independent (SI) within-word triphone MPE-trained ICSI-
model and the highly pruned trigram LM. This gives us a
good initial adaptation hypothesis quickly.

2. PLP-Adapt: Next we use the ICSI hypothesis to learn the
speaker-dependent SAT transform and to perform MLLR
adaptation [12] per speaker, on the cross-word triphone
SAT+fMPE MPE trained PLP-model.

After the acoustic model is adapted, we then run full-trigram
decoding to produce an N-best list for each utterance.

3. ICSI-Adapt: Similar to PLP-Adapt, we run cross adaptation
first, using the top 1 PLP hypothesis to adapt the cross-word
triphone SAT MPE trained ICSI-model, followed by full-
trigram decoding to produce N-best lists.

3.3. Topic-Based Language Model Adaptation

We perform topic-based language model adaptation using a Latent
Dirichlet Allocation (LDA) topic model [16, 17]. The topic infer-
ence algorithm takes as input a weighted bag of words w (e.g. in
one topic-coherent story) and an initial topic mixture ° and returns
a topic mixture 8. During training, we label the topic of each indi-
vidual sentence to be the one with the maximum weight in 8, and add
the sentence to this topic’s corpus. We then use the resulting topic-
specific corpora to train one n-gram LM per topic [18]. The general
LMs trained in Table 2 are called topic-independent (TT) background
LMs.

During decoding, we infer the topic mixture weights dynami-
cally for each utterance; select the top few most relevant topics above
a threshold, and use their weights in 6 to interpolate with the TI n-
gram background language model.

In order to make topic inference more robust against recognition
errors, we weight the words in w based on an N-best-list derived
confidence measure; additionally we include words not only from
the utterance being rescored but also from surrounding utterances in
the same story chunk via a decay factor, where the words of distant
utterances are given less weight than those of nearer utterances. As
a heuristic, utterances that are in the same show and less than 4 sec-
onds apart are considered to be part of the same story chunk. The
adapted n-gram is then used to rescore the N-best list.

4. EXPERIMENTAL RESULTS

4.1. Acoustic Segmentation

Tables 5 and 6 show the CERs with different segmenters at step ICSI-
SI and step PLP-Adapt, respectively, on eval06. The error distribu-
tions and our manual error analysis both show that the main benefit

2For various legacy and computation reasons, the actual implementation
is to use a pruned bigram to dump word lattices quickly first, and then expand
the bigram lattices into full trigram lattices, from which we then extract N-
best lists.



of the new segmenter is in recovering lost speech segments and thus
in lowering deletion errors. However, those lost speech segments are
usually of lower speech quality and therefore lead to more substitu-
tion and insertion errors. For comparison, we also show the CERs
with the oracle segmentation as derived from the reference transcrip-
tions. These results show that our segmenter is very competitive.

Table 5. CERs at step ICSI-SI on eval06 using different acoustic
segmenters.

Segmenters | Sub [ Del [ Ins [ Overall
Previous segmenter | 9.7 | 7.0 | 1.9 18.6
New segmenter 99 | 64 | 2.0 18.3
Oracle segmenter 95| 6.8 | 1.8 18.1

Table 6. CERs at step PLP-Adapt on eval06 using different acoustic
segmenters.
Segmenters

| Sub [ Del [ Ins [ Overall
Previous segmenter | 9.0 | 5.4 | 2.0 16.4
New segmenter 92| 48 | 2.1 16.1
Oracle segmenter 88 | 53 |20 16.1

4.2. MLP Features

Since Mandarin is a tonal language, it is well known that adding
pitch information helps with speech recognition [19]. For this rea-
son, we investigate adding pitch into the input of the Tandem neural
nets. For quick verification, we used Hub4 to train within-word tri-
phone ML models. Table 7 shows the SI bigram CER performance
on eval04. Pitch information obviously provides extra information
for both the MFCC front end and the Tandem front end.

Table 7. SI bigram CERs on eval04, using 30 hours of acoustic
training data for within-word triphone ML models.
HMM Feature MLP Input | CER |

MFCC — 24.1
MFCC+F0 — 21.4
MFCC+F0+Tandem | PLP 20.3
MFCC+F0+Tandem | PLP+F0 19.7

To compare the impact of different phoneme posterior combina-
tion methods, we trained all neutral networks with the 866 hours of
training data. Then to have a fast turnaround, we trained two within-
word triphone ML models with 98 hours of data (Hub4 and a subset
of TDT4). One model was trained using the MLP feature combined
by the inverse entropy method, the other by Dempster-Shafer. Table
8 suggests the superiority of the Dempster-Shafer approach, where
the first column is speaker independent recognition and the second
column with unsupervised MLLR adaptation using the first-pass out-
put.
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Table 8. CERs on eval04, using different methods of combining
Tandem and Hats features. The acoustic models were within-word
triphones, ML trained on 98 hours of data.

