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ABSTRACT

We propose a technique for annotating data used to train a speech
recognizer. The proposed scheme is based on labeling only a sin-
gle frame for every word in the training set. We make use of the
virtual evidence (VE) framework within a graphical model to take
advantage of such data. We apply this approach to a large vocabu-
lary speech recognition task, and show that our VE-based training
scheme can improve over the performance of a system trained using
sequence labeled data by 2.8% and 2.1% on the dev01 and eval01
sets respectively. Annotating data in the proposed scheme is not sig-
nificantly slower than sequence labeling. We present timing results
showing that training using the proposed approach is about 10 times
faster than training using sequence labeled data while using only
about 75% of the memory.

1. INTRODUCTION

One of the obstacles to large scale adoption of speech recognition
technology is lack of robustness in current state-of-the-art speech
recognizers. In order for recognizers to be practical, it is important
that they are robust towards various types of noise, speaker specific
variations, changes in recording device setting, etc. One of the sim-
plest ways of building robustness into a speech recognition system is
to increase the amount of training data. Today state-of-the-art speech
recognizers use thousands of hours of training data, collected from
a large number of speakers with various backgrounds [1]. Yet an-
other way to build robustness into a recognition system is to train
it on hand-transcribed data with all appropriate word level segmen-
tations (i.e. the exact time of the word boundaries are given). In
[2], we showed that phone recognition systems can benefit from be-
ing trained on such data. However in the case of LVCSR systems,
such segmentations are extremely hard to get and thus training using
sequence labeled data (see below) been used extensively.

There are three ways to annotate data used to train a speech rec-
ognizer in a non unsupervised fashion: (a) fully-labeled (FL): all
appropriate word level time segmentations (i.e., all word boundary
points) are known, (b) sequence labeled (SL): only the sequence of
words in an utterance is given, which implies their segmentations
are unknown during training, and (c) a technique introduced by us
in [2], which we call partially-labeled (PL): in addition to the word
sequence, we also know the word identity of at least one frame (the
acoustic observation) that was produced by each word in every utter-
ance in the training set. In terms of human supervisory effort, FL and
SL cases represent the extremes, whereas our PL method, lies some-
where in between the two. In the case of FL data, learning usually
involves tuning emission distributions (the model may need to learn
intra-word segmentations). On the other hand, in the SL case, in ad-
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dition to the intra-word segmentation and the emission distributions,
the recognizer also learns the inter-word segmentations.

In the general context of learning, training using FL data falls
more into the category of supervised learning.1 Training a speech
recognizer using SL data is an instance of semi-supervised learning
[3], and a more general semi-supervised learning setting involves
training using both labeled and unlabeled data. In the case of speech
recognition, this means we have transcripts (in most cases in the SL
form) for a subset of the training data, and no annotations for other
parts of the training data. One popular approach to semi-supervised
learning is self-training. Self-training has been used in the past to
train speech recognizers [4, 5, 6, 7]. In most of the above approaches,
a previously trained recognizer is used to generate transcripts for
unlabeled data, which are then used to re-train the recognizer after
rejecting the erroneous transcripts based on some measure of recog-
nizer confidence. The algorithms usually differ in the way the rec-
ognizer confidence is measured and the manner in which erroneous
parts of the transcript are handled. For example, in the case of lightly
supervised training [7], the output of the recognizer is compared
against closed-captions to determine the reliable regions. In addi-
tion, a language model is also used to generate confidence values.
Such approaches are particularly useful while developing recogni-
tion systems in languages for which large amounts of annotated data
do not exist. The success of self-training based approaches largely
depends on accurate estimation of recognizer confidence. While in
tasks such as broadcast news, we can make use of closed-captions
to estimate these confidence values, in the case of conversational
speech, we do not have access to closed-captions and thus confi-
dence estimation is a challenging problem.

While the techniques proposed in this paper may be extended
for semi-supervised learning, the focus of this paper is to introduce
a new method for annotating speech data and show how it can be
used to train large vocabulary speech recognition (LVCSR) systems.
If the amount of training data is fixed and finite, the FL case con-
tains at least as much information about the hidden variables as SL
data. In addition, under the above assumptions, a learner trained on
FL data can potentially outperform a similar learner trained on SL
data [2]. In the case of speech recognition, however, SL data is usu-
ally employed for training as obtaining FL data involves significant
human effort. Further, in the case of continuous speech, accurate
word segmentations are sometimes difficult to obtain as a result of
co-articulation and/or word-boundary ambiguity. To illustrate this
difficulty, consider the spectra shown in figure 1. In the first spectro-
gram, as a result of co-articulation, the boundary between the words
“one” and “winter” is not clearly defined. In the second case, the
boundary between all the three words is ambiguous at best. Listening
to these utterances only strengthens this point 2. In such cases, pro-

1Of course, since only word and not phone segment information is known,
this still would not be a fully supervised learning setting.

2Manual segmentation of word segmentation for the above two exam-

484978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007



Fig. 1. Spectra of cuttings obtained from Switchboard conversation
sw02423. The first figure was obtained by cutting the B-channel
from 1:44:741s to 1:45:704s and the second one was obtained by cut-
ting the A-channel from 8:05:530s to 8:06:622s. The arrows show
word boundaries hypothesized by speech researchers asked to anno-
tate these cuttings.

viding accurate word level segmentations with high inter-annotator
agreement is difficult, certainly extremely costly, and might be im-
possible. On the other hand, it is extremely easy to label a frame that
belongs somewhere in the middle of each of these words.

In this work, we propose a technique to label training data for
speech recognition that does not require the annotator to provide ac-
curate segmentation information (i.e. the FL case). The proposed
scheme requires the annotator to provide only labels for at least one
frame associated with each word in all the utterances. We show that
annotating speech data using the proposed approach is about 3 times
as fast as fully-labeling, and only about 2 times slower than sequence
labeling. Thus, in comparison to providing accurate segmentation
information, this method involves a significantly smaller amount of
human effort, but only slightly more effort than annotating the se-
quences. Furthermore, it removes the possibility of labeling errors
at word boundaries since the annotator need only provide labels on
or near the center of the word. In the past, this annotation technique
has been successfully applied to activity recognition [8] and phone
recognition domains [2]. The training algorithm uses the notions of
virtual evidence (VE) [9]. VE based ASR systems have been suc-
cessfully used in the past to help decoding [10, 11], but to the best of
our knowledge this paper presents the first system to express train-
ing uncertainty and show improvements using VE in the LVCSR
domain.

It is important to highlight that, while all models in this paper
are generatively trained using the expectation maximization (EM)

ples by 5 seasoned speech researchers yielded boundaries with a standard
deviation of 95ms. The speech files used in figure 1 may be obtained here:
http://ssli.ee.washington.edu/˜asubram/annotation-examples
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Fig. 2. Virtual Evidence Training Graph.

algorithm [12], data in the proposed approach can easily be used for
discriminative training. Further it is possible to train systems using
a combination of data in FL, SL and PL formats. For example, if we
had access to say, 2000 hours of SL data, and, 200 hours of PL data,
we can use both the SL and PL data to train a recognizer (see section
7).

2. BASELINE SYSTEM

The probabilistic models used for parameter training are expressed
using Dynamic Bayesian Networks (DBNs). The baseline model is
equivalent to a standard speech recognition Hidden Markov Model
(HMM), but expressing it as a DBN allows us to extend the baseline
to include Virtual Evidence training.