Combo Method First-pass | Spkr-adapt
Inverse Entropy 17.6 16.5
Dempster-Shafer | 17.0 16.4

4.3. Cross Adaptation Using Outside Regions

To increase the amount of unsupervised adaptation data, we also de-
code those speech segments outside the specified testing range. Par-
ticularly, we decode 60 seconds before and after each specified test-
ing range. If any utterance in these outside regions is classified as
one of the auto speakers in the “inside” region, it is then added into
MLLR adaptation.

The top three rows of Table 9 show how CERs change as we
increase the amount of unsupervised acoustic adaptation data, on
dev07. dev07-0 means no outside region is used in either acoustic
segmentation or adaptation. dev07-60-inside means the +60s out-
side regions are used during acoustic segmentation, but not during
AM adaptation. As our acoustic segmenter is affected by the sur-
rounding context, the acoustic segmentations from dev07-0 and that
from dev07-60-inside can be different. dev07-60 means the outside
regions are used in both acoustic segmentation and AM adaptation.
Note that dev07-60-inside and dev07-60 thus have identical acoustic
segmentation.

Unfortunately, it seems that most of the improvement comes
from better acoustic segmentation rather than from more AM adap-
tation data, perhaps because the speaker boundary information is not
very accurate, or maybe because the MLLR regression classes need
to be learned using a more sophisticated approach. 3

Table 9. Decoding progress on dev07. All AMs are adapted. The
top three rows use the full trigram.

Step PLP-Adapt | ICSI-Adapt
dev07-0 12.4 -
dev07-60-inside 12.1 -
dev07-60 12.0 119
adapted

pruned 4-gram (a) 11.7 (b)11.4
static

full 4-gram (c)11.9 (d) 11.7
(a)+(b) CNC 11.2

(c)+(d) CNC 11.4
(a)+(b)+(c)+(d) 11.2

4.4. Pronunciation Phone Sets

Table 10 shows the CERs on dev07 with the two different phone sets,
using dev07-60 acoustic segmentation from Table 9. To perform a
fair comparison, two within-word triphone PLP models were ML
trained with the 866 hours of data: one with the 81-phone set and

3Currently the MLLR regression classes are fixed 3 or 4 classes (si-
lence/noises, consonants, and vowels).



the other with the 72-phone set. These comparisons were conducted
with the SI models and the pruned trigram in Table 2.

Table 10. CERs on dev07 using different phone sets. The AMs are
SI PLP-feature ML trained within-word triphones. The LM is the
pruned trigram.

| BN | BC | Avg |
phone-81 | 7.6 | 27.3 | 18.9
phone-72 | 7.4 | 27.6 | 19.0

A careful analysis reveals that the improvement in the BC por-
tion from the 81-phone set is completely due to the reduction in dele-
tion errors. Therefore, despite the modest overall improvement, the
new phone set achieves our goal of generating different error pat-
terns.

4.5. Adaptation on Language Models

Due to memory constraints, we are unable to adapt the full 4-gram
LM. Instead, we train 64 topic dependent 4-grams and interpolate
them with the TI pruned 4-gram in Table 2.

During decoding, the N-best lists of both the adapted PLP sys-
tem and the adapted ICSI system are used to compute the topic mix-
ture weights @, and the most relevant topics (those whose weights
in @ are above a threshold) are then selected and interpolated with
the TI pruned 4-gram, on a per-utterance basis. An adapted 4-gram
is finally applied to rescore the N-best list of each utterance. The
result is shown in the fourth row in Table 9. Compared with the full
static TI 4-gram in the next row, the adapted 4-gram is slightly albeit
consistently better.

4.6. System Combination

Finally, a character-level confusion network combination of the two
rescored N-best lists yields a 11.2% CER on dev(7, as shown in the
row of “(a)+(b) CNC” in Table 9. When the entire system of Figure
2 is applied to eval06, we reduce the CER from 18.4% a year ago to
15.3%.

5. FUTURE WORK

This paper presents a highly accurate Mandarin speech recognizer.
We have made significant progress over a one year time frame, in-
cluding improving our MLP discriminative features, different pro-
nunciation phone sets, acoustic segmentation, language model adap-
tation and increased training corpora.

Anecdotal error analysis on dev07 shows that diphthongs did
help in examples such as LK (/b ey3 d ay4/, Beijing University),
and merging /A/ and /a/ was not harmful. But merging /I/ and /IH/
into /i/ seemed to cause somewhat more confusion among characters
such as (5&, %, 1)=(shi,zhi,di). Perhaps we need to reverse the last
decision.

The topic-based LM adaptation is simple and fast. However, we
are not satisfied with the current degree of improvement. Further
refinement in the algorithm and in the implementation is needed to
adapt the full 4-gram and obtain greater significance. Our previous
study [8] showed that full re-recognition with the adapted LM of-
fered more improvement than N-best rescoring. Yet the computation
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is expensive. A lattice or word graph re-search is worth investigat-
ing.
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