The training graph is given in Figure 2. For a detailed descrip-
tion of how speech recognition systems can be represented using
DBNs see [13], a brief introduction will be given here. The shaded
circles represent observed variables and non-shaded circles repre-
sent hidden variables. Deterministic relationships are given by solid
arrows, random dependencies are wavy, and value specific “switch-
ing” dependencies are dashed arrows. The Word Counter, labeled
Wc, keeps track of the position in the current word sequence. Vari-
ableW is a deterministic hidden variable that represents the identity
of the word. The value of W can be uniquely determined from Wc

since the word sequences are known. Word Transition,Wtr , is a bi-
nary variable that indicates if the graph is currently on the last frame
of a word. WhenWtr is false,Wc gets its value from theWc in the
previous frame. WhenWtr is true,Wc changes its value to the next
word in the sequence. Pronunciation, Pr , is a random variable that
chooses what dictionary pronunciation is being used for the given
word. Pc is the Phone Counter and it indicates the current position
in the sequence of phones associated with the given word and pro-
nunciation. The Phone variable, Ph, gives the identity of the current
phone. Phone Transition, Ptr , is a binary variable that indicates if
the graph is in the last frame of the current phone. Each phone model
is represented by a sequence of three states, and the State Counter,
Sc, keeps track of what state the model is in. State Transition, Str ,
is a binary random variable that determines if the model should stay
in the same state or transition to the next. The State variable, S, de-
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termines what mixture model to use, and the Observation, O, is the
observed feature vector. The variable V is always observed to be 1
and is introduced into the model so that we can represent VE. It is
not used in the baseline (SL) system. It is described in detail in the
following section.

3. VIRTUAL EVIDENCE

In this section we introduce the notion of VE. Consider a DBN over
n random variables (rv) {X1, . . . , Xn}. Evidence simply means
that, by some external process, we have come to know the value
of a set of rvs in the model. For example, if without the loss of
generality (w.l.o.g) X1 = x̄1 is given, the joint distribution is no
longer a function of x1 and is given by p(x̄1, . . . , xn). Such evi-
dence is sometimes also referred to as specific evidence. Specific
evidence in a model can also be represented in another way by treat-
ing x1 as hidden, but introducing a new variable V into the network
(V /∈ {X1, . . . , Xn}). The variable V is made the child of x1 (or in
general the child of the sets of variables on which we have evidence)
and their relationship is expressed as

p(V = 1|x1, . . . , xn) = δ(X1 = x̄1) (1)

where δ(x, y) returns a 1 when x is equal to y, and 0 on all other
occasions. As a result we have that,

X
x1

p(V = 1,x1, . . . , xn) (2)

=
X
x1

p(V = 1|x1, . . . , xn)p(x1, . . . , xn) (3)

=
X
x1

p(V = 1|x1)p(x1, . . . , xn) (4)

=
X
x1

δ(x1 = x̄1)p(x1, . . . , xn) (5)

= p(x̄1, . . . , xn). (6)

Now consider setting p(V = 1|x1) = κf(x1), where f() is an
arbitrary non-negative function and κ is a normalization factor so
that p(V = 1|x1) is a valid probability density function (pdf). With
this, different treatment can be given to different assignments to x1,
but unlike hard evidence, we are not necessarily insisting on only
one particular value. This is referred to as virtual evidence (VE). In
practice, the value of κ does not effect the results of inference (see
[14] for details). In essence, the VE framework allows us to deal
with situations when we have evidence represented as a distribution
over the domain of a set of rvs 3. There is in fact a relationship
between VE and priors used in Bayesian inference, but they are not
exactly the same. More details about this can be obtained in [14].

4. PROPOSED ANNOTATION SCHEME

Figure 3 shows the time and frequency domain renditions of a speech
segment obtained from Switchboard conversation sw40046 B. The
utterance in this segment is “what was the other” 4. If the training
data included the time points t1, t4, t7, t10, and, t13, and also that the

3Does not necessarily have to be a probability measure, any Lebesgue
measure will suffice.

4Note that in figures 3, 4, the solid-blue vertical lines showing the seg-
mentations between words are not necessarily the best segmentations. In
fact, the “best” segmentation might not even exist (see Figure 1). Rather,
these figures illustrate the basics of the proposed algorithm.

word “what” started at time t1 and ended at time t4, “was” started
at t4, and so on, then this would be FL data. In other words, we
have the exact start and end times of all the words in the utterance.
This is depicted below the spectrogram in figure 3 where the shaded
regions mark the start and end of each word. Annotating thousands
of hours of data with such word segmentation information is not only
time consuming, but in many circumstances may be impossible. As
shown in figure 1, co-articulation effects in conversational speech
lead to fuzzy word boundaries. Thus, the general training scenario
in most large vocabulary speech recognition systems does not have
access to these starting/ending times, and they are trained knowing
only the sequence of word labels (e.g., that the word “other” follows
the word “the” follows the word “was” and so on).

Consider a new transcription based on Figure 4 5, where the an-
notator, for every word in the corpus, only labels a region some-
where within the start and end of the word. For example, in the case
of the word “was”, whose actual start and end times are t4 and t7
respectively, we are given that a part this word occurred in the re-
gion [t5, t6], t4 ≤ t5 < t6 ≤ t7. Similarly we are given that in
the region [t8, t9], a part of the word “the” was uttered. The region
[t6 + 1, t8 − 1] is left unlabeled. Thus, in the proposed scheme, the
annotator no longer labels frames in the word transition regions, but
on the other hand, provides labels for the unambiguous (and there-
fore more reliable) parts (i.e. on or near the center of the word).
This technique of annotation results in PL data. Given the anno-
tations in figure 4, we know that Wt = “was”, ∀ t5 ≤ t ≤ t6,
Wt = “then”, ∀ t8 ≤ t ≤ t9, and no other word, except for
“was” or “then”, was uttered in the region [t6 + 1, t8 − 1]. It is
clear that the word “was” ended at some t′ ∈ [t6 + 1, t8 − 1],
and the word “the” began at time t′ + 1. This implies that Wt ∈
{“was”,“the”}, ∀ t6 + 1 ≤ t ≤ t8 − 1. In other words, the value
of the word variable in the unlabeled region ([t6 + 1, t8 − 1]) must
be either “was” or “the”. Thus in the case of PL data, in the labeled
regions we know the identity of the word variable, whereas in the
unlabeled regions, we know a set of possible values that the word
variable could take on.

Next we address how PL data can be used within the VE frame-
work. We first introduce an observed child Vt of the word vari-
able in the training graph in figure 2. In the following we define
W1 � “was”, and, W2 � “the”. The conditional probability table
(CPT) for Vt, t5 ≤ t ≤ t9 is given by

p(Vt = 1|Wt) (7)

=

8>>>>><
>>>>>:

1 if Wt = W1 & t5 ≤ t ≤ t6,

ft(W1) if Wt = W1 & t6 + 1 ≤ t ≤ t8 − 1,

gt(W2) if Wt = W2 & t6 + 1 ≤ t ≤ t8 − 1,

1 if Wt = W2 & t8 ≤ t ≤ t9,

0 otherwise,

(8)

where ft(W1) and gt(W2) represent our relative beliefs in whether
the value ofWt, t5 ≤ t ≤ t9 is either “was” or “the”. It is important
to highlight that rather than the absolute values of these functions,
it is their relative values that have an effect on inference [14]. Note
that the above CPT can be defined for any two consecutive words in
a similar manner.

There are number of different ways of choosing f(.) and g(.).
We could set ft(W1) = gt(W2) = β, β > 0. This encodes our
uncertainty regarding the identity of the word in unlabeled region
while still forcing it to be eitherW1 orW2, and equal preference is

5Same utterance as shown in Figure 3.
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W2= was W3= the

2t 4t 5t 6t 7t 10t 13t1t

what was the other

W1= what

3t 8t 9t

W4= other

11t 12t

Fig. 3. Fully-Labeled (FL) case

W2= was W3= the W4= other

2t 4t 5t 6t 7t 10t 13t1t

what was the otherunlabeledunlabeled

W1= what

3t 8t 9t 11t 12t

unlabeled

Fig. 4. Proposed Partially-Labeled (PL) case

given for both (referred to as “uniform over two assignments” in the
rest of the paper). Alternatively, other functions could take into ac-
count the fact that, in the frames ‘close’ to t6,Wt is likely to beW1,
whereas in the frames ‘close’ to t8, W2 is more likely. This can be
represented by using a decreasing function of time for ft(W1) and
an increasing function of time for gt(W2) (for example linearly in-
creasing or decreasing with time). In the past, we have found that the
“uniform over two assignments” approach performs better than the
interpolation based approaches for both activity and phone recogni-
tion tasks (see [8, 2]). The success of interpolation based approaches
relies on having access to (a) an estimate of the word durations, and
(b) the position of the labeled frame relative to the start or end of
the word (e.g. middle of the word). In the absence of the above,
interpolation based approaches can lead to reduced performance as
a result of over (or under)-weighting a particular assignment. Thus,
in this paper we only use the “uniform over two assignments” tech-
nique in all our experiments (see section 7 for a further discussion
on this topic).

In the above we suggested one way of generating the proposed
PL data. PL data can also be generated by taking FL data and then
dropping labels of frames around word transitions. As more labels
are dropped around transitions (e.g., as t6 − t5 decreases), we use
smaller amounts of labeled data. In an extreme situation, we can
drop all the labels (t6 < t5) to recover the case where only se-
quence and not segment information is available. Alternatively, we
can have t6 = t5 + 1, which means that only one frame is labeled
for every word in an utterance — all other frames of a word are
left un-transcribed. Once again, note that, from the perspective of
a transcriber, this simulates the task of going through an utterance
and identifying only one frame that belongs to each particular word
without having to identify the (potentially ill-defined) word bound-
aries. In contrast to the task of determining the word boundaries,
identifying one frame per word unit is much simpler and less prone
to error [15, 16].

5. ANNOTATION TIMING EXPERIMENT

In order to compare the annotation times for SL, PL and FL formats,
we asked 8 native American English speakers to annotate Switch-
board utterances in the three formats. In each case, the annotators
were given 9 utterances (each of length ≈ 15 seconds) chosen ran-
domly from the Switchboard training set. They were instructed to
annotate 3 utterances each in the SL, PL and FL formats. In the
case of SL, the annotators simply listened to the speech file and gave

Annotation Type FL PL SL
Mean 0.052 0.134 0.272
Std. Dev. 0.056 0.097 0.302

Table 1. Mean and Standard Deviations of number of words anno-
tated per sec for Switchboard. There were a total of 8 annotators in
the test.

the sequence of words, in the FL case, the annotators were asked to
label the start and end times of all the words in the speech file as
accurately as possible, and for the PL case, the annotators were in-
structed to simply mark one time point that belonged to each word.
The means and standard deviations of the number of words anno-
tated per second by the annotators for the three formats is shown in
table 1. As expected annotation time in the case of SL is the small-
est (i.e. most number of words per second), FL the largest and PL
lies between the two. Also, given a fixed amount of time, if one can
annotate X words in FL format, it is possible to annotate about 3X
words in PL format, and about 5X words in SL format. Further we
found that in the PL case, a large majority of annotations were close
to the center of the word (even though there were no explicit instruc-
tions to do so). We also collected the following informal feedback
from the participants: (a) SL case was the easiest to annotate, both
in terms of time taken and the amount of effort involved, (b) most
annotators felt that it was very tedious to do annotations in the FL
format, and finally, (c) some annotators felt that the PL case was not
much more difficult than the SL case.

6. EXPERIMENTAL RESULTS

All systems in this paper were trained using 248 hours of Switch-
board I [17] data. One issue with applying the proposed technique
is the unavailability of PL Switchboard I data. In order to overcome
this impediment, we used the following procedure to mimic a human
annotator who labels speech data in the proposed approach: word
level time annotations for Switchboard I were determined from a
forced alignment using the state-of-the-art Microsoft Research large
vocabulary decoder. Next, as explained in section 4, PL data was
generated by dropping labels for frames around word transitions (see
figure 4). For example, in order that there be n unlabeled frames in
a word, we dropped labels on the first and last n/2 frames of that
word (assuming n is even). If the total number of frames in the
training set is Δ, and we drop labels on δ frames, the amount of
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FL PL SL
U = 0% U = 96.8% U = 100%

Dev Set (dev01) 54.9 53.3 56.1
Eval Set (eval01) 53.1 51.8 53.9

Table 2. WER obtained on the 2001 Development and Evaluation
sets. U represents the amount of unused labeled data.

unused data is given by U = δ
Δ

∗ 100. It is important to note that
PL data generated using the procedure described above differs from
manually generated PL data due to two reasons, (a) there are inher-
ent segmentation errors in the forced alignments, and, (b) the labeled
frame(s) is(are) always at the center of each word. While this cannot
be guaranteed in practice, we found that a large majority of the PL
data in the annotation experiment had labels close to the center of the
word (see section 5). In addition, our proposed PL approach is ro-
bust to word segmentation errors as only labels on or near the center
of each word are necessary. To summarize, we ran forced alignment
to obtain word level segmentation information. These segmentations
were used as FL data. We dropped labels from the FL data to yield
PL data. Forced alignment was done using transcriptions obtained
from [18]. The same transcriptions were also used as SL data. Note
that in the case of FL data word level segmentations were fixed dur-
ing training, whereas in the case of both PL and SL systems the
model had to learn the word level segmentations.

To obtain the acoustic observations, the conversations were first
segmented, and then windowed using a Hamming window of size
25ms at 100Hz. We then extracted 13 PLP coefficients from these
windowed features. Deltas and double deltas were appended to
the above observation vector. All features were mean and variance
normalized on a per-conversation side basis. The acoustics were
modeled using 10,117 Gaussian mixtures, each representing a state-
clustered within-word triphone [19]. All results reported in this pa-
per were obtained using a system with 32 Gaussians per mixture.
The language model was a bigram trained using approximately 22M
words from Fisher and 3M words from Switchboard. The vocabu-
lary was chosen as the 64,000 most frequent words in the training
data. All training was performed using GMTK [13] and decoding
was done using HTK [20]. In the case of the Switchboard corpus,
using a single labeled frame for each word in every utterance corre-
sponds to U = 96.8%6. Note that U = 100% is the SL case, while
U = 0% is the FL case. In each case the systems were trained using
the EM algorithm.

The results of our experiments are shown in Table 2. All WER
numbers are a result of first pass decoding (i.e. no re-scoring). In
order to ensure a rapid turn-around time for our experiments, we do
not use any form of adaptation (e.g. MLLR, SAT or VTLN), nor
any of the standard front-end procedures (e.g. HLDA) that are com-
mon in LVCSR systems [1]. The language model (LM) scale and
word insertion penalty (WIP) values were obtained by performing
a grid search to optimize the performance on the development set.
The results show that the system trained on PL data improves over
the performance of the SL system by 2.8% on the development set
and 2.1% in the case of the evaluation set. The FL system showed an
improvement of about 1.2% over the SL system. This indicates that
speech recognition systems can benefit from being trained on fully-
labeled data. Further, it can be seen that the PL system outperforms
the FL system by 1.6%. While this could be due to errors in the word
segment boundaries generated using forced alignment, it is probably

6Average Number of Frames per word in Switchboard I is 31.78, while
average number of words per “utterance” is 13.85.

FL PL SL
Time Speed-Up 13.23 9.49 1

Relative Memory Usage 0.534 0.745 1

Table 3. Comparison of per-utterance inference time speed-ups and
memory usage in the cases of using fully-labeled, proposed partially-
labeled and sequence-labeled data for training. All entries in the
table are shown relative to the corresponding SL case result. The
inference times and memory usage statistics were measured using
GMTK [13].

the case that even human transcriptions will not fix these errors since
there is much inter-annotator disagreement at these word boundaries
(see Section 1). These results suggest that even when one has ac-
cess to automatically generated word level segmentation information
(from a state-of-the-art system), it is advantageous to transform the
data into PL form for system training.

We also ran an experiment to quantitatively determine the equiv-
alence between SL and PL data. In other words, find x and y such
that, a system trained on x hours of SL data, and a system trained
on y hours of PL data, yield similar performances. In the SL case,
we used the system trained on all of Switchboard I data whose WER
results were 56.1% and 53.9% on the dev01 and eval01 sets respec-
tively (see Table 2). We then constructed a new training set by ran-
domly selecting 60% of the Switchboard I corpus (approximately
148 hours of data). These utterances along with their labels in PL
format were used to train a system whose WER results were 55.9%
and 53.9% on the dev01 and eval01 sets respectively. Clearly, this
is very similar to the performance in the case of the system trained
using all of Switchboard I data in SL format. This implies that in the
case of the Switchboard I corpus, for example, 60 hours of PL data
is equivalent to 100 hours of SL data. Note that this is not a formal
proof of SL and PL data equivalence and we plan on investigating
this further in our future work.

In order to compare inference times and memory requirements
to train systems using FL, the proposed PL and SL data, we ran-
domly selected 100 utterances from the training set and ran infer-
ence on the these utterances using labels in the three formats on a
3.4MHz Intel Pentium D machine with 2GB of RAM. This was re-
peated 25 times, and we computed the minimum inference time over
these runs in each of the three cases. We also measured the memory
used in each of the cases. The results of these experiments are re-
ported in table 3. Rather than absolute inference times and memory
usage numbers, we present the performance of each system relative
to the SL case. Thus in the case of time speed-up, a number larger
than 1 implies that the system was faster than the SL case and in
the case of memory usage, a number smaller than 1, implies it used
less memory than the SL case. As expected training using FL data
is the fastest and consumes the least amount of memory. It can be
seen that training using PL data is about 10 times faster than SL data
and requires only 74.5% of the memory used by the SL case. Also
training a system using PL data is neither significantly slower, nor
does it require significantly larger memory than the FL case.

7. DISCUSSION AND FUTUREWORK

We have proposed a method for labeling data used to train a LV
system and shown that it can yield significant improvements over
systems trained using SL data. The proposed labeling technique
involves smaller amounts of human supervisory effort in compar-
ison to labeling all word level segmentations. In addition, it also
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overcomes some of the problems associated with annotating contin-
uous speech at word boundaries. While it is the case that sequence-
labeling speech data is twice as fast as the proposed approach, we
have shown (see section 6) that we need about 1.67 (= 100 hours/60
hours) times as much SL data as PL data to obtain similar perfor-
mance.

In the future, we plan on investigating other methods to generate
the VE weights (i.e. f(.) and g(.)). Another avenue for future work
is to look at using a combination of data in different formats to train
a recognizer. While the structure of the DBN used in the three cases
has some differences, the decoding-time distributions learned during
the training process are exactly the same and thus it is possible to
share accumulators. This is particularly useful as there already exists
large amounts of SL speech data (e.g. the Fisher corpus [21]). We
would like to show that using small amounts of PL data in addition
to large amounts of SL data can lead to improved performance. We
can also get massive amounts of speech data annotated using the
proposed scheme by designing an ESP-like game [22], wherein the
players are instructed to label the center of the word and are rewarded
for producing labels on frames that are close to each other. Also, in
general, it is the case that recognizers use exponentially more SL
data for linear relative gains. By making use of PL data, if a linear
increase in the amount of data yields linear relative gains, this can
be a huge win for training systems using this PL data. We hope to
investigate the above in our future work.
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